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Abstract: The achievement of the low Gilbert damping parameter in spin dynamic modulation is
attractive for spintronic devices with low energy consumption and high speed. Metallic ferromagnetic
alloy Co-Fe-B is a possible candidate due to its high compatibility with spintronic technologies. Here,
we report thickness-dependent damping and soft magnetism in Co-Fe-B films sandwiched between
two non-magnetic layers with Co-Fe-B films up to 50 nm thick. A non-monotonic variation of Co-Fe-B
film damping with thickness is observed, which is in contrast to previously reported monotonic
trends. The minimum damping and the corresponding Co-Fe-B thickness vary significantly among
the different non-magnetic layer series, indicating that the structure selection significantly alters the
relative contributions of various damping mechanisms. Thus, we developed a quantitative method to
distinguish intrinsic from extrinsic damping via ferromagnetic resonance measurements of thickness-
dependent damping rather than the traditional numerical calculation method. By separating extrinsic
and intrinsic damping, each mechanism affecting the total damping of Co-Fe-B films in sandwich
structures is analyzed in detail. Our findings have revealed that the thickness-dependent damping
measurement is an effective tool for quantitatively investigating different damping mechanisms.
This investigation provides an understanding of underlying mechanisms and opens up avenues for
achieving low damping in Co-Fe-B alloy film, which is beneficial for the applications in spintronic
devices design and optimization.

Keywords: Co-Fe-B alloy film; spin dynamic; Gilbert damping; co-planar waveguide FMR; spintronics

1. Introduction

The magnetization reversal due to spin-transfer-torque (STT) [1,2], spin-orbit-torque
(SOT) [3], domain wall motion [4], and spin wave propagation [5] has been extensively stud-
ied with a view to designing spintronic devices that operate with less energy consumption
and at faster speeds. Such magnetic phenomena are significantly affected by spin damping,
which is characterized by the Gilbert damping constant α in the Landau–Lifshitz–Gilbert
(LLG) equation [6]. Spintronic devices, for example, SOT magnetic random access memories
(MRAMs), nano-oscillators, or magnonics favor a low damping parameter for small critical
switching current and spin wave excitation [7–9]. Thus, it is desirable to engineer magnetic
materials with a low damping and to fully understand the underlying mechanisms.

The damping studies of yttrium–iron–garnet (YIG) films [4,10,11] and Heusler al-
loys [12,13] were among the hottest topics in magnetism a few decades ago. In spite of such
low damping from 10−4 to 10−5 [10,11], the complex oxides are hard to integrate with spin-
tronic technologies. Meanwhile, high-quality YIG films and Heusler compounds typically
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require oxide substrates and high-temperature processing, which imposes a limitation on
applications. Fortunately, conductive alloys provide an alternative solution.

To date, the metallic ferromagnetic (FM) alloy Co-Fe-B has been widely used for
magnetic layers in spintronic devices due to its perfect soft ferromagnetism, exhibiting
controllable in-plane (IP) or out-of-plane (OOP) magnetic easy axis (MEA), high spin po-
larization, and considerable large tunneling magnetoresistance (TMR) in magnetic tunnel
junctions (MTJs) [14–17]. It makes the study of low damping in Co-Fe-B alloy crucial
to the design and optimization of spintronic devices. The damping of magnetic mate-
rials can always be modulated via composition [18], interface engineering [19], phase
transition [20], external stimulus such as strain-mediated electric field [21], and thickness
control. Regarding the numerous applications of Co-Fe-B alloy films in spintronic devices,
thickness-dependent damping studies are attractive. It has been reported that stacks with
Co-Fe-B/oxide interfaces exhibit a magnetic layer thickness-dependent damping rule. The
aim of such a study is to produce high-efficiency spin currents through interface engi-
neering [22–24] and to achieve low damping in memories with perpendicular magnetic
anisotropy [25–27]. The complexity of this damping rule is attributed to interfaces of the
Co-Fe-B film, as the Co-Fe-B/oxide interface can reduce the purity of the Co-Fe-B layer due
to oxidation [28]. Alternatively, damping studies have been conducted in stacks without a
Co-Fe-B/oxide interface [29–31]. However, in these stacks, the Co-Fe-B film is not fully pro-
tected by the seed layer and capping layer, thus exposing it to significant risk of oxidation
from the atmosphere or the Si/SiO2 substrate. In the Co-Fe-B film sandwiched between
non-oxide layers, damping studies are typically limited to a narrow thickness range of the
magnetic layer, specifically no more than 10 nanometers (nm) [32,33]. In the meantime,
the analysis of extrinsic Gilbert damping, such as radiative damping and eddy-current
damping, usually relies on numerical calculations [34,35] in place of direct measurements.
Consequently, the interplay between intrinsic and extrinsic dampings poses a major im-
pediment to the accurate scrutiny of different damping mechanisms. In this regard, a
universal thickness-dependent (several nm to tens of nm [36]) damping study and the
development of an experimental method to fully understand the underlying mechanisms
of low damping in stacks with Co-Fe-B film sandwiched by non-oxide layers is desirable.
This is essential for advancing and refining the design of spintronic devices.

Here, we report on the thickness-dependent Gilbert damping and soft magnetism in
metal/Co-Fe-B/metal sandwich structures. The capping layer and seed layer are the same
in order to simplify the interfacial contribution analysis. In particular, in the context of
multiple developments of spintronic devices, it is vital to explore the damping in the uni-
versal thickness range, ranging from 1 to 50 nm [36]. The chosen non-magnetic layer (NM)
metallic layers for comparison are copper (Cu), molybdenum (Mo), tantalum (Ta), and
platinum (Pt), which are defined as four series, taking the interfacial contribution from the
Co-Fe-B/NM interface into account. By performing vibrating sample magnetometer (VSM)
and ferromagnetic resonance (FMR) measurements, we demonstrate a non-monotonic
thickness-dependent Gilbert damping rule in these sandwich structures. We have quantita-
tively disentangled the intrinsic and extrinsic Gilbert damping mechanisms and conducted
magnetic anisotropy analysis to understand the strain effect in Co-Fe-B films. Our study
demonstrates that the thickness-dependent damping measurement is an effective technique
to explore the different damping mechanisms quantitatively. The minimum damping at a
specific thickness and the intrinsic mechanism of low damping in the Co-Fe-B alloy film
are helpful for spintronic devices design and optimization.

2. Experimental Details

The stacks of metal(5)/Co-Fe-B(d)/metal(5) for VSM and FMR measurements are
deposited by a multisource high-vacuum magnetron sputtering system with a base vacuum
of 1 × 10−6 Pa on Si/SiO2 substrate as shown in the schematic in Figure 1a (inside each
parenthesis is the nominal thickness value). An IP magnetic field Hbias of about 50 Oe along
one substrate’s edge is applied during the deposition to produce a foreseeable IP anisotropy.
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The Co-Fe-B denotes a nominal target composition of Co40Fe40B20. The surface roughness
and the crystalline of the stacks are examined by NT-MDT NTEGRA scanning probe
microscope (SPM) (Moscow, Russia) and Rigaku TTR-III High-power X-ray Diffractometer
(XRD) (Tokyo, Japan), respectively. Energy-dispersive spectroscopy (EDS) mapping and fast
Fourier transform (FFT) analysis in the high-resolution transmission electron microscopy
(HRTEM) Tecnai G2 F30 S-Twin (Eindhoven, The Netherlands) are employed for studying
the interface information and the stack’s nanostructure. Magnetization versus magnetic
field (M-H) curves are measured by VSM (Model 3105, East Changing Technologies, Beijing,
China). Spin dynamics properties are characterized in a home-built FMR spectrometer with
a maximum magnetic field of 8 kOe and frequencies spanning from 4 to 26 GHz using an
S-shape co-planar waveguide. All measurements are performed at room temperature.
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The corresponding EDS mapping for Fe, Co, and Cu element. (f) The high magnification HRTEM of 
the close-up region marked by the green rectangle in (c) and the FFT image (g,h) of the selected 
square regions. 
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3.1. Structure Characterization 

SPM and XRD are carried out to characterize the surface roughness and crystalliza-
tion of the stacks. The roughness analysis in Supplementary Material Figure S1 indicates 
the flatness of the stack’s surface. Figure 1b shows no peaks from the Co-Fe-B alloy film, 
confirming the amorphous nature of the Co-Fe-B film. Surprisingly, the Pt (111) and Cu 

Figure 1. (a) Schematic of the sandwich structure deposited on the SiO2/Si substrate. (b) XRD pattern
of Co-Fe-B films in each series. (c) Cross-section HRTEM image of Cu(5)/Co-Fe-B(20)/Cu(5)/SiO2/Si
(100) substrate. The yellow dotted line shows the interfaces between the Cu layer and the Co-Fe-B
layer. (d) A bright-field scanning TEM image taken in the region marked by blue rectangle in (c).
(e) The corresponding EDS mapping for Fe, Co, and Cu element. (f) The high magnification HRTEM
of the close-up region marked by the green rectangle in (c) and the FFT image (g,h) of the selected
square regions.

3. Results and Discussion
3.1. Structure Characterization

SPM and XRD are carried out to characterize the surface roughness and crystallization
of the stacks. The roughness analysis in Supplementary Material Figure S1 indicates the
flatness of the stack’s surface. Figure 1b shows no peaks from the Co-Fe-B alloy film,
confirming the amorphous nature of the Co-Fe-B film. Surprisingly, the Pt (111) and Cu
(111) peaks can be seen in the stacks, indicating the crystallization of the capping and seed
layers. The absence of Ta and Mo peaks here is due to the X-ray detection limitation [37],
combining the analysis of Ta(5)/Co-Fe-B(5)/Ta(5) in Supplementary Material Figure S2.

Cross-section EDS mapping and TEM analysis are performed to visually investi-
gate the interface information and nanostructure of the representative stack Cu(5)/Co-Fe-
B(20)/Cu(5). The HRTEM in Figure 1c displays the flat interface and ideal multi-layer
structure. The colored rectangles mark the corresponding location of EDS (blue) and
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high-magnification HRTEM (green). Note that the actual thickness of each layer is con-
sistent with the nominal value. The bright-field scanning TEM image (Figure 1d) and the
corresponding EDS mapping (Figure 1e) for constituent elements reveal that Fe, Co, and
Cu atoms are homogeneously distributed in each layer without any segregation at the
interface. The interfaces between the Cu and Co-Fe-B are distinct as denoted by yellow
dotted lines in Figure 1d–f. The high-magnification HRTEM presents the ordered Cu lattice
and disordered Co-Fe-B atoms as shown in Figure 1f. The FFT focused on the Co-Fe-B layer
and Cu layer is performed to confirm the nanostructure crystallization. A weak diffraction
in Figure 1g and a plurality of diffraction rings in Figure 1h verify the amorphous Co-Fe-B
film and polycrystalline Cu film in the stack, well matching what has been observed in the
XRD measurement (Figure 1b).

A stack Ta(5)/Co-Fe-B(5)/Ta(5) is also characterized by EDS mapping and HRTEM
for comparison as shown in Supplementary Material Figure S2. The FFT focused on the
Co-Fe-B layer and Ta layer verifies the amorphous of Co-Fe-B film (Figure S2e) and the
weak crystallization of Ta film (Figure S2f).

3.2. Soft Magnetism

The M-H hysteresis loops for the different stacks are shown in Supplementary Material
Figure S3. The saturation magnetization (Ms) and coercivity (Hc) of all stacks are collected
in Figure 2a,b. The small saturation field (Hs) of the IP M-H loop in Figure S3a–d indicates
the MEA lies in the plane. The Ms of the stacks distribute in the range from 11 to 17 kG.
The statistical distribution of Ms is denoted as the background color in Figure 2a, which
is in agreement with the reported value (about 14–15 kG [38,39]). The Hc shows different
rules in different series, which is decreasing versus the thickness increase for the Ta, Pt,
and Cu series but increasing versus the thickness raise for the Mo series. The excellent soft
magnetism is present in the stacks with thickness larger than 3 nm in Ta, Pt, and Cu series,
in which Hc is less than 10 Oe. The OOP Hs is extracted from the M-H loops to evaluate the
magnetic anisotropy. As shown in Figure 2c, the Hs increases with the rise of thickness and
then turns to be gradually saturated when the thickness is larger than 20 nm. Hs can be
well fitted by the thickness-dependent demagnetization factor equation [40]:
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(
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where Dz is the demagnetizing factor in the OOP direction, and p is a geometry factor
which is defined as the ratio of film thickness to width. Because the shape anisotropy
energy in thin films is proportional to Dz, Hs in our films can be well fitted by Equation (1),
suggesting that Hs is affected by shape anisotropy.

The magnetic dead layer could originate from the intermixing of the metallic layer
and Co-Fe-B layer at the interface and the oxidation of the FM layer [23]. In this regard,
it is possible to fit the thickness-dependent Ms (Figure 2d) using a simple bilayer model
to determine the dead layer’s thickness, i.e., Ms*d = MB*(d − dDL) + MDL*dDL [23,41],
where MB and MDL represent the saturation magnetization of the bulk-like layer and dead
layer, respectively. dDL is the dead layer’s thickness. In that case, MB = 16.1 ± 0.2 kG,
14.9 ± 0.3 kG, 15.0 ± 0.2 kG and 13.4 ± 0.2 kG for the Pt, Cu, Mo, and Ta series, respectively.
The corresponding MDL values are 0.7 ± 0.1 kG, 1.3 ± 0.3 kG, 0.6 ± 0.2 kG, and 1.1 ± 0.2 kG,
respectively. The thickness of the dead layer, dDL = 0.23 ± 0.02 nm, 0.40 ± 0.10 nm,
0.43 ± 0.11 nm, and 0.20 ± 0.05 nm, correspondingly. These results demonstrate that an
ultra-thin magnetic dead layer with thickness less than 1 nm exists in our Co-Fe-B/NM
interfaces [23,42]. In the following, these values of MB will be employed as the effective
Ms of each series. We will show that the results of spin-mixing conductance analysis in
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Section 3.3 match with the dDL here, suggesting the magnetic dead layers originate from
the intermixing in the Co-Fe-B/NM interfaces.
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Figure 2. The collection of Ms (a) and Hc (b) for all stacks. The background color displays the
statistical distribution of Ms. The dotted lines denote the fitted values of each series from the bilayer
model. (c) The thickness-dependent saturation field Hs (dots) and fitted by the demagnetization
factor (lines) in the OOP direction. (d) The thickness-dependent sheet magnetization fitted with a
bilayer model.

3.3. Spin Dynamic Properties

Next, broadband FMR measurement is carried out on all stacks to investigate the
spin dynamic properties. The stack is faced down on an S-shape co-planar waveguide by
which a microwave field with frequency (f ) ranging from 4 to 26 GHz and IP magnetic field
with variable direction are applied (Figure 3a). θH is the angle between the magnetic field
direction and MEA, where the MEA direction is parallel to the Hbias during deposition.
Figure 3b shows the typical FMR spectra of the Cu(5)/Co-Fe-B(3)/Cu(5) stack detected
from 4 to 18 GHz. Each FMR spectrum can be accurately fitted using the Lorentz symmetric
and antisymmetric functions [13]

dP
dH

= S × 4∆H2(H − Hr)

[∆H 2 + 4(H − Hr)
2
]2 − N ×

2∆H
[
∆H2 − 4(H − Hr)

2
]

[∆H 2 + 4(H − Hr)
2
]2 + C, (2)

where dP
dH is the signal intensity, H is the applied magnetic field, Hr is the resonant field,

S and N are the coefficients of Lorentzian symmetric and antisymmetric parts, ∆H is the
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FMR linewidth, and C is the offset. The extracted ∆H presents a linear relation with f as
shown in Figure 3c, which can be fitted by the following equation [13,34]:

∆H( f ) =
4παtot

γ
f + ∆H0, (3)

where γ = gµB/� is the electron gyromagnetic ratio, αtot is the total Gilbert damping
constant and ∆H0 is the inhomogeneous linewidth broadening at 0 Hz. Since ∆H results
from intrinsic and extrinsic contributions to damping, the θH-dependent ∆H is measured to
determine the direction of the applied magnetic field giving the minimal ∆H value, where
the extrinsic contributions to the linewidth are minimal. θH = 0 means the MEA direction.
As shown in Figure 3d, the isotropy of ∆H0 and αtot indicates there is no specific direction
of ∆H and αtot, which is different from the anisotropy of Hr (Figure 3e). The frequency-
dependent ∆H along MEA is then employed as shown in Supplementary Material Figure S4
to determine the αtot of all stacks.
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Figure 4a reveals a non-monotonic thickness-dependent αtot rule in all stacks. Figure 
4b is the enlargement of the thickness region from 0 to 15 nm. Actually, αtot consists of 

Figure 3. (a) Schematic of the FMR measurement for (b–e). The sample is laid face down on an
S-shape co-planar waveguide. Magnetic fields are applied in the IP direction with the MEA (θH).
(b) Representative FMR spectra with frequency ranging from 4 to 18 GHz. (c) The linear frequency-
dependent linewidth and (d) the θH-dependent αtot and ∆H0 measured at f = 7 GHz. (e) The
θH-dependent resonance field Hr of Cu/Co-Fe-B/Cu samples with different thickness measured at
f = 7 GHz. The lines are fitted by Equation (7).

Figure 4a reveals a non-monotonic thickness-dependent αtot rule in all stacks. Figure 4b
is the enlargement of the thickness region from 0 to 15 nm. Actually, αtot consists of intrinsic
and extrinsic damping contributions [34], wherein the latter is usually caused by interfacial
contributions such as spin pumping, two-magnon scattering (TMS), radiative damping, and
eddy current. All extrinsic damping mechanisms are thickness-dependent. The intrinsic
damping (αint) reflects an inherent characteristic of the magnetic material that is not affected
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by the thickness of the film. Interfacial contributions including spin memory loss [43],
interfacial isotropic scattering [44], and spin pumping [13,21,22,24] are phenomenologically
inverse in film thickness with the coefficient βsp = αsp*d, where αsp is the damping of
interfacial contribution and d is the FM film thickness. The TMS arises when a uniform FMR
mode is destroyed and degenerate magnons of different wave vectors are created [45]. The
momentum non-conservation is accounted for by considering a pseudo-momentum derived
from the internal field inhomogeneities or secondary scattering. Recently, TMS has been
found to be the dominant contribution to damping in heavy metal/FM heterostructures,
and this finding provides further justification for the d−2 dependence of the TMS term
(αTMS) [46]. At last, as we measure the damping using an FMR with a conductive co-planar
waveguide (Figure 3a), spin precession in the FM layer induces AC currents both in the
FM layer and the co-planar waveguide. The dissipation of these AC currents within the
stacks and the flow of energy into the co-planar waveguide both give rise and contribute to
damping. Historically, the damping caused by eddy currents in the FM layer αeddy is called
eddy-current damping, while the induced damping in the waveguide is called radiative
damping αrad. αeddy is quadratically proportional to the film thickness (αeddy = βeddy*d2),
while αrad scales linearly with the film thickness (αrad = βrad*d) [34,35]. Therefore, the αtot
value is given by the sum of the five damping mechanisms as [47]

αtot = αint + αsp + αTMS + αrad + αeddy

= αint +
βsp
d + βTMS

d2 + βrad*d + βeddy*d2,
(4)

where βsp, βTMS, βrad, and βeddy are the corresponding coefficients of each mechanism.

All coefficients are listed in Table 1. Concerning the αrad =
γµ2

0 Ms ld
16ZW , where µ0 is the

vacuum permeability, l is the length of the stack, Z = 50 Ω is the impedance and W = 100 µm
is the width of the waveguide, our fitted value of αrad is consistent with the one calculated
by the formula [34,35]. It has been suggested that αrad is anisotropic and only works
with perpendicular FMR geometry [34,35]. A disentanglement without αrad is also carried
out as shown in Supplementary Material Figure S5. The comparison of the coefficients
between Table 1 and Table S1 indicates little difference. The relative contributions R of
each mechanism are plotted in Figure 4c–f for different series. It can be seen that the
αrad contributes no more than 10% even in the thick films. By contrast, the αeddy varies
enormously. The αeddy can be negligible in the thickness less than 5 nm but becomes
extremely large in thick films. The αtot enhancement in thick films mainly comes from the
contribution of αeddy, as observed by Li et al. [48]. Since αrad and αeddy represent energy
consumption in the FMR facility, we define a critical thickness dcri as the sum of these two
contributions exceeds the remaining three, allowing us to compare internal and external
energy consumption. As shown in Table 1, the dcri is larger than 20 nm in the Pt and Ta
series but becomes smaller in the Mo and Cu series. This rule indicates that the heavy
metal plays a role in reducing the external energy consumption. In addition, the minimum
damping αmin (Table 1) at the specific thickness dmin of each series provides a reference for
low-damping spintronic device design.

Table 1. Thickness-dependent αtot fitting to disentangle the coefficients of each damping mechanism.
NM stands for the NM/Co-Fe-B/NM sandwich structure.

NM αint
(10−3)

βsp = αsp × d
(10−2 nm)

βTMS = αTMS × d2

(10−2 nm2)
βrad = αrad/d
(10−5 nm−1)

βeddy = αeddy/d2

(10−6 nm−2)
dmin/αmin
(nm/10−3)

dcri
(nm)

Ta 1.59 1.25 2.95 2.16 2.87 12.4/3.49 24.0
Pt 5.75 1.22 5.10 1.00 1.54 16.1/7.26 >50.0
Cu 2.55 0.12 0.13 1.26 9.72 4.54/3.14 15.8
Mo 3.13 0.24 1.07 4.36 6.89 6.29/4.32 18.9
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More intrinsic information can be obtained when we consider the difference of αint,
αsp and αTMS in different series. Regarding the TMS mechanism in the previous intro-
duction [46], the good linear relationship between (βTMS)1/2 and perpendicular magnetic
anisotropy field (H⊥) as analyzed in Supplementary Material Figure S6 indicate the TMS
mechanism originates from the interfacial perpendicular magnetic anisotropy in our stacks.
The perpendicular magnetic anisotropy density of NM/FM interface Ks = 1.18 erg/cm2

in Pt(5)/Co-Fe-B(3)/Pt(5) is slightly larger than the previous report [46] because of the
double Co-Fe-B/Pt interfaces here. Note that the stack’s MEA lies in the plane despite there
being a large H⊥ in Co-Fe-B/Pt interface, which means other IP magnetic anisotropies
exist. Apart from TMS, the principal impact on the interface comes from the spin pumping
effect, in which an external stimulation incites a precession of magnetization within the FM
layer. This precession of magnetization leads to a buildup of spins resting at the NM/FM
interface. A neighboring NM layer, which functions as an ideal spin sink, collects these
spins using spin-flip scattering, resulting in a significant increase in the Gilbert damping
parameter of FM. The spin-pumping effect has received significant attention for producing
a high-efficiency spin current [13,22,24]. According to spin pumping theory, the movement
of spin across the NM/FM interface is directly influenced by the spin-mixing conductance.
This conductance has two types, namely, (a) g↑↓, which excludes the effect of spin angular
momentum back-flow, and (b) geff, which includes the back-flow impact. The spin channel
conductive property attribute at the NM/FM interface is represented by the spin-mixing
conductance, which can be described by the ballistic spin transport model [22,24]

geff = g↑↓

(
1 − e

− 2t
λeff

)
=

4πMs

gµB
d × αsp, (5)

αsp =
gµB

4πMsd
× g↑↓

(
1 − e

− 2t
λeff

)
, (6)

where t is the thickness of the NM metallic layer, and λeff is the effective spin diffusion
length in the Co-Fe-B/NM interface. Referring to the small value of λeff [13,49] and
t = 5 nm in our stacks, the contribution of spin angular momentum back-flow is negligible.
Taking the value of MB extracted from the bilayer model fitting and g = 2.15 [49], the
analysis of βsp leads to g↑↓ = 8.36 ± 0.11 nm−2, 9.84 ± 0.13 nm−2, 0.92 ± 0.02 nm−2, and
1.77 ± 0.03 nm−2 for Ta, Pt, Cu, and Mo series, respectively. Our results are comparable
with the references [22,24]. The Co-Fe-B/Cu and Co-Fe-B/Mo interfaces display lower
values of g↑↓ compared to the Co-Fe-B/Pt and Co-Fe-B/Ta interfaces. The cause of this trend
can be traced back to the intermixing that occurs at the Co-Fe-B interfaces, which creates a
wider interface region. This wider region may neutralize the sudden potential variation at
the interfaces, making it less likely for conducting electrons to scatter and, consequently,
resulting in a decrease in interface spin losses. The high efficiency of spin pumping in
Co-Fe-B/Pt and Co-Fe-B/Ta interfaces indicates the strong Co-Fe-B interfacial spin-flip
scattering, which is attributed to the large spin-orbit coupling and spin-flip scattering
parameter in heavy metal [50]. We emphasize here that the stronger intermixing in Co-Fe-
B/Cu and Co-Fe-B/Mo interfaces is consistent with the dDL, confirming the intermixing
mechanisms in dead layer’s formation as discussed in Section 3.2.

The thickness-dependent spin pumping contribution Rsp is non-monotonic in Ta and
Pt series but shows a decreasing rule with the thickness rise in Cu and Mo series (red curves
in Figure 4c–f). Actually, Rsp is a non-monotonic curve with Co-Fe-B thickness d, which is
written as Rsp = αsp/αtot = βsp/(d*αtot). The thickness-turning point dtr can be found by the
differentiation of Rsp, producing an equation 3*dtr

4*βeddy + 2*dtr
3*βrad + dtr

2*αint = βTMS.
There must be an appropriate thickness satisfying the equation for each series. For Ta and
Pt series, the comparatively large βTMS makes the dtr locate in the thickness range of 1 to
5 nm, which can be observed in our measurement. However, the small βTMS in the Cu and
Mo series decreases the dtr to less than 1 nm, leading to the monotonic Rsp with thickness
larger than 1 nm.
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3.4. Magnetic Anisotropy

Finally, we briefly discuss the magnetic anisotropy in our stacks measured by FMR. It
has been shown that all stacks exhibit IP uniaxial magnetic anisotropy with MEA along
the direction of Hbias during deposition (Figure 3e and Supplementary Material Figure S7).
The anisotropy of Hr can be fitted using [51]

Hr = A × sin2(θH) + B, (7)

where A and B are anisotropy intensity and offset, respectively. As shown in Figure 5a,
the anisotropy intensities increase with Co-Fe-B thickness in Ta, Cu, and Mo series rather
than the decreasing trend in Pt series. The IP anisotropy variation with Co-Fe-B thickness
could be verified by IP uniaxial magnetic anisotropy coefficient (Ku), which is extracted
from f -dependent Hr fitting in the Kittel equation [13,49]

(
ω

γ
)

2
= (Hr +

2Ku

Ms
)×(Hr + 4πMeff +

2Ku

Ms
), (8)

where 4πMeff = 4πMs − µ0H⊥ is the effective magnetization, H⊥ is the perpendicular
magnetic anisotropy field as discussed in Section 3.3, and ω = 2πf.

The thickness-dependent Ku and Meff are shown in Figure 5b,c, respectively. Since
both Ku and A represent the magnitudes of magnetic anisotropy, Figure 5a,b confirm
that the magnetic anisotropy increases with Co-Fe-B thickness in the Ta, Cu, and Mo
series, but it decreases in the Pt series. Generally, magnetic anisotropy can originate from
magnetocrystalline anisotropy, induced anisotropy, shape anisotropy, interfacial anisotropy,
and strain effect [51]. Magnetocrystalline anisotropy can be ruled out due to the amorphous
nature of the Co-Fe-B film as shown in XRD and TEM. Induced anisotropy is caused by
Hbias during deposition, which is the same in all stacks. Shape anisotropy is usually a
function of the geometry factor, as described in Equation (1). Since the geometry of all stacks
is indistinguishable, the shape anisotropy in the stack is the same. Interfacial anisotropy
usually is helpful for perpendicular magnetic anisotropy as predicted by Néel [52]. It
is dominant in ultra-thin films with thickness less than 1 nm and suppressed by shape
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anisotropy in thicker films. Although there is H⊥ in our stacks, the competition between H⊥
and the demagnetization field makes the MEA lie in the plane. Thus, IP uniaxial magnetic
anisotropy in our stacks is the sum of induced anisotropy, shape anisotropy, interfacial
anisotropy, and strain effect. Combining the analysis on the induced anisotropy, shape
anisotropy and interfacial anisotropy in our stacks, the strain effect could be the only reason
for the opposite trend of Ku and A as seen in Figure 5a,b.

Strain effect is universal in stack samples, which could originate from the residual
stress of the substrate, lattice mismatch, crystallization of the NM layer and sample clamp-
ing [53–56]. The strain effect can affect the thickness of the magnetic film up to several hun-
dred nm [57] and decreases with thickness increasing [54]. Since the magnetic anisotropy in
our stacks is IP uniaxial magnetic anisotropy with the MEA along the direction of Hbias, the
stress direction should be parallel to the Hbias. The contribution of the strain effect in the
Pt series (Ta, Cu, Mo series) should assist (suppress) the magnetic anisotropy, suggesting
opposite strain effects as the schematics shown in Figure 5d,e. Now, we conclude the
stain is not from the substrate and the deposition, since we use the identical substrate and
deposition process for all samples. The strain is probably related to NM layers because
they are opposite in the Pt series to the Ta, Cu, and Mo series.

Nanomaterials 2024, 14, x FOR PEER REVIEW 10 of 13 
 

 

but it decreases in the Pt series. Generally, magnetic anisotropy can originate from mag-
netocrystalline anisotropy, induced anisotropy, shape anisotropy, interfacial anisotropy, 
and strain effect [51]. Magnetocrystalline anisotropy can be ruled out due to the amor-
phous nature of the Co-Fe-B film as shown in XRD and TEM. Induced anisotropy is caused 
by Hbias during deposition, which is the same in all stacks. Shape anisotropy is usually a 
function of the geometry factor, as described in Equation (1). Since the geometry of all 
stacks is indistinguishable, the shape anisotropy in the stack is the same. Interfacial ani-
sotropy usually is helpful for perpendicular magnetic anisotropy as predicted by Néel 
[52]. It is dominant in ultra-thin films with thickness less than 1 nm and suppressed by 
shape anisotropy in thicker films. Although there is H⟂ in our stacks, the competition be-
tween H⟂ and the demagnetization field makes the MEA lie in the plane. Thus, IP uniaxial 
magnetic anisotropy in our stacks is the sum of induced anisotropy, shape anisotropy, 
interfacial anisotropy, and strain effect. Combining the analysis on the induced anisot-
ropy, shape anisotropy and interfacial anisotropy in our stacks, the strain effect could be 
the only reason for the opposite trend of Ku and A as seen in Figure 5a,b. 

Strain effect is universal in stack samples, which could originate from the residual 
stress of the substrate, lattice mismatch, crystallization of the NM layer and sample clamp-
ing [53–56]. The strain effect can affect the thickness of the magnetic film up to several 
hundred nm [57] and decreases with thickness increasing [54]. Since the magnetic anisot-
ropy in our stacks is IP uniaxial magnetic anisotropy with the MEA along the direction of 
Hbias, the stress direction should be parallel to the Hbias. The contribution of the strain effect 
in the Pt series (Ta, Cu, Mo series) should assist (suppress) the magnetic anisotropy, sug-
gesting opposite strain effects as the schematics shown in Figure 5d,e. Now, we conclude 
the stain is not from the substrate and the deposition, since we use the identical substrate 
and deposition process for all samples. The strain is probably related to NM layers because 
they are opposite in the Pt series to the Ta, Cu, and Mo series. 

 
Figure 5. (a) The thickness-dependent anisotropy intensity A. The thickness-dependent IP uniaxial 
magnetic anisotropy coefficient Ku (b) and effective magnetization Meff (c). (d,e) The schematic of 
the Co-Fe-B film under tensile stress and compressive stress. The dash lines represent the film’s 
original volume. 

4. Conclusions 
In summary, we have investigated the thickness-dependent Gilbert damping and soft 

magnetism of the Co-Fe-B film in the metal/Co-Fe-B/metal sandwich structure. The struc-
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original volume.

4. Conclusions

In summary, we have investigated the thickness-dependent Gilbert damping and
soft magnetism of the Co-Fe-B film in the metal/Co-Fe-B/metal sandwich structure. The
structure characterization confirms the amorphous nature of the Co-Fe-B film and the
crystallization of the metallic NM film. The flat interfaces from EDS mapping demonstrate
the ideal sandwich structure, avoiding the risk of Co-Fe-B oxidation. Soft magnetism study
shows the Ms, Hs and dead layer of each series. Performing co-planar waveguide FMR
measurements reveals a non-monotonic thickness-dependent Gilbert damping rule in this
structure. Significantly, αint, αsp, αTMS, αrad, and αeddy are quantitatively disentangled.
The TMS mechanism originates from the interfacial perpendicular magnetic anisotropy
at film thicknesses less than dcri, while αeddy dominates the contribution of αtot in the
films at film thicknesses greater than dcri. In addition, the high-efficiency of spin pumping
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in Co-Fe-B/Pt and Co-Fe-B/Ta interfaces is related to the large spin-orbit coupling and
spin-flip scattering parameters in heavy metal. Based on the magnetic anisotropy analyses,
we conclude that the IP uniaxial magnetic anisotropy of the stacked layers is the sum of
the induced anisotropy, interfacial anisotropy, shape anisotropy, and strain effect, and that
there are opposite strain effects in the Pt series to the Ta, Cu, and Mo series. Our results
suggest that thickness-dependent damping measurements are effective for quantitatively
exploring various damping mechanisms. The intrinsic mechanism of low damping in Co-
Fe-B alloy films and the minimum value at specific thicknesses is beneficial for improved
and processed spintronic devices for applications.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/nano14070596/s1, Figure S1: Topography image of representative
stacks Ta/Co-Fe-B/Ta and Pt/Co-Fe-B/Pt; Figure S2: EDS mapping and TEM of stack Ta(5)/Co-
Fe-B(5)/Ta(5) for comparison; Figure S3: IP and OOP M-H hysteresis loops of the stacks; Figure S4:
The f -dependent linewidth ∆H of the stacks; Figure S5: A disentanglement of intrinsic and extrinsic
damping contributions without radiative damping αrad, the coefficients of each damping mechanism
are listed in Table S1; Figure S6: Analysis of relationship between TMS mechanism and perpendicular
magnetic anisotropy field H⊥; Figure S7: IP Hr anisotropy for Co-Fe-B film in Ta, Pt, and Mo series.
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