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Abstract: TiB2 nanoparticles with a bandgap of 0 eV were prepared, and the corresponding nonlinear
optical response at 2.85 µm was investigated. Employing a TiB2 as a saturable absorber, a 2.85 µm
pulsed Er:Lu2O3 crystal laser with an average output power of 1.2 W was achieved under a maximum
pump power of 9.51 W. Laser pulses with durations of ~203 ns were delivered at a repetition rate
of 154 kHz, which corresponds to a pulse energy of ~7.8 µJ and a peak power of 39.3 W. As far as
we know, the result represents the highest average output power from all Q-switched Er:Lu2O3

crystal lasers.
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1. Introduction

Solid-state pulsed laser systems operating in the mid-infrared range have demon-
strated excellent performance in delivering high-energy laser pulses. Thus, they are at-
tracting more attention in surgery, manufacture, atmospheric monitoring, and infrared
countermeasures. Additionally, the laser can also serve as a pump source to drive optical
parametric processes, extending the laser wavelength to a longer band [1–3].

The first laser at ~3 µm was realized with an Er3+-doped medium in 1967, which
generated the stimulated transition from the energy level of 4I11/2 to 4I13/2 [4]. Nowadays,
many Er3+-doped crystals (Er:YAG, Er:YLF, Er:Lu2O3, and Er:YAP) and ceramics (Er:Lu2O3
and Er:Y2O3) have been widely used to realize 3 µm lasers [5–8]. The Er:Lu2O3 crystal
stands out among its counterparts due to its superior thermal and laser properties. Due to
the similar mass between Lu3+ and Er3+, the latter distortion of Er:Lu2O3 crystals is smaller,
and the thermal conductivity decay due to the doping is slighter [9]. Meanwhile, Er:Lu2O3
crystals with any doping concentration (0% to 100%) can be grown [9]. The heavy doping
concentration will enhance the energy upconversion process of Er3+ ions; as a result, the
laser can break the self-termination and even surpass the Stokes limit. Moreover, the low
phonon energy of the crystal will reduce the possibility of non-radiative transmission of
Er3+ ions, which leads to a higher fluorescence efficiency [10,11].

Pulsed lasers can be realized by employing modulators in the laser cavity. As novel
optical modulators, low-dimensional materials feature properties of broad response bands,
fast optical response, and ease of integration. Many outstanding pulsed lasers in the 3 µm
region have also been reported; for example, a pulsed laser with a duration as short as
50 ns was realized with ZrC [12], and with a laser power as high as 1.13 W was realized
with Ti3C2Tx nanoparticles [13]. However, compared with the output power reported in
the continuous wave (CW) laser (>14 W) [14], a higher output power of the Q-switched
Er:Lu2O3 crystal laser is worth being expected by optimized SAs.

Titanium diboride (TiB2) is a metal diboride with a hexagonal structure (space group
P6/mmm). Recent studies show that the low-dimensional counterparts also maintain the
hexagonal atomic structure and chemical composition [15–17]. Thus, the material exhibits
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high stability, high melting temperature, hydrolysis resistance, antioxidant capacity, and
high LDT. Employed as an SA in a fiber laser, the TiB2 nanosheet has delivered ultrafast
pulses with a pulse duration of 596 fs and a peak power of ~2 kW at emitting at 1559 nm [18].
The above property and result show that a mid-infrared pulsed laser with watt-level output
power is worth being expected with TiB2. However, the optical response properties of the
TiB2 nanoparticles in the mid-infrared region have been less reported.

In this paper, the band structure of TiB2 nanoparticles was calculated theoretically,
which predicted the saturable absorption property of the TiB2 nanoparticles in the mid-IR
region. The TiB2 nanoparticles were prepared using the liquid phase exfoliation method.
We experimentally characterized its morphology and nonlinear optical response at 2.85 µm.
The experimental results show the prepared TiB2 nanoparticles can function as SAs at
2.85 µm. The laser modulation ability of the TiB2 nanoparticles was investigated by
integrating TiB2 SA into the Er:Lu2O3 crystal laser. As a result, laser pulses with a duration
of ~203 ns and pulse energy of ~7.8 µJ were delivered at a repetition rate of 154 kHz, which
corresponds to an average output power of 1.2 W and a peak power of 39.3 W.

2. The Electronic Property of TiB2 Nanoparticles

Figure 1a,b show a 2 × 2 × 1 TiB2 supercell used to explore the electronic properties of
TiB2 nanomaterials. The geometry optimization and the band structure calculation of the
supercell were performed with the Perdew–Burke–Ernzerhof (PBE) function of Generalized
gradients approximation (GGA). Energy, maximum force, and maximum displacement
convergences were set as 2 × 10−5 Ha, 0.004 Ha·Å−1, and 0.005 Å, respectively. The
calculated band structure and density of state (DOS) are shown in Figure 1c,d, respectively.
The calculated bandgap of the materials is 0 eV, which meets well with the result reported
in Ref. [15]. The graphene-like band structure of the materials allows it to absorb any
incidence photon [19]. As a tiny sample possesses a certain number of electrons, when
high-brightness light incident on the materials, electrons will be gradually excited to a high
energy level until the sample is bleached. In macroscopic terms, the material will show a
saturable absorption property. Therefore, the saturable absorption property of TiB2, at ~3
µm, is also worth expecting.
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3. The Preparation, Morphology, and Optical Response of TiB2 Nanoparticles

The TiB2 nanoparticles were prepared using the liquid phase exfoliation method,
which features excellent controllability and low preparation costs. To start, the commercially
available TiB2 powder was mixed with pure isopropyl alcohol (IPA) at a concentration of
1 mg/mL. The mixture was then sonicated for four hours to exfoliate the TiB2 nanoparticles
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from the bulk counterpart before being centrifugation at 10,000 r/min for 15 min to retain
the nanoparticles in the supernatant. Afterward, the supernatant was gathered for further
characterization and experiments.

The morphology of the nanostructured TiB2 was thoroughly analyzed. Figure 2a
depicts the SEM image, which clearly shows the granular structure of the sample consisting
of numerous small exfoliations with a lateral size of a few micrometers. Figure 2b displays
the TEM image; the stepwise variation in the grayscale reveals that TiB2 samples are
assembled by the layer component with a width of a few micrometers. The grayscale
variation in Figure 2b corresponds well with the SEM image that the TiB2 nanoparticles
are prepared. Additionally, the image indicates that some ultra-thin TiB2 samples were
also prepared.
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Figure 2. (a) SEM and (b) TEM image of the prepared TiB2 nanoparticles.

The accurate thickness information of the exfoliations is characterized by atom force
microscopy (AFM). The AFM image and the corresponding thickness distribution of the
TiB2 nanoparticles are shown in Figure 3a,b, respectively. The step-varied thickness curve
A in Figure 3b states that the prepared nanoparticles are assembled by many layers. Both
curves in Figure 3b demonstrate that the peak thickness of the exfoliation is as thick as 80
nm. The above morphology characterizations state that the TiB2 nanoparticles have been
successfully prepared.
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Figure 3. (a) AFM image of the TiB2 nanoparticles, (b) the height variation of TiB2 nanoparticles
along the section A and B in figure (a).

In Figure 4a, the Raman spectra of bulk TiB2 (top) and TiB2 nanoparticles (bottom)
are shown. The Raman peaks of the TiB2 nanoparticles have shifted compared to the
bulk samples. Specifically, the peaks have shifted from 261 to 255 cm−1, 261 to 255 cm−1,
and 261 to 255 cm−1, corresponding to the vibration modes of B1g, Eg, and A1g. If we
ignore any measurement errors, the results match well with the findings of previous
publications [20,21].
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Figure 4. (a) Raman spectra of TiB2 bulk (top) and nanoparticles samples (bottom); (b) optical
transmittance of YAG-based TiB2 nanoparticles.

The optical response of the nanoparticles was characterized. The collected supernatant
was spin-coated on a dual-end polished YAG substrate and dried at 80 ◦C for 10 min. The
linearly optical transmittance is measured with an ultraviolet–visible near-infrared spec-
trophotometer (Cary 5000 UV-Vis-NIR, Agilent Technologies, Inc., Santa Clara, CA, USA).
As depicted in Figure 4b, YAG-based TiB2 nanoparticles exhibit a smooth transmittance
curve around an absolute transmittance of 80%, in the range from 1000 nm to 3300 nm.
With a self-made Q-switched laser emitting at 2.85 µm, a clear saturable absorption prop-
erty of the TiB2 nanoparticles was obtained and shown in the insert of Figure 4b, which
corresponds to a saturable intensity of 0.46 mJ/cm2, a modulation depth of 3.7% and a
saturable transmittance of 83.6%. The result shows that the TiB2 can be utilized as an SA
and supports a pulsed laser operation.

4. Laser Experimental Setup

Figure 5 demonstrates the experimental setup of the TiB2 Q-switched Er:Lu2O3 crystal
laser. In the setup, a fiber-coupled laser diode (LD) emitting at 976 nm was used as the pump
source. The coupling fiber has a core diameter of 105 µm and a numerical aperture(NA) of
t 0.22. The pump beam is focused on the gain medium via a 1:3 lens group (L1 and L2). The
input coupler (IC) is a plane-concave mirror with a curvature radius of 10,000 mm, which
is coated with both anti-reflectivity film (AR @ 950 to 1000 nm) and high-reflection film
(R > 99% @ 2700 to 2900 nm). Three flat output couplers (OCs) with transmittance of 1%,
3%, and 5% at 2.85 µm were used to optimize the laser performance. The gain medium is
an uncoated Er:Lu2O3 (7at.%) crystal with a dimension of 10 × 3 × 3 mm3, which is grown
with the heat-exchanger (HEM) method [22–24]. The crystal is wrapped with indium
foil and mounted in a copper block, which is cooled at 15 ◦C using a water-cooler. A
prepared TiB2 SA is placed near the OC. The laser is separated from the residual pump via
a dichroscope mirror (DM).
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Figure 5. Schematic diagram of the TiB2 Q-switched Er:Lu2O3 laser.

Output power is measured by a powerhead (S314C, Thorlabs Inc., Newton, NJ, USA)
and a power meter (APM100D, Thorlabs Inc.). Laser pulse signals are detected using a fast
HgCdTe IR photon detector (PVI-4TE-4, Vigo System, Ozarow Mazowiecki, Poland) with
a response time of 1 ns. The signal was then observed on a digital phosphor oscilloscope
(DPO 7104C, Tektronix Inc., Beaverton, USA) that has a bandwidth of 1 GHz and a sampling
rate of 20 GS/s. Additionally, a Fourier transform optical spectrum analyzer (OSA 207C,
Thorlabs Inc.) is used to detect the lasing spectra.
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5. Results and Discussion

Initially, CW lasers were realized. As shown in Figure 6a, all the output powers
increase linearly with the absorbed pump power. The three highest output powers of 2.23 W,
2.64 W, and 2.45 W were delivered with transmittances of OCs of 1%, 3%, and 5%. The error
bars depicted in the figure represent uncertainties that are below 2%, which corresponds to
slope efficiencies of 18.3%, 22.7%, and 20.5%, respectively. The laser spectrum at the output
power of 2.64 W is shown in the inset of Figure 6a, which shows the central wavelength of
the laser is 2.85 µm.
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After integrating the TiB2 SA as a Q-switcher in the Er:Lu2O3 crystal laser, 3 µm laser
pulses are delivered. Figure 6b depicts the properties of the average output power versus
the absorbed pump power of the Q-switched lasers with different OCs. The highest average
output powers in all cases are in the order of watts. With the 3% OC, the highest average
output power of 1.2 W is realized, which corresponds to a slope efficiency of 15.0%. The
maximum uncertainty of the output power of 5% for the Q-switched lasers is higher than
that of the CW lasers. The corresponding lasing spectrum with a central wavelength of
2.85 µm is shown in the inset of Figure 6b. With the 1% OC and the 5% OC, average output
powers of 0.96 W and 1.05 W are realized, respectively, corresponding to slope efficiencies
of 10.8% and 13.3%. These results demonstrate that TiB2 nanoparticles are an excellent
Q-switcher in delivering high-power laser in the mid-infrared band.

The evolutions of repetition rates and pulse durations with respect to the absorbed
pump power are shown in Figure 7. The repetition rates increase as the absorbed pump
power increases, which corresponds to an uncertainty of 8%. The maximum pulse repetition
rate of 166 kHz is achieved in the T = 1% Q-switched laser system. Figure 7b shows that
the pulse duration is reduced when the absorbed pump power increases. The shortest
pulse duration of 203 ns is realized with the OC of T = 3%, whose uncertainty is 5%. In
Figure 8, the output pulse train and the single pulse shape at the highest repetition rate
are presented, which indicates the output laser pulse is relatively stable. The maximum
amplitude difference (peak to peak) is estimated to be less than 10%. It is noteworthy that
the stable pulse train can also be regenerated from the TiB2 SA-based Er:Lu2O3 laser when
the TiB2 SA has been exposed to free space for a month. This demonstrates the excellent
hydrolysis resistance and outstanding antioxidant capacity of the TiB2 SA.
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Figure 9a,b present the variations in single pulse energy and peak power with the
absorbed pump power. At the maximum absorbed pump power of 9.51 W, laser pulses
with energies of 5.7 µJ, 7.8 µJ, and 7.6 µJ were generated from T = 1%, 3%, and 5% systems,
respectively (see Figure 9a). The increased pulse energy and shortened pulse duration
make the pulse peak power increase with the absorbed pump power (see Figure 9b). The
maximum pulse peak power approaching 38 W was realized at the OC of T = 3%.

Nanomaterials 2024, 14, x FOR PEER REVIEW 6 of 8 
 

 

 
Figure 7. (a) pulse repetition rates and (b) pulse durations of the Q-switched laser versus absorbed 
pump power. 

 
Figure 8. (a) Q-switched pulse train and (b) single pulse shape. 

Figure 9a,b present the variations in single pulse energy and peak power with the 
absorbed pump power. At the maximum absorbed pump power of 9.51 W, laser pulses 
with energies of 5.7 µJ, 7.8 µJ, and 7.6 µJ were generated from T = 1%, 3%, and 5% systems, 
respectively (see Figure 9a). The increased pulse energy and shortened pulse duration 
make the pulse peak power increase with the absorbed pump power (see Figure 9b). The 
maximum pulse peak power approaching 38 W was realized at the OC of T = 3%.  

 
Figure 9. (a) pulse energy properties and (b) peak power properties of the Q-switched Er:Lu2O3 
laser. 

Table 1 summarizes some typical performance of the 3 µm passively Q-switched 
Er:Lu2O3 crystal lasers. It shows that the TiB2-based Q-switched Er:Lu2O3 laser has many 
advantages, such as high output power, relatively high pulse energy, shorter pulse dura-
tion, and high pulse peak power, which are attributed to the high laser damage threshold 
of TiB2 SA. 
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Table 1 summarizes some typical performance of the 3 µm passively Q-switched
Er:Lu2O3 crystal lasers. It shows that the TiB2-based Q-switched Er:Lu2O3 laser has many
advantages, such as high output power, relatively high pulse energy, shorter pulse duration,
and high pulse peak power, which are attributed to the high laser damage threshold of
TiB2 SA.
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Table 1. Summary of performances of the reported passively Q-switched Er:Lu2O3 crystal lasers.

SA
Average
Power

(W)

Pulse
Energy

(µJ)

Pulse
Duration

(ns)

Peak
Power

(W)
Ref.

MoS2 1.030 8.5 335 25 [25]
BP 0.755 7.1 359 20 [26]

ZrC 0.262 22 50 440 [12]
MXenes Ti3C2Tx 1.130 7.6 187 40 [13]

TiB2 1.20 7.8 203 39.3 This work

It is possible to achieve shorter laser pulses in TiB2-based Q-switched Er:Lu2O3 crystal
lasers. This is because the shortest pulse duration from a passively Q-switched bulk laser is
proportional to the laser cavity length while inversely proportional to the SA’s modulation
depth [27]. To achieve this, a more compact laser cavity and optimized TiB2 nanoparticles
with a larger modulation depth can be used. Further power scaling can also be expected by
improving the mode matching between the pumping laser and the oscillated laser inside
the laser cavity.

6. Conclusions

In this paper, TiB2 nanoparticles were prepared via the liquid phase exfoliation method,
and their morphology was analyzed using SEM, TEM, and AFM. The TiB2 nanoparticles
demonstrated a saturable absorption property at 2.85 µm, which was both theoretically
predicted and experimentally verified. Employed as an SA, a 2.85 µm pulsed Er:Lu2O3
laser with an average output power of 1.2 W was achieved under a maximum pump power
of 9.51 W. The related shortest pulse duration and pulse energy of 203 ns and 7.8 µJ were
delivered at a 154 kHz repetition rate. As far as we know, the reported result represents
the highest output power of the Q-switched Er:Lu2O3 crystal laser. The findings indicate
that TiB2, as an SA, possesses several advantages, such as exceptional optical performance,
good mechanical and thermal stability, and easy preparation. These outcomes also offer
valuable insights into the advancement of pulsed mid-infrared solid-state lasers. By using
better materials and improving the quality of the SAs, it is possible to produce a pulsed
Er:Lu2O3 crystal laser with an output power exceeding 2 W.
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