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Characterization

The morphology of the samples was studied by field emission scanning electron

microscopy (FE-SEM, Hitachi SU8010, Japan) and transmission electron microscopy

(FEI Talos F200X, USA). The crystalline phases of the obtained products were

characterized by X-ray diffraction on a Bruker D8 Advance (Bremen, Germany). The

surface chemical compositions were analyzed by X-ray photoelectron spectroscopy

(PHI5000 Versa Probe III, Japan). Nitrogen absorption/desorption isotherms of the

samples were obtained at -196 ℃ using the Brunauer-Emmett-Teller (BET) method,

and the samples were outgassed under vacuum for 6 h at 150 ℃.

Electrochemical measurements

The electrochemical performance of all film electrodes was characterized by

employing a two-electrode system with Zn foil as counter electrode and 2 M ZnSO4

as electrolyte. The CHI 760E workstation was used to collect cyclic voltammogram

(CV), electrochemical impedance spectroscopy (EIS), and galvanostatic

charge/discharge curves (GCD). Equation (1) was used to calculate the specific

capacitances (Cm) of active materials from the galvanostatic charge/discharge curves:

(1)

where I is the discharge current, m is the mass of active materials, ∆t is the discharge

time, and ∆V is the working voltage range.

The energy density (E) and power density (P) were calculated using the following

equations:

(2)

(3)

where Cm is the capacitance of film electrode, ∆t is the discharge time, V is the

operation potential window.



Figure S1. (a) SEM image few-layered Ti3C2Tx nanosheets, (b) XRD of Ti3AlC2 and
Ti3C2Tx.

Figure S2. (a) SEM cross-sectional images, (b-c) the optical figures of Ti3C2 film.

Figure S3. SEM cross-sectional images of 3D Ti3C2 film.



Figure S4. SEM cross-sectional images of (a) V-Ti3C2, (b) V-, N-Ti3C2, and (c-d) 3D
V-, N-Ti3C2 film. The inset is the optical figures of 3D V-, N-Ti3C2 film.

Figure S5. N2 adsorption–desorption isotherms of 3D V-, N-Ti3C2 and V-, N-Ti3C2.



Figure S6. (a) TEM images of the 3D V-, N-Ti3C2, (b) EDX elemental mapping of Ti,
O and C for the 3D V-, N-Ti3C2.

Figure S7. Survey XPS spectra of 3D V-, N-Ti3C2 film.

Figure S8. High-resolution XPS spectra of (a) Ti 2p, (b) C 1s, (c) Zn 2p for the 3D V-,
N-Ti3C2 film.



Figure S9. (a) CV curves and (b) galvanostatic charge/discharge profiles of the Ti3C2

film.

Figure S10. (a) CV curves and (b) galvanostatic charge/discharge profiles of the 3D
Ti3C2 film.

Figure S11. (a) CV curves and (b) galvanostatic charge/discharge profiles of the
V-Ti3C2 film.



Figure S12. (a) CV curves and (b) galvanostatic charge/discharge profiles of the V-,
N-Ti3C2 film.

Figure S13. Specific capacity and specific capacitance of the 3D V-, N-Ti3C2 film in
2M ZnSO4.

Figure S14. Cycling performance of the 3D V-, N-Ti3C2//Zn ZIC at 10 A g-1.



Figure S15. CV curves of the (a) Ti3C2 film, (b) 3D Ti3C2 film, (c) V-Ti3C2 film, (d) V-, N-Ti3C2

film, and (e) 3D V-, N-Ti3C2 film at different scanning rates, and (f) double-layer capacitance
diagram of samples.

Table S1. Comparison of storage energy performances between this work and
previously reported in the literature

Cathode Anode Electrolyte Voltage
（V） Capacity

Current
density
（A/g）

Energy
density

(Wh Kg-1)
Ref.

AC 2D Zn 1M ZnSO4 0.2-1.8 468 F/g 0.5 208 [S1]

AC Zn 2M ZnSO4 0-1.8 121 mAh/g 0.1 84 [S2]

HNPC Zn 1M ZnSO4 0-1.8 177 mAh/g 4.2 107 [S3]

N-HPC Zn 2M ZnSO4 0.2-1.8 136 mAh/g 0.1 191 [S4]

Ti3C2 Zn/Ti3C2
1M

ZnSO4/Gel
0-1.35 132 F/g 0.5 -- [S5]



3D porous
H-Ti3C2Tx

films
Zn

2M
Zn(CF3SO4)2

0-1.3 105 mAh/g 0.2 53.6 [S6]

G-PANI Zn 2M ZnSO4 0.3-1.6 154 mAh/g 0.1 205 [S7]

3D V-,
N-Ti3C2

Zn 2M ZnSO4 0-1.3 309 mAh/g
855 F/g 0.3 201 This

work
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