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Abstract: Germanium-based multi-metallic-oxide materials have advantages of low activation energy,
tunable output voltage, and high theoretical capacity. However, they also exhibit unsatisfactory
electronic conductivity, sluggish cation kinetics, and severe volume change, resulting in inferior
long-cycle stability and rate performance in lithium-ion batteries (LIBs). To solve these problems,
we synthesize metal-organic frameworks derived from rice-like Zn2GeO4 nanowire bundles as the
anode of LIBs via a microwave-assisted hydrothermal method, minimizing the particle size and
enlarging the cation’s transmission channels, as well as, enhancing the electronic conductivity of
the materials. The obtained Zn2GeO4 anode exhibits superior electrochemical performance. A high
initial charge capacity of 730 mAhg−1 is obtained and maintained at 661 mAhg−1 after 500 cycles at
100 mA g−1 with a small capacity degradation ratio of ~0.02% for each cycle. Moreover, Zn2GeO4

exhibits a good rate performance, delivering a high capacity of 503 mA h g−1 at 5000 mA g−1. The
good electrochemical performance of the rice-like Zn2GeO4 electrode can be attributed to its unique
wire-bundle structure, the buffering effect of the bimetallic reaction at different potentials, good
electrical conductivity, and fast kinetic rate.

Keywords: lithium-ion batteries; metal-organic frameworks; nanowire bundles; Zn2GeO4

1. Introduction

Rechargeable lithium-ion batteries (LIBs) have been widely used in fields such as
electronics, power grids, and electric vehicles, due to their excellent performance. However,
the low capacity (~372 mAh g−1) of the graphite anode material of LIBs cannot meet the
current market demand for high-energy storage [1–4]. Therefore, there is an urgent need
to develop high-energy-density electrode materials to meet the needs of social develop-
ment [5]. Anode materials such as Si, Ge, Sn, Zn, Ni and their oxides have high theoretical
capacities. As a result, they have been intensively studied by many researchers [6–10].
In the above electrode materials, Ge-based electrode materials exhibit a high theoretical
capacity of ~1600 mAh g−1 due to the reversible reaction of each Ge atom with 4.4 lithium
atoms. Moreover, Ge also possesses fascinating features, such as high conductivity and
fast Li+ diffusivity, making it a promising anode candidate [11,12]. However, the volume
of the germanium-based anode changes drastically during the frequent embedding and
de-embedding of lithium ions, which seriously affects its structural stability [13]. De-
creasing the particle size or dimensions to the nanoscale (such as nanoparticles, nanorods,
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nanofibers, nanowires, etc. [14,15]) can shorten the lithium ions’ diffusion pathway and, to
some degree, mitigate physical strains, thereby lowering the capacity fading. Moreover,
the reserve of Ge on earth is not abundant, which makes it far from a practical applica-
tion because of its cost and elemental abundance [16]. The design of bimetal oxides is
an excellent option for decreasing material costs and maintaining the low discharging
platform. The design of the optimized morphology and other elements such as Zn and O
to form Ge-based bimetal oxides have been proven effective for improving the materials’
electrochemical performances [17].

Despite great efforts, the practical application of this Zn2GeO4-based anode is still
plagued by its rapid capacity decay and poor rate performance. Combining Zn2GeO4
with carbon materials or other materials such as graphene, carbon nanowires, or carbon
nanotubes is an effective way to solve the problem. Zhang et al. successfully synthesized
Zn2GeO4-C-Ag by a simple impregnation/redox method. The electrode exhibited better
electrochemical performance, and the specific capacity could be stabilized at 561 mAh g−1

after 50 cycles. In addition, the nanoscale Zn2GeO4 nanorods were prepared through a
hydrothermal method by Feng et al. This electrode material exhibits good electrochemical
performance with an initial capacity of up to 995 mAh g−1 at 400 mA g−1 [18,19].

Lately, metal-organic framework (MOF) derived materials have gradually developed
into promising anode materials for LIBs [20–22]. The broad investigation and utilization
of MOFs are attributed to the highly-tunable and skeletal structures, and high surface-to-
volume ratios, which contribute to the structural stability and electrical conductivity [23–25].
Therefore, MOFs with 3D pore architecture are rapidly developed and widely applied in
energy storage, gas absorption, electrochemical, etc. [26–28]. Inspired by the merits arising
from MOFs and Ge-based bimetal compounds, we propose the microwave-assisted method
synthesis of Zn2GeO4 anodes for LIBs using MOFs as both structural and compositional
precursors. The fabricated Zn2GeO4 could consequently inherit its MOF precursor’s mor-
phology and porous structure, which is supposed to facilitate lithium diffusion and improve
the structural stability. In addition, the Zn2GeO4 prepared by a microwave hydrothermal
method has high phase purity and is suitable for the preparation of small-sized Zn2GeO4
crystals, showing great advantages over the hydrothermal/solvent thermal method. The
microwave heating method involves the interaction between the electromagnetic radiation
and the molecular dipole moment, and this method allows the temperature of the whole
reaction system to be uniform and greatly improves the reaction rate for the preparation
of Zn2GeO4 with uniform shapes compared with the conventional hydrothermal/solvent
heat method.

In this work, to improve the electron transferability of germanium-based polymetallic
oxide materials, accelerate the transport rate of lithium ions in the electrode, and improve
the lithium storage performance, we synthesized rice-like Zn2GeO4 nanowire bundles as the
anode for LIBs by the microwave-assisted hydrothermal method. The obtained Zn2GeO4
possesses minimized particle sizes, expanded cation transport channels, improved material
electronic conductivity, and excellent electrochemical properties. The rice-like Zn2GeO4-150
nanowire bundles delivered a high reversible capacity of 730 mAh g−1 and maintained
it at 661 mAh g−1 after 500 cycles at a current density of 100 mA g−1. The superior
electrochemical performances of Zn2GeO4-150 nanowire bundles are likely ascribed to the
large specific surface area, robust structure, and the buffering effect of bi-metal reactions at
different potentials. Since the Zn2GeO4 prepared in this paper has good long-cycle stability
and a fast kinetic rate, it is expected to be a lithium-ion battery anode with high-energy-
density and long cycle life.

2. Materials and Methods
2.1. Chemicals

Zn(NO3)2·6H2O (99.7%, Shanghai, China), methanol (99.7%, Shanghai, China), 2-
methyl imidazole (MIz, 98%, Shanghai, China), 1,2-diaminocyclohexane (DACH, 98%,
Shanghai, China), GeO2 (99.99%, Shanghai, China) were bought from Sinopharm Chemical.
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2.2. Synthesis of Zn-MOF (Zeolitic Imidazolate Framework-8, ZIF-8)

Under stirring conditions, 1.1 g of Zn(NO3)2 6H2O was dissolved in 40 mL of methanol,
labeled as solution A. Under stirring conditions, 2.4 g of MIz was dissolved in 40 mL of
methanol and labeled as solution B. Subsequently, solution B was added to solution A and
continued stirring for 2–3 h. Then, the product was collected by centrifugal washing with
methanol several times and dried under vacuum at 60 ◦C.

2.3. Synthesis of Ge-MOF

Under stirring conditions, 0.2 g of GeO2 was dispersed in 10 mL of deionized water, and
then 7.5 g of DACH was dropped into the GeO2 suspension. Then, the above solution was
transferred to a 50 mL Teflon-lined stainless steel autoclave and heated at 180 ◦C for 5 days.
After cooling to room temperature, the solution was rinsed with acetone and deionized water,
and dried under vacuum at 60 ◦C for 12 h to obtain a white precipitate of Ge-MOF.

2.4. Synthesis of Zn2GeO4

An amount of 0.16 g of NaOH was dissolved into 30 mL of deionized water under
stirring conditions. Then 0.16 g of ZIF-8 and 0.16 g of Ge-MOF were added into the above
solution with stirring for 30 min. Finally, the mixed solution was transferred to a glass
reaction vessel and allowed to react for 10 min under continuous magnetic stirring at 150 ◦C
under microwave irradiation. The white precipitate was collected and centrifuged with
deionized water several times and dried under a vacuum at 60 ◦C overnight. Then, the
precursor was treated in a tube furnace at 700 ◦C for 5 h protected by N2 to form a final
product, which was named Zn2GeO4-150. For comparison, Zn2GeO4-130 and Zn2GeO4-
180 were also prepared at 130 ◦C and 180 ◦C for 10 min under microwave irradiation and
treated at 700 ◦C for 5 h.

2.5. Material Characterization

The scanning electron microscope (SEM, JSM-6700F, Tokyo, Japan) with energy dis-
persive spectroscopy (EDS) was used to characterize the morphology and microstructure
of the products with a microscope acceleration voltage of 30 KV. Transmission electron
microscopy (TEM, JEOL JEM-200CX, Tokyo, Japan) was used to characterize the internal
structure of the products with a microscope acceleration voltage of 200 KV. X-ray diffraction
(XRD, Rigaku D/max-2550 V, Cu Ka radiation, Tokyo, Japan) was used to determine the
crystals of the product with a test voltage and current of 40 KV/30 MA, a test range of
5–85◦, and a scan speed of 2◦/min. X-ray photoelectron spectroscopy (XPS, PHI-5700,
Tokyo, Japan) was used. The equipment of micromeritics instrument Corp, ASAP 2020 was
used to measure the Brunauer-Emmett-Teller (BET) surface area of samples at 77 K.

2.6. Electrochemical Evaluation

The material in the working electrode consists of the active material, acetylene black,
and poly(vinylidene fluoride) (PVDF), with a mass ratio of 8:1:1. The mass load of electrode
material on copper foil is maintained at around 2 mg cm−2, and maintained a thickness
of several micrometers. Lithium foil was used as the anode for assembling coin batteries;
LiPF6 is a solvent for using propyl carbonate/ethyl carbonate (PC/EC) as an electrolyte.
Constant current charging and discharging are measured at room temperature between
5 mV and 3.0 V (relative to Li+/Li) at different current densities (0.1–5 C) on a LAND-CT
2001, 1 C = 1000 mA g−1. The voltage ampere (CV) circuit was measured at a scanning rate
of 0.1 mV S−1 on a CHI660D. Electrochemical resistance testing (EIS) was performed on
CHI660D at a frequency range in 0.01–1 × 106 Hz.

3. Results
3.1. Characterization of Anode Materials

The synthesis process of the MOF derived rice-like Zn2GeO4 nanowire bundles is
schematically illustrated in Figure 1. XRD was performed on the Zn2GeO4 products, Ge-
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MOF, and Zn-MOF. The typical XRD pattern of Ge-MOF is shown in Figure 2a, where all
peaks are well-matched with the previously reported sample of C6H10(NH2)2Ge3O6 [29,30].
Furthermore, all the prominent peak positions of ZIF-8 are in good agreement with the
previous reports [31,32]. Figure 2b shows that the prominent peaks of Zn2GeO4, including
(110), (300), (220), (113), (410), and (223), are in good agreement with the rhombohedral
Zn2GeO4 (JCPDS No. 11-0687), indicating a high purity of Zn2GeO4 via the microwave-
induced method [33]. All the Zn2GeO4-130, -150, and -180 samples exhibited type IV
nitrogen adsorption/desorption isotherms with typical H1 hysteresis loops and their spe-
cific surface areas were approximately ~31, ~43 and ~26 m2 g−1, respectively (Figure 2c,d),
and the major pore sizes of all three Zn2GeO4 samples ranged from ~3 to 13 nm. The large
difference in the specific surface area of Zn2GeO4 is mainly due to the difference in sample
morphology and crystallinity caused by the synthesis temperatures of various samples.
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Because of its highest surface area, the Zn2GeO4-150 sample was chosen for further
investigations of the chemical composition and chemical bonding state by XPS analysis
(Figure 3a–d). Figure 3a shows the overall XPS spectrum of the Zn2GeO4-150. The high-
resolution XPS spectra of the binding energies at 1045 and 1023 eV in Figure 3b correspond
to the Zn 2p3/2 and Zn 2p1/2 peaks, showing the oxidation state of Zn2+ [34,35]. Figure 3c,d
reveal the binding energies of Ge 3d and O 1s peaks, centered at 32 and 531.2 eV, respectively,
which prove the existence of Ge-O bonding in the form of tetravalent Ge4+ [36]. In addition,
the O 1s split peaks appear at 530.3 eV, 531.0 eV and 532.0 eV, corresponding to lattice
oxygen, oxygen of the hydroxide ion and C-O or O-C=O bonds, respectively. All the
binding energy results are consistent with the XRD results of Zn2GeO4 [37].
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The surface morphology and structure are shown in Figure 4a–h by SEM and TEM
images. The Ge-MOF precursor with a plate-like morphology is shown in Figure 4a. A
rhombic dodecahedral morphology of the Zn-MOF sample is shown in Figure 4b, with
an average size of ~50 nm. As seen in Figure 4c, Zn2GeO4-150 particles are uniformly
distributed with a rough surface, uniform size, and a rice grain shape with a diameter of
~90 nm and a length of ~250 nm. A closer observation is presented in Figure 4d–f, rice-
like Zn2GeO4 nanowire bundles were accumulated by several nanowire bundles, which
were further confirmed by the TEM image (Figure 4g,h). Figure 4g,h presents a mass of
small nanowires with an average width of ~20 nm and a length of ~80 nm, mounted on
the surface of rice-like Zn2GeO4-150 particles. The rice-like Zn2GeO4 nanowire bundles
are accumulated by several nanowire bundles which may mitigate the volume change
during cycling and promote a long-cycle stability of the electrode. In addition, the small
size of the Zn2GeO4 nanowire bundle particles can shorten the ion and electron transport
paths and promote fast reaction kinetics in the electrode. The EDS spectrum shown in
Figure 4i demonstrates the presence of Zn, Ge, and O elements. In addition, the C element
is also observed, which is derived from the carbon-based adhesive tape substrate, used to
support and disperse the SEM samples. The SEM image reveals the structure of Zn2GeO4
under the different microwave irradiation temperatures of 130 and 180 ◦C in Figure 4j,k.
It is confirmed that the single crystallite of Zn2GeO4-130 (Figure 4j) is not yet formed at
low temperatures. As the microwave irradiation temperature increases up to 180 ◦C, the
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rice-like structure of Zn2GeO4 breaks down and is transformed into a random rectangular
structure (Figure 4k). Figure 4l, l-a–l-c shows multiple element mapping images that
confirm the uniform distribution of Ge, Zn, and O elements.
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3.2. Electrochemical Performances as Anode Material for LIBs

Rice-like Zn2GeO4-150 and other Zn2GeO4 samples (Zn2GeO4-130 and Zn2GeO4-180)
were all investigated as anode materials for LIBs at room temperature. The electrochemical
properties are shown in Figure 5a–c. The electrochemical reaction mechanism of Zn2GeO4-
150 was performed by investigating its initial three cyclic voltammograms (CV). During
the first cathodic scan, a sharp peak was detected at around 0.6 V, which can be attributed
to the formation of a solid electrolyte interface (SEI) film, and the Zn2GeO4 decomposed
into Zn, Ge, and Li2O. Another peak ranges from 0.3 V to 0.005 V, which corresponds
to the formation of LixZn and LiyGe alloys [38–40]. The Li2O matrix, formed during the
discharging process, can be used as a cushioning pad to alleviate the volume changes of
Ge and Zn during the LixZn and LiyGe. alloying/de-alloying processes [41,42]. In the first
anodic scan, two remarkable broad peaks were observed at ~0.45 and 1.2 V, ascribed to
the delithiation of LixZn and LiyGe alloys at 0.45 V, and then further partially oxidized
to the ZnO and GeO2 at 1.2 V [43]. For the subsequent anode scan, two major reduction
peaks were observed in the range of 0.6 to 1.2 V and 0.005 to 0.6 V. The major 0.75 V
peak in the second cycle is shifted to a higher voltage compared to the peak in the first
cycle and then returns to a lower voltage in the third cycle. This phenomenon suggests
that the subsequent redox reactions occur mainly in the Li2O matrix with Zn-ZnO and
Ge-GeO2, while the reactions between 0.6 and 0 V are due to the alloying of Li with Zn
and Ge. In the subsequent cycles, the observed CV peaks almost overlap, indicating the
excellent reversible electrochemical behavior of Zn2GeO4 [44]. The initial capacity loss may
come from the formation of an SEI layer and the multi-step reactions of Zn2GeO4 [45,46].
Finally, during the discharging and charging processes, all electrochemical reactions can be
described by the following Equations (1)–(5) [39–46]:

Zn2GeO4 + 8Li+ + 8e− → 2Zn + Ge + 4Li2O (1)

Zn + xLi+ + xe− ↔ LixZn (0 ≤ x ≤ 1) (2)

Ge + yLi+ + ye− ↔ LiyGe (0 ≤ y ≤ 4.4) (3)

ZnO + 2Li+ + 2e− ↔ Zn + Li2O (4)

GeO2 + 4Li+ + 4e− ↔ Ge + 2Li2O (5)

The cycle performances of Zn2GeO4-130, Zn2GeO4-150, and Zn2GeO4-180 electrodes
are shown in Figure 5c. Among them, Zn2GeO4-150 exhibited the best electrochemical
performance. A high initial reversible capacity of 730 mA h g−1 was obtained at a current
density of 100 mA g−1 and remained at 661 mAh g−1 after 500 cycles, showing a high-
capacity retention ratio of 90.5% and a low capacity degradation of about 0.02% for each
cycle. In the initial cycle, there is an irreversible capacity loss, which is mainly due to the
decomposition of the electrolyte and the formation of a solid electrolyte interface (SEI) layer.
Moreover, a stable Coulombic efficiency (close to 100%) was obtained after the second cycle
and remained stable in subsequent cycles. The excellent cyclic performance of the Zn2GeO4-
150 electrode is probably ascribed to the porous structure, the formation of LixZn and LiyGe
alloys with rich redox reactions and favorable buffering effects and enhanced electrical
conductivity [47,48]. The two samples of Zn2GeO4-130 and Zn2GeO4-180 delivered higher
reversible capacities of 700 mAh g−1 and 690 mAh g−1, respectively, close to the initial
capacity of Zn2GeO4-150. However, capacities of Zn2GeO4-130 and Zn2GeO4-180 faded
rapidly, with the retained capacities of ~410 mA h g−1 and 390 mA h g−1 respectively after
500 cycles, followed by the low-capacity retention ratios.
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The rate capabilities of Zn2GeO4-130, Zn2GeO4-150, and Zn2GeO4-180 are shown
in Figure 6a. Even though the current densities were changed rapidly, the Zn2GeO4-150
sample still exhibited the most stable cycling performance and the highest capacity. As
shown in Figure 6a, the average specific capacities of the rice-like Zn2GeO4-150 were 730,
698, 627, 587, 544, and 503 mAh g−1 at step current densities of 0.1 to 5 C. When the current
density returned to 0.1 C, the capacity of Zn2GeO4 almost recovered (up to 709 mAh g−1),
demonstrating the reversible insertion-extraction of Li cations and the stable rice-like struc-
ture [49]. In contrast, Zn2GeO4-130 and Zn2GeO4-180 showed unfavorable rate capacities
with a low and rapid decrease in capacities under the same testing conditions, revealing
the significant impacts of synthesis temperatures on the electrochemical performance of
samples. The large difference in rate capacity between Zn2GeO4-130 and Zn2GeO4-180 is
mainly due to the effect of the microwave synthesis temperature on the crystalline structure
of the Zn2GeO4 material, which in consequence affects the electrical conductivity, ion
diffusion rate, and structural stability of the material.

The obtained Nyquist plots of the AC impedance of the Zn2GeO4 products are shown
in Figure 6b. The Nyquist plots of Zn2GeO4-150 have a similar semi-circle, along with the
Zn2GeO4-130 and Zn2GeO4-180 samples. However, the charge transfer resistance (Rct) of
Zn2GeO4-150 is ~75 Ω. This is much smaller than Zn2GeO4-130 (~150 Ω) and Zn2GeO4-180
(~100 Ω), demonstrating that the rice-like Zn2GeO4-150 has better electronic conductivity
and lower inner electrochemical resistance. In particular, compared to previous Ge-based
anodes (Table 1) with all kinds of morphologies, such as nanoflower, nanorod, nanowire, or
nanofiber, the rice-like Zn2GeO4-150 nanowire bundle electrode stands out by its remark-
able electrochemical performance, which is ascribed to the robust structure and proper
porosity derived from MOF precursors.
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Table 1. Comparison of electrochemical properties of Zn2GeO4 and relative metal oxide composites.
(IRC: initial reversible capacity, mAh g−1; RRC: retained reversible capacity, mAh g−1; CN: cycle
number; CD: current density, mA g−1; V: voltage, V).

Composite Morphology IRC RRC/CN CD V References

Zn2GeO4
Ge/Zn2GeO4NFs

rice
flower

730
1621

661/500
816/200

100
200

0.005–3
0.01–3

This work
[5]

Zn2GeO4 nanoflower 1143 1034/160 500 0.01–2.8 [12]

Zn2GeO4@MWCNTs nanorods@voids
of MWCNTs 1209 1397/300 200 0.01–3 [13]

Zn2GeO4 nanoparticle ~1130 1175/60 200 0.01–3 [17]
Zn2GeO4 nanowire 600 485/900 600 0–3 [29]
Zn2GeO4 nanowires 2200 1200/150 100 0.01–3 [33]

Zn2GeO4/GO nanorod@sheets 594 1150/100 200 0.001–3 [36]
Zn2GeO4 nanospheres 1520 488/100 200 0.01–3 [37]
Zn2GeO4 nanofiber 1405 1084/50 200 0.01–3 [38]

Zn2GeO4@C/Cu ZGO@C nanowires 1162 ~790/100 200 0.01–3 [39]
Zn2GeO4/TiO2 rod-like microstructure 346 330/150 200 0.01–3 [41]
Zn2GeO4/RGO hollow rods@sheets 1736 1005/100 500 0.01–3 [45]
CNT-Zn2GeO4 3D CNT@microspheres 736 762/300 150 0.001–3 [48]

Zn2GeO4 nanowire 1135 1220/100 100 0.01–3 [50]

As the excellent cyclic performance and rate performance of Zn2GeO4-150 draw our
attention, the relative lithium kinetics in Zn2GeO4-150 should also be measured to explain
the possible reason. Figure 7a shows the CV of the Zn2GeO4-150 electrode at different
scan rates, from 0.2 to 1.0 mV s−1. Peak 1 corresponds to the redox reactions occurring
mainly in the Li2O matrix with Zn-ZnO and Ge-GeO2 and peak 2 corresponds to the
reaction of the LixZn and LiyGe alloys oxidized to the ZnO and GeO2 at 1.2 V. The lithium
storage mechanism could be revealed by the relationship between the measured current
(i) and the scan rate (v) from the CV curves, using the equations as follows: i = a× vb,
log(i) = b× log(v) + log(a), where (v) represents the scan rate, (i) represents the current;
both a and b (ranges from 0.5 to 1) are constants [51]. Figure 7b,c reveal the relationship
between log(i) and log(v) of the Zn2GeO4-150. It showed that the values of b are 0.71 and
0.57 for oxidation along with a reduction state, respectively, suggesting both conversion
reaction and capacitive behavior occur during the charge-discharge processes. Furthermore,
the capacitive capacity was calculated using the equation: i(v) = k1 × v + k2 × v1/2, where
i(v) represents the measured current at a fixed potential (v), k1 and k2 are the adjustable con-
stant parameters, and v represents the scan rate [50]. The capacitive capacity contribution
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is about 57.9% for the Zn2GeO4-150 electrode at 0.2 mV s−1. Particularly, when the value
of v was increased up to 1.0 mV s−1, the capacitive contribution enhanced up to 76.6%
(Figure 7d). The capacitive contribution of the Zn2GeO4-150 electrode increases with the in-
crease in the scan rate, which indicates the large existence of surface absorption mechanism
and copious amounts of active spots of the rice-like Zn2GeO4 nanowire bundles.
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4. Conclusions

In summary, this work synthesized the rice-like Zn2GeO4 nanowire bundles using a
microwave-induced hydrothermal method with subsequent pyrolysis of the MOF precursor.
The Zn2GeO4-150 nanowire bundle electrode delivers a high initial reversible capacity of
730 mAh g−1 at a current density of 100 mA g−1 and retains a high reversible capacity of
661 mA h g−1 after 500 cycles. Moreover, good high-rate capabilities (1685, 698, 627, 577,
544, 503 mAh g−1 at step-up current densities of 0.1 C to 5 C) were also achieved because
of the tiny particle size and improved conductivity as well as the robust structural stability
of the Zn2GeO4-150 anode. The Zn2GeO4-150 nanowire bundles have also shown superior
cycling performance with a high capacity retention ratio of 90.5% (500 cycles), which is
attributed to the composition and structure associated merits such as the large specific
surface area, robust carbon structure, buffering effect of the bi-metal reactions at different
potentials, and excellent electronic conductivity, as well as the fast kinetics.
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