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Abstract: Techniques such as using an optical microscope and Raman spectroscopy are common
methods for detecting single-layer graphene. Instead of relying on these laborious and expensive
methods, we suggest a novel approach inspired by skilled human researchers who can detect single-
layer graphene by simply observing color differences between graphene flakes and the background
substrate in optical microscope images. This approach implemented the human cognitive process
by emulating it through our data extraction process and machine learning algorithm. We obtained
approximately 300,000 pixel-level color difference data from 140 graphene flakes from 45 optical
microscope images. We utilized the average and standard deviation of the color difference data for
each flake for machine learning. As a result, we achieved F1-Scores of over 0.90 and 0.92 in identifying
60 and 50 flakes from green and pink substrate images, respectively. Our machine learning-assisted
computing system offers a cost-effective and universal solution for detecting the number of graphene
layers in diverse experimental environments, saving both time and resources. We anticipate that this
approach can be extended to classify the properties of other 2D materials.

Keywords: machine learning; graphene; support vector machine

1. Introduction

Graphene is a promising 2D material that has been studied intensively due to its
interesting physical and material properties [1–4]. Graphene flakes can be detected by
observing images of optical microscopes ever since the discovery of their ability to be
separated by Scotch tape exfoliation [5]. The flakes are randomly placed through Scotch
tape exfoliation on SiO2 with a certain thickness, and the image of those flakes is captured
by an optical microscope. Based on the Fresnel law, a specific thickness of the SiO2 makes a
maximum contrast so that a single layer of graphene can be visible even though there is
only a subtle color difference between the graphene and the substrate. In this case, SiO2
with thicknesses of 300 nm and 100 nm, known to be suitable for the visual detection of
graphene, are usually used [6]. There are several techniques for estimating how many layers
the graphene flake has after it is exfoliated or synthesized on the substrate [7]. Among
these methods, Raman spectroscopy and atomic force microscopy (AFM) are the most
commonly applied methods to identify the number of graphene layers [8–12]. However,
the above-mentioned techniques not only require specialized and expensive equipment
but also take a considerable amount of time for measuring and analyzing to determine the
number of graphene layers. The thickness of graphene from the AFM measurement might
be exaggerated due to the interaction between the AFM tip and the substrate, especially for
single-layer graphene. In any cases of identifying the number of layers or finding single-
layer graphene, the first step of work should be to confirm the location of the graphene
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fragment through an optical microscope observation. At this point, by observing the color
of the graphene fragment on the substrate, one can estimate the thickness of the graphene
to some extent. Highly trained researchers can even differentiate subtle color differences
between the substrate and the graphene fragment and can identify single-layer graphene
through optical microscope observation itself. In other words, the observation of graphene
flakes comparing the color differences between the flake and its surroundings with a “well-
trained” human eye might be a more accurate, faster, and more cost-effective method of
identifying graphene layers.

Thanks to many open source software tools, it has become easier to obtain numerical
information about graphene flakes (such as material location, shape, color differences from
the surroundings, etc.) from image data. Furthermore, recent advancements in computer re-
sources have provided greater storage capacity and faster data processing capabilities. This
enables the computer system to learn from input data, analyze patterns, and subsequently
make decisions, classifications, and predictions tailored to specific tasks by applying ma-
chine learning algorithms. Machine learning has led to huge achievements in various fields
like natural language processing, speech recognition, and in particular, image recogni-
tion [13–19]. At the same time, there have been several successful studies reported to detect
graphene automatically by utilizing various machine learning algorithms on optical image
datasets [20–25]. However, there have been some challenges with diverse experimental
conditions, such as the types of optical microscopes, lighting conditions, magnification
levels, and background colors due to the different thicknesses of the substrate. All of these
factors have caused inconsistent performance. Thus, relying solely on traditional machine
learning and deep learning algorithms may not consistently produce excellent performance
in the task of classifying graphene. In addition, some algorithms require large datasets
and manual labeling efforts for training deep learning models. Consequently, there is a
need for new ideas that are easy to use and guarantee consistent performance under any
experimental setup conditions.

A well-trained researcher, on the other hand, can adapt to the various experimental
environments described above, learn according to the situation, and distinguish the color
differences between the substrate and the graphene flake, thereby detecting graphene.
Therefore, it is expected that by employing data processing and machine learning algo-
rithms which mimic the methods of human researchers who work on finding graphene
through an optical microscope, it will be possible to classify single-layer graphene from
graphene flake images obtained in various experimental environments.

In this study, based on the idea that skilled human operators can identify graphene
solely through optical images without additional methods, such as Raman spectroscopy, in
diverse experimental setup conditions, we devised a machine learning-assisted computing
system that mimics this method. We extracted color differences between the flake and
the surrounding substrate from flakes in the image data, calculating the average and
standard deviation of color differences per flake, which we then utilized in machine
learning algorithms. Consequently, we discovered that we could achieve an F1-Score of
over 0.90 by simulating the human color discrimination method. It can be universally used
in various experimental settings for automatically detecting graphene, and further, we
believe this method could apply to other 2D materials.

2. Modeling and Methods
2.1. Our Approach to Identifying Single-Layer Graphene

Figure 1 shows the overall procedure for identifying a single graphene layer by both
a human researcher at the laboratory (upper grey box) and by our computer process and
machine learning algorithm, mimicking how the human behaves (lower light blue box). To
distinguish the number of graphene layers in the laboratory, human researchers perform
their experimental work as follows. First, the position of the graphene is identified through
optical microscope observation. Next, the outline of the graphene is recognized from the
image. Then, the number of graphene layers is estimated by comparing the color differences
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between the edges of the graphene and its surroundings. Experienced researchers, through
extensive training, are able to empirically determine whether the observed graphene
is single-layer, double-layer, or multilayer, based on the color differences between the
substrate and the graphene.
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trained machine learning model (decision-making). In this case, we utilized a support vec-
tor machine (SVM), one of the well-established machine learning models, to solve classi-
fication and regression tasks to determine the number of graphene layers [27]. We opti-
mized the SVM model by training it with our optical microscope image dataset. We 
achieved an F1-Score of over 0.90 in binary classification, effectively categorizing the train-
ing dataset into a single-layer class and a multilayer class. 
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Figure 1. Flowchart of our algorithm mimicking the procedure in which humans distinguish the
number of graphene layers: (a) Recognizing the positions of graphene objects within a graphene image
obtained through an optical microscope (initial labeling is required for our method). (b) Observing
the outlines of the objects. (c) Comparing color differences around the outlines. (d) Determining
the number of graphene layers based on the extent of color differences and subsequently reaching
a decision.

We then adopted the above-mentioned human being’s working process to our algo-
rithm to identify a single layer of graphene from the optical microscope images of graphene
flakes. To identify objects in the image, first, we employed a data acquisition and com-
parison process to detect data points for calculating color differences according to the
characteristics of each step depicted in Figure 1. After an optical image is inputted, our
system acquires vertices to recognize the outlines of flakes in the image (labeling process).
Then, these vertices are connected to form the outlines, and the RGB values of pixels at
positions a certain distance away from the outlines are extracted (recognition of outline) [26].
The color difference between the outlines and the surrounding substrate is calculated (data
acquisition and calculation process). Based on the RGB difference information obtained
from the data processes, the number of graphene layers is classified through a trained
machine learning model (decision-making). In this case, we utilized a support vector
machine (SVM), one of the well-established machine learning models, to solve classification
and regression tasks to determine the number of graphene layers [27]. We optimized the
SVM model by training it with our optical microscope image dataset. We achieved an
F1-Score of over 0.90 in binary classification, effectively categorizing the training dataset
into a single-layer class and a multilayer class.

2.2. Methods
2.2.1. Generating Graphene Image Datasets and Data Labeling

We used 45 optical microscope images of graphene flakes placed on SiO2. The color of
the substrate varies depending on the optical microscope’s magnification and illuminating
light source. In our image data, we observed roughly two main color tones: pink and green.
We differentiated these two background colors and separately applied them to the machine
learning algorithm. To achieve robust classification performance, we collected graphene
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images captured by multiple human researchers in diverse experimental environments,
such as those containing different background colors or with various magnifications. All
the images were directly imported into our procedure without resizing, resolution enhance-
ment, color normalization, and so on. The method we propose can accept most microscope
images in various conditions, enabling a universal solution for differentiating single-layer
graphene out of deposited flakes.

Besides the above-mentioned aspects in the experimental environment of image taking,
the optical microscope images of graphene can be sensitive to the type and brightness
of the microscope’s light source. Additionally, if the substrate is not perfectly aligned
perpendicularly to the light source and has a slight tilt in the vertical direction, the colors
at one end of the substrate and those the other end may vary slightly. In the case of a
single-layer graphene image, in particular, the color of graphene can be sensitively varied
according to the angle of the light source and the substrate. Therefore, traditional edge
detection algorithms such as traditional Canny edge detection methods [28] in computer
vision and image processing tend to fail to accurately capture the boundaries, since there is
very little color difference between single-layer graphene and the surrounding substrate.
To identify the boundaries of flakes in the collected images, as shown in Figure 2a, we
performed labeling that provided answers to input data using the VGG software developed
by the Visual Geometry Group [29] for 45 images. This tool assists in adding annotations
and assigning labels to image and video data, playing a crucial role in the data preparation
phase for training and evaluating computer vision models. Based on the layer information
of each flake, confirmed through Raman spectroscopy, we assigned labels to determine
whether each flake is single-layer or multilayer. The labeled data were stored in JSON file
format [30].
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Figure 2. Process of collecting the positions of training data used in our algorithm. (a) Labeling of
graphene area by saving the vertices of graphene objects using VGG Annotator. (b) Defining pairs
of pixel positions along the labeled graphene area for comparing the color difference between the
substrate (denoted by subscription “out”) and the graphene (denoted by subscription “in”).

2.2.2. Recognition of Graphene Outline and Its Surroundings

To mimic the process of human operators identifying the boundaries of the graphene
flakes and examining the color differences around the boundaries, we implemented a
data extraction code that automatically identifies the boundaries of flakes based on the
provided labels. The system collected the pixel positions (x, y) of the flake’s boundary in
the image, referring to the JSON file containing the labeling information. After that, Pin
and Pout points were defined, as shown in Figure 2b, at the outside (xout, yout) and inside
(xin, yin) of the graphene flake with certain distances from its boundary. We set 14-pixel
points as an optimal distance value from the boundary of the flake to define the pair of
inside/outside positions to calculate color differences. It was found that if the distance is
less than the chosen pixel distance, the RGB value could be distorted due to the interference
of microscope images close to the edge of graphene flakes. Also, if the distances from the
edge of the graphene are great, the RGB value differences between Pin and Pout could be
larger due to the brightness differences that occur with the image under the test. In our data
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acquisition process, the Pin and Pout pairs obtained from the narrow area of the graphene
flake, where widths are less than 14 pixels, were ruled out.

The position information for the selected pairs was then uploaded to our database.
Figure 2b shows the process of collecting the positions of training data used in our algorithm.
The same procedure was applied to every outline pixel of each flake, resulting in the
collection of hundreds of pixel coordinates per graphene flake.

2.2.3. Data Acquisition

After defining the pixel positions around the graphene boundaries, the RGB values
were extracted from each pair of pixels. Then, these color information data were uploaded
to the database. Inspired by the ability of experienced human operators to distinguish layer
numbers based on color differences, we designed the system to automatically calculate
the color difference between the surrounding substrate and the flake boundaries. Figure 3
shows three-dimensional RGB value distribution mappings obtained from the stored
pixels and the optical microscope images, with the defined pixel positions corresponding
with the 3D RGB coordinate system. In Figure 3, the P1

in/out and P4
in/out values, as

indicated, are obtained in the vicinity of flakes considered to be single-layer graphene
on a pink background and a green background, respectively. The P2

in/out and P3
in/out

values, on the other hand, represent the values obtained in the vicinity of multilayer
graphene. The RGB values on the pink-background substrate are represented as yellow
dots, while the values within single/multilayer graphene flakes are indicated as pink/red
dots, respectively. Similarly, for the green-background substrate, the RGB values on the
substrate are represented as light green, and the values within single/multilayer graphene
flakes are shown as green/blue.
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Figure 3. An example representation of the RGB values of a graphene object within image data in the
RGB coordinate system. Optical microscope images, with the defined pixel positions, correspond
with the 3D RGB coordinate system shown in the 3D plot. The line between each pair of points (Pin,
Pout) represents the distance (∆RGB) between the points in the RGB coordinate system. P1 and P4

depict single-layer graphene (SLG), while P2 and P3 represent multilayer graphene (MLG).
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As mentioned earlier, the distribution of RGB data can vary depending on experimen-
tal conditions, such as the angle of the light source and variations in substrate color. As
seen in Figure 4, it is evident that due to variations in background colors and resulting
brightness differences, even the same single-layer graphene may not be easily distinguish-
able in RGB coordinates. Furthermore, within the same image, variations in lighting can
lead to differences in brightness, resulting in a noticeable color value shift in the RGB
coordinate for inner and outer points along the outline of the graphene flake. Therefore,
when employing a machine learning classification algorithm trained on the RGB values of
both the object and the substrate, it becomes exclusively applicable under the condition of
identical background colors. However, the differences in RGB values between the substrate
and the single-layer graphene exhibit a similar pattern. Therefore, instead of classifying
the RGB space using machine learning, we accumulated RGB difference values (∆RGB)
and used them for training the machine learning model to determine the layer numbers
by learning the distances between them. Subsequently, the RGB value differences were
calculated and uploaded to the database. As can be seen in Figure 3, the lines connecting
points represent the RGB differences, and single-layer graphene and multilayer graphene
can be clearly separated in the RGB color space. This method is similar to how a trained
human operator works in the lab to determine single-layer graphene by differentiating the
color differences between the substrate and the graphene flake.
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Figure 4. A plot of the RGB coordinates of inner and outer pixels surrounding a single-layer graphene
flake in our selected optical microscope image dataset, with various pink backgrounds and different
variations in lighting within an image.

2.2.4. Application of Machine Learning Model

We chose support vector machine (SVM) [31,32] to classify the input data into single-
layer and multilayer classes. SVM is recognized as one of the models with excellent
performance and generalization ability. It maps the given data into a higher-dimensional
space to find a decision boundary with the maximum margin between classes. This model
effectively separates the data and optimizes prediction performance. SVM utilizes support
vectors, the closest data points to the decision boundary, to find the optimal decision
boundary based on their positions and distances.

We employed the k-fold cross-validation evaluation method [33], where k represents
the number of data partitions and training iterations, to assess the consistency of our
model’s performance across each fold. We used k = 5, which means that the data are



Nanomaterials 2024, 14, 183 7 of 10

divided into five parts, where four parts are used as the training dataset, and the remaining
part is used as the test dataset. The test and training sets are alternated based on the
number of data partitions, with a 1:4 ratio. Furthermore, we used the F1-Score as an
evaluation metric to precisely assess our model’s performance in classification tasks. The
F1-Score captures the harmonic mean of precision and recall. Precision, indicating the
ratio of true positives among the model’s positive predictions, is utilized to minimize
false positives. Recall, representing the ratio of accurately predicted positives among
the actual positives, is employed to minimize false negatives. A high F1-Score not only
indicates accurate predictions but also signifies a model that is effective in minimizing
missed positive samples and is not sensitive to data imbalance between classes.

3. Results and Discussion
3.1. Training Data Distribution and Decision Boundary

To differentiate the single-layer graphene, we incorporated the standard deviation
value as a training parameter as well as the average value of RGB differences. Figure 5a
shows the distribution of average color difference and standard deviation data between
graphene flakes and their surrounding pink/green substrates, as well as the decision
boundary trained by the SVM model. For single-layer graphene flakes on the pink-based
background, the distribution showed a mean of 13.09 and a standard deviation of 6.13.
For multilayer flakes, the distribution showed a mean of 37.02 and a standard deviation
of 30.50. In the case of flakes with a green-based background, for single-layer flakes, the
distribution showed a mean of 20.80 and a standard deviation of 10.34. For multilayer
flakes, the distribution showed a mean of 107.05 and a standard deviation of 43.90.
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results. (a) Decision boundary results of trained SVM model classifying single-layer graphene and
multilayer graphene. (b) Data distribution obtained through kernel density estimation. Inset of (a) is
multilayer graphene images, of which the average ∆RGB is close to the single-layer graphene (SLG),
while the standard deviation of ∆RGB is larger than the SLG.

As shown in Figure 5b, the classification between single-layer and multilayer, based
solely on the average color difference, was not distinctly clear. However, when considering
the standard deviation of the color difference, the classification between the two classes
became notably distinct. To elaborate, in Figure 5a, on the pink-based substrate, there
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are a few data points where the color difference average suggests a higher likelihood of
classifying them as single-layer, but they were correctly identified as multilayer due to
a higher standard deviation. Upon closer examination of the data, it was observed that
these flakes had complex geometry in an image, which resulted in incorrect distinctions
between Pin and Pout pairs. There were some error cases where color differences were
unexpectedly measured inaccurately due to flakes being located at unpredicted positions.
One of the examples of this error case is shown in the inset of Figure 5a, where two bilayer
graphene flakes were located close to each other. As indicated with a red dotted circle, the
Pout position could be defined at the inside of the neighboring graphene flake. In this case,
the average value of ∆RGB could be decreased due to the mis-defined pair of positions,
which are not automatically ruled out. However, as the standard deviation increased due to
the unexpected variations, classification remained feasible despite these errors. Therefore,
we found that the standard deviation of color difference serves as a crucial parameter for
distinguishing between single-layer and multilayer graphene.

3.2. Model Performance

The F1-Score results showed a score of 0.90 with only 60 flakes’ information in images
with a pink-based background, and a score of 0.92 with only 50 flakes’ information in
images with a green-based background. The ability to achieve a high score with a small
number of objects in each set of 45 images is advantageous for practical applications and
demonstrates the method’s efficiency.

In Figure 5a, it can be observed that graphene on green-based substrates has a wider
margin and is classified more distinctly than graphene on pink-based substrates. This
result is akin to that of humans naturally perceiving green tones more effectively and better
discerning subtle color variations within the green spectrum. Our data also support the
research finding that color differentiation is more clearly distinguished within the green
spectrum [34].

Our goal was to achieve robust performance with a small amount of data for the ac-
cessibility of human researchers. Therefore, we conducted tests to determine the minimum
number of labeled flakes to be included in the database for training. For both pink- and
green-toned images, we experimented with varying the number of flakes, ranging from
30 to 60 (pink) and 20 to 50 (green), as shown in Figure 6. In the case of pink-based im-
ages, we observed that performance approached 0.90 when using a minimum of 60 flakes.
Conversely, given their strong classification performance as indicated by the RGB distri-
bution, it was not necessary to use as many as 60 flakes for green-based images. Even
with 40 flakes, green-based images achieved a classification score of 0.90. This indicates
that when classifying graphene using our proposed method, a score of over 0.90 can be
maintained even with a small dataset.
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4. Conclusions

This study proposes a solution for distinguishing the number of graphene layers, even
under various experimental conditions and variations in illumination. We addressed issues
such as differences in illumination, the need for collecting a large amount of data, extremely
time-consuming manual labeling tasks, and errors in automatic labeling. To achieve this, we
applied a data acquisition method and machine learning techniques that mimic the human
method of using a microscope to determine single-layer graphene through color differences.
By utilizing the color difference information around flakes, our method demonstrates
robust classification capabilities even in the presence of illumination variations within
images. Moreover, with a small amount of data, we were able to maintain an F1-Score of
over 0.90. Additionally, since this approach is based on color difference, it has the potential
to extend beyond graphene and enable the differentiation of other 2D materials as well.
Recently, 2D material-based electronic devices have been practically incorporated into
the integrated CMOS system [35–37]. To adopt 2D materials into the fabrication process
of integrated circuits, a fast and cost-effective method for distinguishing a single layer
of 2D materials is required. A machine learning-based identification of a single layer of
graphene and 2D materials, as presented in this work, could be applicable to a processing
methodology that aligns with these requirements.

5. Patents

A Korean patent based on this work will be filed.
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