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Abstract: A synaptic device with a multilayer structure is proposed to reduce the operating power of
neuromorphic computing systems while maintaining a high-density integration. A simple metal-
insulator-metal (MIM)-structured multilayer synaptic device is developed using an 8-inch wafer-
based and complementary metal-oxide-semiconductor (CMOS) fabrication process. The three types
of MIM-structured synaptic devices are compared to assess their effects on reducing the operating
power. The obtained results exhibited low-power operation owing to the inserted layers acting
as an internal resistor. The modulated operational conductance level and simple MIM structure
demonstrate the feasibility of implementing both low-power operation and high-density integration
in multilayer synaptic devices.

Keywords: CMOS compatibility; MIM structure; multilayer synaptic device; low-power operation;
inner resistor effect

1. Introduction

The recent exponential growth in unstructured data has led to a significant increase
in the amount of data required for efficient processing [1,2]. However, conventional von
Neumann computing systems have limitations that result in slow data processing ow-
ing to the bottleneck effect caused by the sequential transfer of data between the central
processing unit and memory [3–5]. To address this issue, researchers have explored neuro-
morphic computing systems that use parallel data processing, which enables faster and
more energy-efficient processing of large amounts of data [6–8]. To implement this neuro-
morphic computing system in the hardware, current-based vector–matrix multiplication
(VMM) is commonly used via a synaptic device array [9–11]. Because a larger synaptic
device array can process more data in parallel, the high-density integration of the synaptic
device is necessary. For this purpose, in this research, a simple two-terminal (2T)-based
metal–insulator–metal (MIM)-structured memristor which has been studied for memory
application is utilized as the synaptic device [12–18].

The 2T-based memristor devices have been investigated, including resistive random-
access memory (ReRAM), phase-change memory (PCM) [19], ferroelectric random-access
memory (FeRAM) [20,21], and Magnetic random-access memory (MRAM) [22]. Among these
memristor devices, ReRAM is the most attractive candidate owing to its simple structure,
high-density integration, fast switching speed, and excellent scalability [23–28]. Although
the memristor-based synaptic device array can lead to faster parallel data processing
using VMM, further research is required to minimize its power consumption. However,
ReRAM has been studied for memory application [16,29], research on the device operation
mechanism [29–31], and research on ReRAMs composed of materials that are not CMOS-
compatible [32,33]. Thus, in this study, a memristor-based 2T synaptic device with a
multilayer structure was proposed to reduce the operating power while maintaining high-
density integration. Moreover, 8 inch wafer-based CMOS fabrication processes and an
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oxide-based W/TaOX/AlOX/WOX/TiN stack were used to assess the feasibility of mass
production. The obtained result showed that the AlOX layer acted as an internal resistor
(and barrier layer) without degradation of the synaptic characteristics and exhibited a
low-power operation.

2. Materials and Methods

A simple MIM-structured memristor was fabricated to realize the high-density integra-
tion of multilayer synaptic devices, as shown in Figure 1. The three types of devices were
fabricated to evaluate their effects on reducing the operating power. The W/WOX/TiN,
W/TaOX/WOX/TiN, and W/TaOX/AlOX/WOX/TiN stacks were named the single layer,
double layer, and triple layer, respectively.

Figure 1. Schematic diagrams of three types of devices with MIM structures; single layer, double
layer, and triple layer. Cross-sectional transmission electron microscopy and energy dispersive
spectrometry mapping image of the triple layer.

First, a photolithography process was performed to pattern the device. For pho-
tolithography, AZ 5214E photoresist (AZ Electronic Materials, Bridgewater, NJ, USA) was
applied to the entire wafer using a spin coater. Then, the AZ 300 MIF developer was
used for development. A WOX layer was deposited on the TiN bottom electrode using
a typical radio frequency (RF) sputtering system, and a W layer was formed as the top
electrode (TE) (called the single layer). Multilayer structures, such as W/TaOX/WOX/TiN
(called the double layer) and W/TaOX/AlOX/WOX/TiN stack (called the triple layer),
were developed and compared to assess their effects on reducing the operating power
of the device. All layers were deposited using a sputtering system, and the deposition
parameters of each layer are as follows. A 40 nm WOX channel was deposited by reactive
sputtering using a WO3 target in a 4:1 ratio of Ar and O2 mixed ambient gas. Then, a 30 nm
thick AlOX layer and a 230 nm thick TaOX layer were deposited using an Al2O3 and Ta2O5
target in Ar as the ambient gas. Finally, a 50 nm thick W layer was deposited as the top
electrode in ambient Ar gas. WOX and AlOX were deposited at a working pressure of
5 mTorr, while TaOX and W were deposited at 10 m Torr.

Figure 1 shows a cross-sectional transmission electron microscopy (TEM) and energy
dispersive spectrometry (EDS) mapping image of the fabricated triple layer. The character-
istic X-ray energy of Ta and W elements is 1.709 and 1.774 keV, respectively [34]. Therefore,
the W element in the TaOX region and the Ta element in the WOX region may overlap. The
fabrication processes were based on 8 inch wafer-based CMOS fabrication processes; more
details are described in reference [35]. All electrical measurements were conducted using a
semiconductor parameter analyzer (HP 4156A) and a pulse generator (Agilent 81110A).
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3. Results and Discussion

As mentioned above, the synaptic devices of single, double, and triple layers were
fabricated. To confirm the synaptic characteristics of each device, each weight-update
curve was measured (Figure 2a–c). The inset of Figure 2a–c show the pulse conditions
for potentiation (conductance increase) and depression (conductance decrease). In the
single layer, it exhibited resistive switching, which refers to resistance changes from a
high-resistance state to a low-resistance state in the negative bias region, and vice versa.
When a positive bias is applied to the TE, the oxygen ions of the WOX layer are migrated
to the TE. This migration results in the formation of an induced oxide layer at the interface
between the WOX layer and TE, resulting in decreased conductance. The thickness of the
induced oxide layer increased as a continuous positive pulse bias was applied, and thus
the conductance was modulated (Figure 2a,d) [36,37]. In contrast, the weight update curve
occurs at the opposite polarity for the double and triple layer (Figure 2b,c). The inset of
Figure 2b shows the current-voltage (I–V) curve characteristic of the double layer. Gradual
resistive switching of the double layer was observed under optimized conditions. The
set process in the positive bias and the reset process in the negative bias are observed.
Switching behavior occurred in the WOX layer depending on the mobile oxygen ions
between WOX and TaOX layers [35,38]. When the positive bias was applied to the TE,
the oxygen ions in the WOX layer moved to the TaOX layer. Thus, the amount of oxygen
vacancies in WOX increased, resulting in the potentiation process. Conversely, when the
negative bias was applied, the oxygen ions that had moved to the TaOX layer during the
potentiation process moved back to the WOX layer, resulting in the depression process.

Figure 2. Synaptic characteristics of the weight-update curve in the (a) single, (b) double, and (c) triple
layer. The inset shows the optimized pulse amplitude and width (Pot:−0.8 V, 500 ms/Dep: +0.8 V, 500 ms
for single layer and Pot: +3.5 V, 500 ms/Dep: −1.8 V, 500 ms for double and triple layer). (c) Potentiation
and depression depend on the thickness of the AlOX layer in the triple layer. (d–f) Schematic diagram of
the operation mechanism in the single, double, and triple layer, respectively.

To achieve synaptic characteristics based on this operating mechanism, the fabrication
conditions (such as the Ar: O2 ratio of the WOX layer and the working pressure of the TaOX)
were optimized, as shown in Figure 3. A higher initial resistance was observed during
the deposition of the WOX when the Ar: O2 ratio was increased (Figure 3a). However,
resistive switching was only obtained when the ratio of Ar to O2 was 20:5. This result can
be explained in terms of the oxygen vacancy density in the WOX layer [39] (Figure 3b).
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When the Ar:O2 ratio changed to 20:1, more oxygen vacancies were present in the WOX
layer, resulting in an electrically short state. In contrast, when the Ar:O2 ratio was 20:10,
sufficient oxygen ions were supplied during the deposition of the WOX . Consequently, an
insulating WOX layer was formed, leading to an electrically insulating behavior.

Figure 3. (a) Initial resistance and (b) on/off ratio depending on the Ar:O2 ratio of the WOX layer.
The resistive switching characteristic appears only under the 20:5 optimized condition. (c) Initial
resistances with varying TaOX layer working pressures. (d) On/off ratio according to the TaOX layer
working pressures. The resistive switching characteristic appears only under 10 mTorr. (Reproduced
from Ref. [35] with permission from the Royal Society of Chemistry.)

Based on the optimized WOX oxygen partial pressure condition, the working pressure
of the TaOX layer was also varied to achieve synaptic characteristics, as shown in Figure 3c,d.
When the working pressure was changed from 20 to 10 and 5 mTorr, resistive switching
was observed only at 10 mTorr. Considering that a higher working pressure can result in
a porous film, deposition at 20 mTorr forms a more porous TaOX layer [37,40]. Similarly,
a denser TaOX layer was deposited at 5 mTorr. Because the effective area of the interface
between the TaOX and WOX layers can be increased by higher porosity, more oxygen
absorption, resulting in an electrically short state, can occur at 20 mTorr. Additionally,
at 5 mTorr, the reduced effective interfacial area and formation of a denser TaOX layer
prevented oxygen absorption. Based on these results, conditions such as an Ar:O2 ratio of
20:5 and a working pressure of 10 mTorr were selected as the optimal fabrication conditions
for the WOX and TaOX layers.

The double layer exhibited a lower conductance level than the single layer; however,
it was still unacceptably high for the low-power operation of synaptic devices. To further
reduce the operating power of the synaptic device, an AlOX layer was inserted into the
interface between the TaOX and WOX layers (triple layer). The AlOX layer was added
between the TaOX and WOX layers, rather than elsewhere, to obtain the synaptic character-
istic. When the AlOX layer was added to the interface between the WOX and TiN layers
(W/TaOX/WOX/AlOX/TiN), no switching characteristic was observed. The triple layer
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has an operating mechanism similar to the double layer. The switching occurs in the WOX
layer according to the mobility of oxygen ions between the WOX layer and TaOX layer, as
shown in Figure 2f. When the positive bias is applied to the top electrode, oxygen ions in
the WOX layer migrate through the AlOX layer to the TaOX layer, causing switching in
the WOX layer. Thus, the potentiation process occurs in which the conductance increases
under a positive bias. The conductance level of potentiation and depression decreased
with the insertion of the AlOX layer. The thickness of the AlOX layer was varied from
22.5 to 30 nm for optimization. The initial resistance increased with increasing AlOX layer
thickness. Owing to the increased initial resistance, the conductance levels of potentiation
and depression decreased.

The conductance levels of potentiation and depression were compared in three types
of synapse devices. The conductance levels of potentiation and depression decreased with
increasing number of layers (Figure 4a). The synaptic characteristics of the devices were
verified by normalizing and comparing the potentiation and depression behaviors of the
single, double, and triple layers using Equation (1), where Gmax and Gmin are the maximum
conductance state and minimum conductance state, respectively. The normalized synaptic
potentiation and depression behaviors of each device were similar, indicating that the
multilayer structure can reduce the operating power without significantly degrading the
synaptic characteristics (Figure 4b).

Gnormal =
(G − Gmin)

(Gmax − Gmin)
(1)

Figure 4. (a) Comparison of the conductance levels of potentiation and depression in the three types
of devices. The conductance levels of potentiation and depression decreased with increasing number
of layers. (b) Normalized conductance of the single, double, and triple layer devices in potentiation
and depression curves. The plot is employed to compare the synaptic characteristics of the devices.

To investigate the role of the inserted AlOX layer, three cases, namely a double layer,
a double layer with an external commercial resistor (200 kΩ), and a triple layer, were
compared in Figure 5. Figure 5a compares the double and triple layers, revealing an
obvious decrease in the conductance level of the triple layer. As shown in Figure 5b,
the conductance of double layer with an external commercial resistor was measured by
connecting a 200 kΩ commercial resistor in series through the wiring outside of the double
layer device. When the external resistor was connected to the double layer, the conductance
level decreased. Compared with the double layer, as shown in Figure 5c, both the triple
and double layers with an external resistor exhibited significantly decreased conductance
levels. Furthermore, the triple layer exhibited the same operating conductance level as the
double layer connected to the external resistor. This result implies that the inserted AlOX
layer can serve as an internal 200 kΩ resistor to efficiently reduce the conductance level.
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Figure 5. Comparison of the potentiation and depression characteristics of the double layer device
with those of (a) a 30 nm-thick AlOX layer in the triple layer (Triple-30), (b) a double layer with a
200 kΩ resistor (Double-200 kΩ), and (c) both Triple-30 and Double-200 kΩ. The results indicate that
the inserted AlOX layer can serve as an internal 200 kΩ resistor.

In addition, the composition ratio of the WOX layer, which is a switching layer, was
changed compared to the double layer because the AlOX layer was inserted between the
WOX layer and the TaOX layer in the triple layer. When the AlOX layer, which acts as
a barrier layer (or shielding layer) [41], was deposited on the WOX layer, the amount of
oxygen ions absorbed from the WOX layer was reduced. Accordingly, compared with the
double layer, the oxygen vacancy density of the WOX layer of the triple layer decreases.
These results were quantitatively analyzed by X-ray photoelectron spectroscopy (XPS)
measurements in Figure 6. Figure 6a,b show the XPS analysis spectra of O 1s in the WOX
layer of the double layer and the triple layer, respectively.

Figure 6. XPS analysis spectra of O 1s in the WOX layer of (a) the double layer and (b) the triple layer.

The XPS spectrum showed a broad peak, which can be deconvoluted into three
individual peaks: the W-O bond peak, oxygen vacancy density, and chemisorbed oxygen
species. The green peak of the double layer (530.75 eV) and the triple layer (531.09 eV)
can be assigned to the oxygen atoms (O2−) which form W-O bonds. In addition, the violet
peaks represent chemisorbed oxygen species (H2O). Finally, the pink peaks can be assigned
to species adsorbed on the surface (OH−, O−, or oxygen vacancies); the OH− groups bond
with the metal cations to maintain a charge balance. This implies that the intensity of the
OH− peak indicates oxygen vacancy density [42,43]. The oxygen vacancy density of the
double and triple layer are 30.34% and 27.42%, respectively. Therefore, the triple layer has
a lower oxygen vacancy density than the double layer. The stoichiometric ratio between
tungsten and oxygen can be determined from the composition ratio. In double layer, the
tungsten atomic ratio is 30.76% and the oxygen atomic ratio is 69.24%. Thus, the ratio of
the tungsten to the oxygen is about 1:2.25 (WO2.25). In the same way, the atomic ratio of
tungsten in the triple layer is 29.08% and the atomic ratio of oxygen is 70.92%, so the ratio is
1:2.44 (WO2.44) (Table 1). This indicates that the WOX of the triple layer contains a smaller
number of oxygen vacancies compared to the WOX of the double layer. As a result, the
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AlOX layer plays the role of 200 kΩ because the defect in the switching layer (WOX layer)
decreases the resistance of the AlOX layer itself. Therefore, the conductance level of the
triple layer decreases.

Table 1. Summary of the atomic ratios of W and O of the WOX layer of the double and triple layers.

Device Material Atomic Ratio (%) Condition

Double layer
WO2.25

W 4f 30.76

WO3 target
Ar:O2 = 20:5

O 1s 69.24

Triple layer
WO2.44

W 4f 29.08

O 1s 70.92

Owing to the decreased or modulated conductance level, the synaptic device for the
neuromorphic system can achieve low power consumption. The power consumption of the
single, double, and triple layer was numerically calculated as shown in Figure 7a. When
comparing the single and double layer, the power consumption of the double layer was
slightly decreased, from 28.24 µJ to 25.03 µJ. This is because a voltage drop occurred by
inserting a TaOX layer. Thus, a larger pulse amplitude is required for the double layer, and
the power consumption was only slightly decreased. However, the power consumption
of the triple layer was reduced by 31.2% compared to the double layer (from 25.03 µJ to
17.22 µJ), with the same pulse width and amplitude. Considering the huge size of the
synaptic array in the neuromorphic system, a significant reduction in power consumption
can be expected.

Additionally, to verify the influence at the system level, an image recognition simula-
tion consisting of four-layer neural networks was conducted, as shown in Figure 7b–e. The
IBM Analog Hardware Acceleration Kit (AIHWKIT)), which can simulate devices in real-
world applications, is used to simulate training and inference [44]. This provides several
device models. We used a “LinearStepDevice” among them. Each parameter required for
the simulation was extracted from the measured potentiation/depression weight update
curve of the single, double, and triple layer. The neural network was constructed with an
input layer of 784 neuron nodes, hidden layer 1 of 256 neuron nodes, hidden layer 2 of
128 neuron nodes, and an output layer of 10 neuron nodes (Figure 7b). A synapse device
model was used to connect each neuron node. For the implementation of the deep neural
network of Figure 7b at the device level, a synaptic device acting as a weight value can
be constructed by a cross-point array [45]. To perform the Multiply and Accumulation
operation, the input voltage bias is applied to all row lines, and the output is obtained as a
summed current by multiplying the conductance stored at the synaptic devices (Figure 7c).
We utilized the Modified National Institute of Standards and Technology (MNIST) dataset
(28 × 28) as an input image. Figure 7d,e show the recognition rate according to the training
epoch. The image recognition rates are 85.10%, 71.51%, and 84.11% for a single, double,
and triple layer when the numerically ideal case is 92.57%. Even though the triple layer
has the lowest power consumption, it exhibited a similar recognition rate to others. This is
because the linearity of the weight update curve was not degraded with the addition of the
layer compared to the single layer. The image recognition rate reaches about 85%, which is
respectable but could be even higher with a wider dynamic range.
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Figure 7. (a) The power consumption of the single, double, and triple layer for the MNIST pattern
recognition. (b) Schematic of the neural network; the neural network was constructed with 784 inputs
× 256 first hidden × 128 second hidden × 10 output neurons. (c) The crossbar array consists of vertical
rows and columns with resistive synaptic devices sandwiched at each cross-point. Recognition rate
(d) during and (e) after 20 epochs for single, double, triple layer, and ideal case.

4. Conclusions

In this study, the synaptic device with multilayer MIM-structured synaptic devices
suitable for high-density integration and low-power operation were developed using
8 inch wafer-based CMOS fabrication processes. Compared to the double layer, the triple
layer demonstrated a low-power operation as the power consumption was reduced by
approximately 31%. The synaptic device for neuromorphic systems achieved a low-power
consumption due to the reduced or modulated conductance level, because the AlOX layer
inserted in the triple layer not only acts as a barrier layer but also acts as an internal resistor.
In addition, the triple layer does not degrade the synaptic characteristics even when the
AlOX layer is added, so the recognition rate shows the undegraded performance of 84.11%.
Therefore, the obtained results demonstrate the feasibility of achieving both a low-power
operation and high-density integration in multilayer synaptic devices.
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