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Abstract: The high energy consumption of traditional water splitting to produce hydrogen is mainly
due to complex oxygen evolution reaction (OER), where low-economic-value O2 gas is generated.
Meanwhile, cogeneration of H2 and O2 may result in the formation of an explosive H2/O2 gas
mixture due to gas crossover. Considering these factors, a favorable anodic oxidation reaction is
employed to replace OER, which not only reduces the voltage for H2 production at the cathode and
avoids H2/O2 gas mixture but also generates value-added products at the anode. In recent years,
this innovative strategy that combines anodic oxidation for H2 production has received intensive
attention in the field of electrocatalysis. In this review, the latest research progress of a coupled
hydrogen production system with pollutant degradation/upgrading is systematically introduced.
Firstly, wastewater purification via anodic reaction, which produces free radicals instead of OER for
pollutant degradation, is systematically presented. Then, the coupled system that allows for pollutant
refining into high-value-added products combined with hydrogen production is displayed. Thirdly,
the photoelectrical system for pollutant degradation and upgrade are briefly introduced. Finally, this
review also discusses the challenges and future perspectives of this coupled system.

Keywords: hydrogen production; degradation of pollutants; waste reforming; electrocatalysis; photo-
electrochemistry

1. Introduction

With the development of industrialization, energy consumption is increasing. Massive
use of non-renewable resources, such as fossil fuels, has brought a serious energy crisis and
environmental pollution. Therefore, it is crucial to seek clean, efficient, and environmentally
friendly energy alternatives. Hydrogen energy, regarded as the key to the future of green
energy, has received widespread attention due to its zero-pollution, high-energy, and
resource-rich properties [1,2]. Nowadays, hydrogen is still mainly produced by reforming
fossil energy represented by coal and natural gas. However, this process causes severe
environmental pollution and excessive energy consumption. Hydrogen production through
water splitting driven by renewable energy, which does not cause environmental pollution
problems, such as carbon emissions, is an important way to produce green hydrogen [3–9].
Water electrolysis technology usually includes hydrogen evolution reaction (HER) [10–12]
and oxygen evolution reaction (OER) [13–15]. The OER involves a four-electron transfer
process, resulting in slow reaction kinetics and high overpotential. Therefore, a large
amount of electric power needs to be consumed to drive the reaction. The high overpotential
of OER causes the actual water decomposition voltage to be higher than the theoretical
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voltage of 1.23 V. Therefore, the high energy consumption is a key limiting factor for the
foreground of hydrogen production via water electrolysis.

In traditional overall water splitting, the anode product is a low-value commodity.
What is more, hydrogen and oxygen produced at the same time present a potential explo-
sion risk, so a chamber must be employed to separate the cathode and anode. According to
recent studies [16], the use of thermodynamically more favorable reactions at the anode in-
stead of the OER, coupled with cathodic HER, can increase hydrogen production efficiency
and reduce voltage energy consumption (Table 1).

The electrochemical hydrogen generation system combined with a non-OER process
has attracted much attention. Also, some recent articles have summarized the coupled
system, such as biomass oxidation/organic small molecule oxidation coupled hydrogen
production. However, a critical review focused on wastewater purification/pollutant refin-
ing coupled with hydrogen production has not been reported. In this review (Figure 1),
wastewater purification coupled with hydrogen production is firstly presented. Subse-
quently, a pollutant refining coupled hydrogen production system is introduced. Finally,
the problems faced in research related to hydrogen production coupled with pollutant
transformation through electrocatalytic technology are summarized, and an outlook for
future development is also presented.
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Table 1. Performance comparison between the traditional electrolytic water system and some of the
new coupled systems. Type I: Overall water splitting system. Type II: Hydrogen generation coupled
with water purification system. Type III: Hydrogen generation coupled with waste reforming system.

Type of
Cell Cathodic Catalyst Anodic Catalyst Driving Voltage Pollutants in Wastewater Product Ref.

Type I

Co-Mo2C Co-Mo2C 1.68 V (10 mA cm−2) - H2+O2 [23]
CoBOx/NiSe CoBOx/NiSe 1.48 V (10 mA cm−2) - H2+O2 [24]

Ni5P4@NiCo2O4 Ni5P4@NiCo2O4 1.65 V (100 mA cm−2) - H2+O2 [25]
Ni/Ni(OH)2 Ni/Ni(OH)2 1.59 V (10 mA cm−2) - H2+O2 [26]

CoMoP/Ni3S2 CoMoP/Ni3S2 1.54 V (10 mA cm−2) - H2+O2 [27]
(Ni-Fe)Sx/NiFe(OH)y (Ni-Fe)Sx/NiFe(OH)y 1.46 V (10 mA cm−2) - H2+O2 [28]
HOF-Co0.5Fe0.5/NF HOF-Co0.5Fe0.5/NF 1.36 V (10 mA cm−2) - H2+O2 [29]

NiCo foam NiFe foam 1.52 V (10 mA cm−2) - H2+O2 [30]
Mo–NiCoP E-Mo–NiCoP 1.61 V (10 mA cm−2) - H2+O2 [31]

F0.25C1CH/NF F0.25C1CH/NF 1.45 V - H2+O2 [32]

Type II

CoNi@CN-CoNiMoO) CoNi@CN-CoNiMoO) 1.58 V (500mA cm−2) Urea H2+NO2 [33]
Fe@N-CNT/IF IF 1.09 V (20mA cm−2) Organic and heavy metal H2 [34]

CoP/TiM CoP/TiM 0.20 V (10mA cm−2) Hydrazine H2 [35]
Cu(II)-Co3O4 NWs Cu(II)-Co3O4 NWs - Urea H2+NO2 [17]

CuO Ov-Co3O4 - Urea H2+NO2 [36]

Type III

CoO@C/MXene/NF CoS2@C/MXene/NF 0.97 V Sulfion H2+S [37]
CoNi@NG CoNi@NG 0.25 V Sulfion H2+S [38]
CC@N-CoP CC@N-CoP 0.89 V (10 mA cm−2) Sulfion H2+S [39]

WS2 WS2 0.53 V Sulfion H2+S [18]
PdBi/NF PdBi/NF 1.02 V Alcohol H2+3-Hp [40]

Co3O4/CF Co3O4/CF 1.39 V (10 mA cm−2) 2,5-bis(hydroxymethyl)furan H2+FDCA [19]
Pt/C Cu(OH)2/NF 0.92 V (100 mA cm−2) Glucose H2+CHOCOOH [41]
Pt/C Cu-Cu2O/CC 0.59 V (10 mA cm−2) Glycerol H2+HCOOH [42]

CoNi0.25P/NF CoNi0.25P/NF 1.80 V (500 mA cm−2) Polyethylene terephthalate H2+HCOOH [43]
W-Ni3N/NF N-Cu/Cu2+1O/CF 0.42 V (500 mA cm−2) Formaldehyde H2+HCOOH [44]

2. Overall Water Splitting for Hydrogen Production

Hydrogen production through water electrolysis is a promising technology that can
convert distributed energy into hydrogen energy that can be stored. The design and de-
velopment of catalysts with high activity are the key to realizing hydrogen production
through water electrolysis. Recently, with the progress of nanotechnology (heterojunction
engineering, doping engineering, defect engineering, etc.) for regulating the activity of elec-
trocatalysts, a series of promising electrocatalysts have been developed. For instance, many
transition metal-based compounds (Mo3Se4-NiSe [1], Co-Mo2C [23], Ni5P4@NiCo2O4 [25],
CoMoP/Ni3S2 [27], Mo-NiCoP [31], etc.) with excellent performance become potential
candidates as non-noble metal electrocatalysts for electrolysis of water. However, the theo-
retical decomposition water voltage of 1.23 V cannot be broken by regulating the activity
of the catalyst. Therefore, the researchers propose hybrid water decomposition systems,
which are introduced in the following part (Figure 2).
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3. Electrocatalytic Hydrogen Production Coupled with Pollutant Removal

Industrial wastewater contains a lot of toxic and harmful pollutants, and most of them
are high in salt (a total dissolved solid mass concentration of more than 3.5% and salt content
of more than 1%) [45]. Traditional biological methods have been unable to effectively treat
high-salt wastewater [46]. Electrochemical anodization to produce oxidizing free radicals
(·OH, ·Cl) with strong oxidation capacity is an effective means to degrade pollutants. As
mentioned earlier, traditional anodes for electrolyzing water produce low-value-added
oxygen. Therefore, the coupled system for producing hydrogen at the cathode and water
purification at the anode can expand the function of the electrolyzer [47].

Hydroxyl radical (·OH) with the oxidation potential of 2.8 V is an important reactive
oxygen species (ROS) that can efficiently degrade pollutants [48–52]. Efficient production of
·OH is the key to achieving synchronous hydrogen production and water purification. For
instance, Mao et al. prepared NiMoO4 loaded on a nickel foam (NiMoO4-NF) anode catalyst
using the hydrothermal method. The NiMoO4-NF anode can generate ·OH efficiently for
phenol degradation (Figure 3a) [20]. The NiMoO4-NF layer was porous (Figure 3b), which
not only facilitated the efficient formation of ·OH but was also conducive to the diffusion
and enrichment of pollutants. As shown in Figure 3c, the performance of NiMoO4-NF
was promoted through the addition of phenol, with the overpotential reduced from 410 to
380 mV at 10 mA cm−2. The stepping down of overpotential may be due to the high-
efficiency degradation of phenol by ·OH. The high-efficiency anode reaction coupled with
cathode hydrogen production was used to construct a hybrid electrolytic cell. On account of
the operation condition and reaction parameters, the input electrical energy of this system
only needed as low as 56.5 kWh (kg H2)−1.
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American Chemical Society. (d) Schematic diagram of electro-fenton coupled with H2 production.
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using CoFeP/C/H2O2 and CoP/C/H2O2 Ref. [53] Copyright 2021, Elsevier.

To further reduce the drive voltage for the coupled system, researchers oxidized H2O2
to obtain ·OH to achieve the reduction of the driving voltage. For example, Tao et al. syn-
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thesized a needle-like CoFeP/C anode catalyst via hydrothermal and post-phosphorization
processes, which was employed for the oxidation of H2O2 to produce ·OH (Figure 3d) [53].
Figure 3e indicates that H2O2 oxidation to produce ·OH is more favorable than OER. Ac-
cording to the electron paramagnetic resonance (EPR) spectroscopy (Figure 3f), Fe could
optimize the electronic structure of CoP/C so as to oxidize H2O2 more efficiently to pro-
duce ·OH. In the CoFeP/C//CoP/C coupled system, MB was almost completely degraded
after 40 min. The CoP/C cathode also possesses excellent HER performance, with the
overpotential of 42.1 mV (vs. RHE) to achieve 10 mA cm−2. Due to highly active CoP/C
and CoFeP/C, the flow system for the synchronization of H2 production and pollutant
degradation just needed a voltage of 1.68 V.

Besides ·OH, chlorine radicals (·Cl) are also widely used to degrade pollutants due to
their high activity and selectivity [54,55]. Urine is an abundant biological pollutant enriched
with 80% nitrogen in domestic wastewater. Direct urine oxidation has sluggish kinetics
owing to the complex six-electron transfer process [56–58]. As an alternative, urea degra-
dation can be effectively achieved via ·Cl oxidation. For example, Zhang et al. prepared
an Ov-Co3O4 NWs anode using hydrothermal and reduction methods, which was used
for an anode urea degradation coupled hydrogen production system (Figure 4a) [36]. EPR
spectroscopy showed that abundant Ov existed in Ov-Co3O4 NWs. Ov could accelerate the
conversion between Co(II) and Co(III), which had a high redox potential and could activate
Cl- to ·Cl, thus effectively promoting urea degradation. In Figure 4b, OV-CO3O4 possessed
the highest activity in all samples, which could produce the most ·Cl. In the coupled
system, the removal rate of TN reached 97% in 2 h (Figure 4c), and the yield of H2 was
1390 µmol. Similarly, in order to increase the proportion of Co(III) in the catalyst, Xie et al.
prepared Cu(II)-modified Co3O4 nanowires (Cu(II)-Co3O4 NWs) through simple hydrother-
mal and calcination methods for TN removal and H2 generation during urea degradation
(Figure 4d) [17]. Based on the XPS spectra, it could be seen that the content of Co(III) in
Cu(II)-Co3O4 (46.7%) was higher than that in Co3O4 (38.6%), and Cu could promote the
formation of Co(III). As shown in Figure 4e, the chlorine-evolution-reaction-generated ·Cl
could effectively promote urea degradation. The increase in chloride concentration was
conducive to urea degradation (Figure 4f). TN removal and H2 generation on Cu(II)-Co3O4
achieved 94.7% and 642.1 µmol, respectively. Due to the simultaneous production of valu-
able hydrogen in the urea removal process, the treatment cost is lower than reverse osmosis
and air-stripping.

In addition to the above methods of treating pollutants using free radicals, electrofloc-
culation has the advantages of removing a wide range of pollutants and applying to a
wide range of pH [59–62]. Our group reported a hybrid electrolysis system of hydrogen
production at a cathode and electroflocculation-adsorbed pollutants at an anode through a
hybrid electrolytic cell (Fe@N-CNT/IF(−))//IF(+) (Figure 5a) [34]. As can be seen from
Figure 5b, Fe@N-CNT arrays covered the IF surface to form a multidimensional interfacial
structure, which facilitated electron transfer and provided more electrocatalytic regions. As
shown in Figure 5c, the cell voltage of the coupled system was 1.31 V lower than that of
the overall water splitting at the current density of 20 mA cm−2. Because of the ultralow
electrolysis voltage, only a 1.5 V battery could drive the coupled system for H2 generation
and wastewater treatment (Figure 5d). For the homemade coupled system device, the
generation rate of H2 was 4 mL min−1 at 1.5 V, and the degradation rate of Rhodamine
B contained in electrolyte achieved 99.2% in 10 min. In addition, anodic flocculation also
showed good results for the removal of various pollutants and heavy metal ions during
30 min (Figure 5e).

Thus, anodic wastewater treatment coupled with cathodic hydrogen production is a
new system for energy conversion and pollutant removal simultaneously, and it improved
the efficiency of wastewater treatment and reduced energy consumption. It has important
application value and practical significance for the development of hydrogen energy
utilization using wastewater as a resource.
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image of Fe@N-CNT/IF. (c) Polarization curve in 0.5 M of Na2SO4. (d) H2 yield and RhB removal
rate of the coupled system driven by a 1.5 V AA commercial battery. (e) Purification performance of
different pollutants. Ref. [34] Copyright 2019, Wiley-VCH.

4. Electrocatalytic Hydrogen Production Coupled with Pollutant Upgrade

The pollutants in the water body contain abundant organic (glycerin, glycol, methanol,
formaldehyde) and inorganic elements (NO3

−, NO2
−, S2−, phosphate), which are potential
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resources. For instance, formaldehyde can be electrooxidized to formic acid, and S2- can
be electrooxidized to solid sulfur. Although water purification coupled with hydrogen
production has realized the functionalization of the electrolyzer, the pollutants in the
wastewater have not been fully utilized. If the anode reaction can be functionalized at the
same time, upgrading pollutants into high-value products is a more promising way.

Recently, with the rapid development of the industry, dyestuffs, pharmaceuticals,
pesticides, petrochemicals, and other basic industries, a large amount of sulfide-containing
wastewater has been discharged [63,64]. For example, the use of lye to absorb H2S in
syngas can produce a large amount of sulfide-containing wastewater. Sulfur ions can be
electrooxidized to (solid) sulfur (SOR, S2− − 2e− = S, −0.48 V vs. RHE) at a low potential,
which is a promising treatment method for degrading wastewater and further obtaining
the additional product of monosulfur. Currently, many works have utilized SOR instead
of OER for simultaneous hydrogen production at low voltage and for the recovery of
sulfur [37–39]. For example, Deng et al. proposed a templating assisted method to prepare
non-precious CoNi nanoalloys encapsulated in nitrogen-doped graphene (CoNi@NGs) as
an effective electrocatalyst for generating H2 and S simultaneously from sulfide-containing
wastewater (Figure 6a) [38]. An HRTEM image confirmed that the metal NPs were fully
encapsulated by a nitrogen-doped graphene shell. This structure protected the metal
from corrosion and kept the catalyst highly active. Consequently, CoNi@NGs showed
only 0.25 V onset potential for SOR. Furthermore, CoNi@NGs had outstanding stability
over 500 h and 98% faradaic efficiency (FE) to H2 generation. Only a 1.2 V battery could
actuate H2S decomposition (Figure 6b). The catalyst showed excellent selective removal
performance of H2S in syngas (Figure 6c). DFT calculations confirmed that nitrogen doping
synergistically with encapsulated metal alloys optimized the polysulfide intermediates’
adsorption on the graphene surface and enhanced SOR activity.

Given the current scarcity of fresh water, seawater stores almost unlimited amounts of
hydrogen, accounting for 96.5 percent of the planet’s total water resources [65–67]. At the
anode, the chlorine electrooxidation reaction (ClOR) not only competes with the OER to
reduce energy efficiency, but also the oxidation potential of SOR can be reduced by 1.3–1.4 V
compared with ClOR (Figure 6d). It offers the opportunity for seawater electrolysis to fully
avoid harmful chlorination while significantly reducing energy costs. Qiu et al. synthesized
CoO/MXene cathode catalysts and CoS2/MXene anode catalysts through hydrothermal
and calcination methods [37]. These catalysts could be used for simultaneous sulfur and
H2 production in a mixed seawater SOR and HER coupled system (Figure 6e). The catalyst
was a nanoarray rough surface, and the structure could maximize the exposure of the active
site and improve the catalytic activity. Therefore, based on anodic SOR coupled with a
cathode HER system, the battery voltage could be reduced by two to three times compared
with the alkaline overall water-splitting (OWS) reaction (Figure 6f). The rate of hydrogen
generation was 5.34 mol h−1 gcat

−1 at 300 mA cm−2 with stabilized seawater electrolysis
for 180 h. Rapid oxidation of S2− to sulfur was also achieved with a degradation efficiency
of 80%.

The electrolyte environment also has an impact on the catalytic reaction kinetics.
Generally speaking, the kinetics of HER are faster in acidic environments [68]. Zhou
et al. prepared N-doped CoP as an electrocatalyst through hydrothermal and phosphoric
calcination on a carbon cloth substrate [39]. The catalyst achieved hydrogen production and
recovery of sulfur solids at low power consumption with the help of the Fe2+/Fe3+ redox
reaction in an acidic medium (Figure 6g). XPS indicated that nitrogen doping reduced the
D-band of CoP and weakened the adsorption of H on the CoP surface. It was beneficial to
improve the HER performance. In an acidic media electrolyzer, only 42 mV was needed to
achieve 10 mA cm−2 for HER, and the average FE could be achieved at 95.7% at different
current densities. And, sulfur production efficiency was about 95.1%.
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generation flow cell coupled with SOR. (i) H2 and sulfur yield in electrolysis process. Ref. [18]
Copyright 2021, Wiley-VCH.

In acidic media, HER kinetics are more favorable, while S2- is more easily oxidized in
alkaline media to generate electrons. Therefore, designing a mixed-solution electrolyzer
system for HER coupled with SOR can be more effective for improving efficiency and reduc-
ing energy consumption. Li et al. synthesized a WS2 nanosheet using a low-temperature
molten salt-assisted process [18]. The catalyst was used in an anodic (alkaline SOR) and
cathodic (acidic HER) coupled system (Figure 6h). The HRTEM showed the presence
of a large number of edge dislocations, which could effectively promote the electrocat-
alytic activity. The coupled system could achieve 8.54 mA cm−2 at a bias-free voltage
to produce H2 and degrade sulfide simultaneously. The H2 generation rate reached
336.3 L h−1 m−2 with FEH2 of 99.22% (Figure 6i). The alkali–acid hybrid electrochem-
ical device had good stability.

In recent years, the electrochemical oxidation of organics (such as ethylene glycol
(EG) [69,70], 2,5-bis(hydroxymethyl)furan (BHMF), glucose [71], formaldehyde, polycyclic
aromatic hydrocarbons, benzene series) derived from wastewater to generate value-added
products has attracted great interest because it can achieve the refining of pollutants and
H2 production at the same time [72–80]. Zhou et al. synthesized nickel foam (NF)-loaded
Co and Ni phosphide bifunctional catalysts through electrodeposition and phosphide calci-
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nation methods for an EG oxidation-coupled hydrogen production system (Figure 7a) [43].
The HRTEM revealed that small Ni2P nanoparticles were inter-connected with CoP parti-
cles, forming CoP-Ni2P heterojunctions in CoNi0.25P. As shown in Figure 7b, high current
density (500 mA cm−2) and formic acid FE (80%) were achieved at low voltage (1.8 V). In
addition, the recycling of PTA monomer to produce high-value-added products (KDF and
hydrogen) could be realized from PET plastic (Figure 7c). This work provided direction
for the upgrading of plastic waste and the preparation of high-value-added commodity
chemicals and hydrogen. Similarly, Chen et al. prepared hydrangea-like Co3O4 on cobalt
foam (Co3O4/CF) as a bifunctional electrocatalyst to integrate HMF oxidation reactions
(HMFOR) and HER (Figure 7d) [19]. The HRTEM image showed the existence of nanopores,
channels, and grain boundaries in the structure, which was rich in electroactive sites to
promote HMFOR (Figure 6e). As a result, the Co3O4 catalyst achieved the conversion of
HMF to FDCA up to 93.2% and 99.8% FEH2 (Figure 7f). Finally, the commercial solar cell
was connected in parallel with a symmetric filmless electrolyzer to achieve FDCA and H2
production in natural sunlight.
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Copyright 2022, Elsevier. (g) Cu(I)/Cu(II) redox and electrochemical H2 production. (h) LSV curves
of Cu(OH)2 electrodes. (i) Electricity consumption for H2 production of Cu(I)/Cu(II) redox-coupled
HER and water electrolysis. Ref. [41] Copyright 2021, Wiley-VCH.

In addition to using the oxidation of organics to replace the OER to lower the reaction
potential, the anode itself undergoes oxidation that can additionally lower the potential
further. Zhang et al. prepared Cu(OH)2 arrays with 3D structures grown on copper foam
and developed a Cu(I)/Cu(II) redox system for H2 generation using glucose as a reducible
sacrifice agent in Figure 7g [41]. The Cu(OH)2 produced through electrooxidation could be
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reduced to Cu2O instantly by glucose under anodic oxidation conditions, resulting in the
redox cycle (Figure 7h). It only required 0.92 V to reach 100 mA cm−2 (Figure 7i). Moreover,
the electricity consumption was 2.2 kWh Nm−3 (H2), which is much lower than that for
conventional water electrolysis (4.5 kWh Nm−3 (H2)). The system significantly reduces
energy consumption.

5. Photo-Electrocatalytic Hydrogen Production Coupled with Pollutant
Removal/Upgrade

The photoelectrochemical (PEC) method is a method of combining external potential
bias with light to separate carriers into cathodes and anodes [81,82]. Under illumination,
the semiconductor electrode can produce ROS with strong oxidation. It is widely used in
various photochemical transformations containing pollutants removal, ROS production,
and the reduction of proton/water to molecular hydrogen [83–98].

TiO2 has the advantages of high catalytic activity, stability, non-toxicity, low price,
and easy regeneration, which make it a promising semiconductor catalyst widely used in
photocatalytic systems [99–102]. However, TiO2 has a wide forbidden bandwidth (3.23 eV)
and can only be excited by ultraviolet light with a wavelength of less than 387 nm to
produce photocatalytic activity. However, the energy of UV light accounts for a small
percentage of the solar spectrum, so the development of TiO2 applications is limited. To
overcome the abovementioned shortcoming, the absorption range has been broadened
by constructing defects, forming heterojunctions, and doping with other elements to
improve the photocatalytic activity [103–105]. For example, Min Seok Koo et al. used
electrochemical anodization to prepare vertically aligned TiO2 nanotubes (TNTs) then
cathodically polarized them to obtain blue coloration TNTs (blue-TNTs) [21]. The dual-
functional blue-TNT photoelectrode was employed for water treatment and H2 generation
(Figure 8a). XPS results demonstrated that Ti3+ existed on blue-TNTs, which could adjust
the absorption range of the solar spectrum. As a result, the diffuse reflectance spectroscopy
of blue-TNTs (Figure 8b) showed a red shift and stronger UV absorption. In the pollutant
degradation coupled with hydrogen production system, the defects in blue-TNTs improved
the activity and stability. As shown in Figure 8c, the removal rate of 4-CP was 1.8 to
1.4 h−1 for blue-TNTs, which was more active than that of TNTs (0.40−0.25 h−1). And,
the H2 generation rate was kept at 72−66 µM cm−2 h−1. In addition to building defects,
the formation of heterojunctions could also broaden the visible light absorption range of
TiO2. Cong et al. [106] prepared CdS/Ag/TiO2-NR ternary heterostructure catalysts for
PEC oxidation of nitrobenzene (NB) with simultaneous H2 production (Figure 8d). From
the UV-Vis diffuse reflectance spectra, it can be seen that the heterojunction catalysts were
produced when Ag was combined with CdS/TiO2-NRs, and the absorption spectra of the
catalysts were red-shifted due to the SPR effect of metal Ag combined with the n-type
semiconductor TiO2. More photogenerated electrons could be generated through the SPR
effect to further increase the electron transfer rate. In Figure 8e, the degradation rate of NB
could be as high as 96% after 50 min of PEC activation. The composite catalyst reached
2.24 mmol of H2 yield with a yield of 0.09 mmol h−1 cm−2 under visible light irradiation
for 6 h (Figure 8f).

Ta3N5, as an n-type semiconductor, is a promising photoanode material with the
narrow bandgap of 2.1 eV [107,108]. It also owns a suitable redox potential band structure.
However, it suffers from weak carrier transport and low photovoltage deficiencies. To im-
prove the above deficiencies, the integration of the surface with water-oxidation co-catalysts
enhanced the surface WOR kinetics as well as the facilitation of charge complexation and
hole accumulation through the pore extraction and the injected electrolyte, and this was
a method to significantly improve the Ta3N5 photoanode PEC activity and stability in an
effective way. For instance, Shi et al. prepared a new Ta3N5-integrated photoanode modi-
fied by two-dimensional (2D) trimetal CoNiFe-LDHs NSs using a simple electrodeposition
method [22], which was applied to the oxidation of glycerol for the production of formic
acid and synchronized hydrogen production systems (Figure 8g). From the TEM, the cata-
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lysts were ultrathin nanosheets with rolled-up edges, indicating that they had abundant
surface reaction sites (Figure 8h). From the Mott–Schottky plots, the 2D CoNiFe-LDH NSs
could promote photogenerated carrier transfer and separation and significantly improve
the performance of PEC. Nearly 100% FE of glycerol conversion to formate at the anode for
30 min and stable hydrogen production FE around 98% were achieved (Figure 8i,j), which
could realize efficient and stable PEC hydrogen production as well as green synthesis of
high-value chemicals through biomass conversion.
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Figure 8. (a) Schematic diagram of photoelectric chemical water treatment. (b) UV-Vis of TNTs
and blue-TNTs. (c) The stability curves of PEC 4-CP degradation and H2 generation. Ref. [21]
Copyright 2017, American Chemical Society. (d) Possible mechanism diagram of H2 production.
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(g) Schematic diagram of solar-driven GOR coupled to HER. (h) TEM images of CoNiFe-LDHs.
(i) Yield of formate and FEformate. (j) Amount of H2 and FEH2. Ref. [22] Copyright 2021, Elsevier.

6. Conclusions and Future Challenges

In this review, different anodic oxidations (H2O2 oxidation, ·Cl oxidation, electrofloc-
culation, SOR, ClOR, electrochemical oxidation of organics, etc.) were studied and sum-
marized. Firstly, the electrocatalytic degradation of pollutants coupled with a hydrogen
production system was summarized using different radical mediators (·OH, ·Cl) that play
a major role in the degradation process in addition to the use of the electroflocculation
method for pollutant degradation coupled with the hydrogen production system. Secondly,
based on the upgrade of pollutants, the production of sulfur monomers and simultaneous
hydrogen production in sulfur-containing wastewater systems, as well as the upgrade of
organic pollutants in wastewater into high-value products, were realized. Finally, based on
photoelectrocatalytic anodic oxidation coupled hydrogen production, the pollutants can be
directly used as hole scavengers for photo-induced hydrogen production, which promotes
the reaction and achieves the purpose of degradation.
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Although great progress has been made in the electrolysis of wastewater for hydrogen
production, there are still a lot of challenges in this area. The pollutants exhibit strong
corrosiveness and volatility within the electrocatalytic system, which can affect the elec-
trode’s lifetime and hydrogen purity. Moreover, the complexity of the actual pollutant
components, each of which corresponds to a specific oxidation potential, can make the
anodic degradation process more challenging in practical applications. Exploring efficient,
stable, selective, and low-cost electrocatalysts for this coupled electrocatalytic strategy
is a long-term challenge. In addition to this, for the organic upgrade of pollutants, it is
only at the stage of small-molecule organics, and the research on large-molecule organic
pollutant systems needs to be further improved. For PEC systems, improving the spectral
absorption range of semiconductors is still a direction that needs unremitting efforts. With
the development of catalysts and semiconductors, this emerging field will integrate redox
reactions in electrolyzers and photoreactors, and there is still a lot of room for development
in the future. In summary, the future of wastewater hydrogen production should achieve
economic, environmental, and societal value. However, the composition of the actual
wastewater is complex, and the composition is constantly changing. The currently reported
hydrogen production from wastewater is simulated wastewater and only considers the
reaction of pollutants and water while ignoring other cations (e.g., K+, Ca2+, Mg2+, Na+ etc.)
and anions (e.g., F−, Cl−, Br−, PO4

3− etc.) present in the actual wastewater in which they
may participate or affect the process of the reaction. So, the long-term stable production of
hydrogen in actual wastewater is still challenging.
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Abbreviations

OER Oxygen evolution reaction
HER Hydrogen evolution reaction
·OH Hydroxyl radical
ROS Reactive oxygen species
EPR Electron paramagnetic resonance
·Cl Chlorine radicals
SOR Sulfion oxidation reaction
FE Faradaic efficiency
ClOR Chlorine electrooxidation reaction
OWS Overall water-splitting
BHMF 2,5-bis(hydroxymethyl)furan
NF Nickel foam
PEC Photoelectrochemical
2D Two-dimensional
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