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Abstract: To simultaneously reduce the cost of environmental treatment of discarded food waste and
the cost of energy storage materials, research on biowaste conversion into energy materials is ongoing.
This work employs a solid-state thermally assisted synthesis method, transforming natural eggshell
membranes (NEM) into nitrogen-doped carbon. The resulting NEM-coated LFP (NEM@LFP) exhibits
enhanced electrical and ionic conductivity that can promote the mobility of electrons and Li-ions on
the surface of LFP. To identify the optimal synthesis temperature, the synthesis temperature is set
to 600, 700, and 800 ◦C. The NEM@LFP synthesized at 700 ◦C (NEM 700@LFP) contains the most
pyrrolic nitrogen and has the highest ionic and electrical conductivity. When compared to bare LFP,
the specific discharge capacity of the material is increased by approximately 16.6% at a current rate of
0.1 C for 50 cycles. In addition, we introduce innovative data-driven experiments to observe trends
and estimate the discharge capacity under various temperatures and cycles. These data-driven results
corroborate and support our experimental analysis, highlighting the accuracy of our approach. Our
work not only contributes to reducing environmental waste but also advances the development of
efficient and eco-friendly energy storage materials.

Keywords: lithium-ion battery; biowaste; eggshell membrane; discharge capacity estimation;
transfer learning

1. Introduction

In recent times, powertrain electrification has emerged as a promising option to
eliminate greenhouse gases emitted by transport sectors and other types of environmental
pollution [1]. Through the Paris Agreement, many nations renewed their policies to promote
rechargeable battery-operated electric vehicles (EVs) by minimizing the usage of vehicles
with an internal combustion engine [2]. With most countries on the brink of EV validation,
Li-ion batteries (LIBs) play a promising role because of their outstanding electrochemical
performance [3,4]. The search for batteries with good electrochemical stability and high
energy density has laid a platform for more research on LIBs [5–8]. The most promising
cathode materials for LIBs are LiNiCoMnO2 (NCM), LiNiCoAlO2 (NCA), LiCoO2 (LCO),
LiMn2O4 (LMO), and LiFePO4 (LFP) [5,9,10]. Of these, layered cathode materials such as
NCM and NCA [11–13] seem to deliver a higher specific capacity and wider electrochemical
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window owing to their increased nickel content and the presence of cobalt [14,15]. Despite
their advantages, they are limited owing to the relatively high cost and safety concerns (such
as the risk of degradation and thermal instability) associated with them. LCO has a high
theoretical specific capacity, high theoretical volumetric capacity, high discharge voltage,
and excellent rate capability, which have attracted considerable attention [16–18]. However,
shortcomings such as the high cost of cobalt, structural changes during intercalation and
deintercalation, low cyclic ability, thermal runaway observed at temperatures above 200 ◦C,
which may result from the release of oxygen, and the exothermic reaction between organic
materials limit the use of LCO for EVs. To overcome these major limitations, olivine-
structured Li iron phosphate (LFP) has been examined for use as a cathode material for
LIBs because of its low cost, good thermal stability, and intrinsic safety [19], which seem to
be the essential characteristic parameters to be considered when manufacturing batteries
for EVs [20–22]. Compared to NCM and NCA, LFP delivers a theoretical capacity of
170 mAh g−1, a practical capacity in the range 120–160 mAh g−1, and an operating voltage
range of 3.4–4.5 V, which is relatively moderate; however, LFP provides durability and a
long battery life [23–26].

The natural eggshell membrane (NEM) offers many advantages when applied as an
energy storage material [19]. First, NEM is inexpensive and easy to obtain because it is
used abundantly in industrial and household fields [27,28]. Second, it is non-toxic and envi-
ronmentally friendly. Third, NEM contains many natural proteins, such as collagen, which
can serve as a nitrogen and carbon source through carbonization and dissolution [29–33].

In LFP, PO4
3—phosphate (a polyanion) captures the tetrahedral sites, whereas Fe2+

and Li+ occupy lattice positions in octahedral sites where the redox potential increases,
leading to the stabilization of the material’s structure. However, LFP possesses low elec-
trical and ionic conductivity and a low average potential compared to layered cathode
materials [34]. These drawbacks can be overcome by maintaining the uniform size of the
particles (nanosized), doping with foreign cations, and coating the surface of LFP particles
with carbon and conductive agents [29,30]. Ultimately, the reduction in particle size results
in shortened ionic and electronic transport distances, which allows for the enhancement of
rate capability and overall electrochemical performance. Because of the techniques used
and the electron carrier efficiency of the carbon source material, the structural and surface
conductivities of the material are improved.

In the meantime, recently, data-driven analysis using machine learning has been
frequently used to predict system performance in wide fields. Machine learning is a tech-
nology that automatically learns data and then predicts the outcomes for given conditions.
Particularly, deep learning refers to the use of neural networks (NN) with many hidden
layers that are able to uncover non-linear relationships in the data. In the field of battery
research, deep learning has been utilized to effectively estimate the charge capacity of
LIBs [31]. In general, to accurately predict the charge capacity of a battery, it is required to
carry out several experiments with more than 50 charging and discharging cycles. The time
to test one charging and discharging cycle varies but is generally long; thus, sometimes it
takes several months to collect the desired data [32]. One way to overcome this situation
is to use the data from similar batteries in similar experiment settings to pre-train the
NN model. It helps to reduce the amount of training data and, hence, the running time
of the experiments. This process is known as transfer learning, which is useful when
comparing the charging behavior of similar batteries that have various coating materials,
and some studies have also been reported for the remaining useful life (RUL) prediction
of LIBs [33,34]. We aimed to explore the potential of transfer learning as a predictive tool,
demonstrating its applicability and accuracy in estimating battery performance. This focus
allowed us to delve deeply into the transfer learning methodology and its implications for
battery technology, paving the way for future applications and advancements in the field.

As preliminary research, we conducted a study in which nitrogen-doped carbon
derived from biowaste improved both the conductivity on the LFP surface and the electro-
chemical performance. In this study, we conducted qualitative and quantitative analyses
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of the nitrogen-doped carbon coating layer formed on the surface of the LFP according
to the synthetic temperature and investigated the electrochemical performance of each
sample. Furthermore, the discharge capacity of the coated LFP according to the synthesis
temperature was predicted using machine learning with cycle data.

2. Experimental
2.1. NEM Preparation

NEM preparation was carried out as previously reported [19]. In order to remove
any remaining albumen, yolk, and other impurities, the natural eggshells were thoroughly
washed with distilled water. The washed eggshells were subjected to 18 h of immersion
in acetic acid at 4 ◦C to remove the residual contaminants. Then, NEM was stripped off
from the eggshells by neutralizing the immersed eggshells in distilled water. Finally, NEM
was contained in a potassium phosphate buffer solution (5 mM, pH 7.0) at 4 ◦C until before
use [19].

2.2. Synthesis of NEM@LFP

The preparation of NEM@LFP, a natural eggshell membrane-coated LFP, was syn-
thesized using a calcination-based solid-state approach. NEM powder was obtained by
calcining tough NEM fibers at 350 ◦C for 2 h in an N2 atmosphere. Obtaining the powder
as carbonized NEM (C-NEM) involved grinding the samples after calcination. LFP with
spherical morphology, a particle size of around 2–5 µm, and a density of 3.68 g/cm3 was
purchased from Sigma Aldrich (St. Louis, MO, USA). Afterward, the commercial LFP and
C-NEM (LFP/C-NEM ratio of 100:4) were milled for 6 h to ensure an appropriate particle
size and thorough mixing. The final step was calcining the NEM/LFP precursor mixtures
at various temperatures (600, 700, and 800 ◦C) for 3 h in an N2 atmosphere; these were
named NEM 600@LFP, NEM 700@LFP, and NEM 800@LFP, respectively.

2.3. Material Characterization

The effect of coating on the crystal structure was analyzed using X-ray diffraction
(XRD, D8 Advance, Bruker, Billerica, MA, USA) with CuKα radiation at a wavelength
of 1.5405 Å. X-ray photoelectron spectroscopy (XPS, K-alpha, Thermo Fisher, Waltham,
MA, USA) was employed to perform a chemical state analysis and quantitative analysis to
determine its composition.

2.4. Electrochemical Measurements

The electrochemical performances of both the bare LFP and NEM@LFP materials
were analyzed through a CR2032-type coin cell. The working electrode was fabricated by
the homogenous mixing of LFP and NEM@LFP as the active material, Denka Black as a
conductive agent, and polyvinylidene difluoride (PVDF) as a binder in the weight ratio
85:10:5 while employing N-methyl pyrrolidone (NMP) as a disperser to obtain a slurry of
appropriate viscosity. The slurry obtained was then coated on an aluminium foil with a
mass loading of 1.8 mg cm−2. The slurry coated on aluminium foil was allowed to dry
naturally overnight, and then it was dried for 5 h at 120 ◦C in a hot air oven. The dried
electrode underwent a process of roll-pressing and was cut into a 14 mm diameter size,
followed by vacuum oven drying at 120 ◦C for 5 h. Using an argon gas-filled glove box,
the assembly of the coin cell was executed, consisting of pure Li foil (as the reference
electrode), an as-prepared LFP or NEM@LFP electrode as a working electrode, Celgard
2340 as a separator, and 1M LiPF6 dissolved in an EC/DEC (1:1 volume ratio) as an
electrolyte. Assembling the electrodes and separator with a few drops of electrolyte,
they were then crimped and tested using a cycler (Battery Tester 05001, HTC, Hwaseong,
Republic of Korea). The electrochemical workstation (Iviumstat, Ivium Technologies) was
used to perform electrochemical impedance spectroscopy (EIS) over the frequency range
of 100 kHz to 10 mHz. At room temperature, all the electrochemical performance was
performed, and all measurements were conducted at room temperature to ensure reliability.
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2.5. Discharge Capacity Estimation Using Transfer Learning

In transfer learning, the weights of the NN trained for one task are used to warm up
the training of another network. This allows the second network to be trained with less
data and obtain good results. Internally, some specific layers among multiple layers in the
network are “frozen” through pre-training their weights, and, therefore, those layers are
not retrained. After that, the remaining layers are retrained with additional data. Using
this method, it is possible to reflect both the features of the already learned data and the
features of the newly learned data [35–37].

The data-driven experimental setting for discharge capacity estimation using transfer
learning is presented in Figure 1. It uses the data of 93 charging-discharging cycles of bare
LFP materials for pre-training a NN. The input to the NN model is the voltage and current
for each cycle, and the output of the network is the resulting discharge capacity. The NN
includes four hidden layers with 500 neurons and with the ‘relu’ activation function. Using
transfer learning, we retrained only the last layer of three predictive models for the NEM
materials, one for each synthesis temperature: 600@LFP, 700@LFP, and 800@LFP. The date
was divided for training and testing to check the prediction performance of the trained
NN; the data of the first 10 cycles was used for training in the transfer learning stage, and
the data of the remaining 90 cycles was used for testing. The performance for discharge
capacity estimation was evaluated using the mean absolute error (MAE) and the mean
absolute percentage error (MAPE).
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Figure 1. Data-driven experiment setting for estimating the discharge capacity of NEM@LFP cells
using transfer learning from models trained with data from bare LFP cells.

3. Results and Discussion

The crystal structures of bare LFP and as-prepared ESM@LFP materials were investi-
gated through X-ray diffraction (XRD) analysis, and the resulting diffraction patterns are
shown in Figure 2. All the patterns could be identified as the orthorhombic olivine phase
LFP (JCPDS no. 40–1499), as reported in previous studies [38,39]. However, in the XRD
pattern of bare LFP, unidentified peaks were observed. These peaks are presumed to be
caused by unspecified additives present in the LFP obtained from an external chemical
supplier. Interestingly, during the thermal decomposition process of the nitrogen-doped
carbon coating in ESM@LFP, these unknown peaks disappeared completely from the XRD
pattern. Notably, the diffraction patterns did not reveal the presence of the nitrogen-doped
carbon phase, likely due to its low content. This observation indicates that the ESM coating
does not influence the crystal structure, suggesting that the structural integrity of LFP is
maintained even after the application of the ESM coating.
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Figure 2. XRD patterns of bare LFP, NEM 600@LFP, NEM 700@LFP, and NEM 800@LFP, respectively.

The quantitative analysis and chemical state of nitrogen-doped, carbon-coated LFPs
were elucidated through XPS analysis. The presence of a nitrogen peak in the NEM@LFP
survey spectra presented in Figure 3a is evidence that nitrogen-doped carbon was produced
from NEM. As projected in Figure 3b–d, the presence of multiplex profiles for the N1s orbital
of NEM@LFP was determined to be pyridinic nitrogen (N-6) (397.6–398.4 eV), pyrrolic
nitrogen (N-5) (399.7–400.8 eV), and oxidized pyridinic nitrogen (N-X) (401–405 eV) [40–42].
The contents of pyridinic, pyrrolic, and oxidized pyridinic nitrogen in NEM 600@LFP were
found to be 52.41%, 42.51%, and 5.08%, respectively, whereas those of NEM 700@LFP
were 59.13%, 37.39%, and 3.48%, and NEM 800@LFP were 43.98%, 50.07%, and 5.95%,
respectively, as displayed in Table 1. The formation and distribution of nitrogen species
in carbon materials, especially pyrrolic nitrogen, are highly influenced by the synthesis
temperature. Higher temperatures can facilitate the incorporation of nitrogen into the
carbon matrix in various forms, leading to differences in the pyrrolic nitrogen content
observed in the study. In addition, the existence of different nitrogen contents promotes
ionic and electrical conductivity, providing more active sites for Li movement. The existence
of these nitrogen profiles arises from the breakdown of collagen, which is the major part
of NEM. Of the three nitrogen profiles, pyrrolic nitrogen seems to be most effective for
electrical and ionic conductivity owing to the presence of more π-bonding, which promotes
the movement of Li-ions and electrons. Table 1 shows that NEM 700@LFP has the highest
percentage of pyrrolic nitrogen, from which it can also be expected to have the most efficient
electrochemical performance.

Table 1. The percentage content of different chemical states of nitrogen in XPS.

Sample Code N-6 (%) N-5 (%) N-X (%)

NEM 600@LFP 42.51 52.41 5.08
NEM 700@LFP 37.39 59.13 3.48
NEM 800@LFP 50.07 43.98 5.95
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Figure 3. (a) XPS survey spectra of bare LFP, NEM 600@LFP, NEM 700@LFP, and NEM 800@LFP
and XPS multiplex survey for N 1s orbital of (b) NEM 600@LFP, (c) NEM 700@LFP, and (d) NEM
800@LFP, respectively.

The formation and distribution of nitrogen species in carbon materials, especially
pyrrolic nitrogen, are highly influenced by the synthesis temperature. Higher temperatures
can facilitate the incorporation of nitrogen into the carbon matrix in various forms, leading
to differences in the pyrrolic nitrogen content observed in the study. In addition, the
existence of different nitrogen contents promotes ionic and electrical conductivity, providing
more active sites for Li movement. The existence of these nitrogen profiles arises from
the breakdown of collagen, which is a major part of NEM. Of the three nitrogen profiles,
pyrrolic nitrogen seems to be most effective for electrical and ionic conductivity owing to
the presence of more π-bonding, which promotes the movement of Li-ions and electrons.
Table 1 shows that NEM 700@LFP has the highest percentage of pyrrolic nitrogen, from
which it can also be expected to have the most efficient electrochemical performance.

The Nyquist plot displayed in Figure 4, derived from electrochemical impedance
spectroscopy (EIS) data, offers critical insights into the electrochemical behavior of bare LFP
and NEM@LFP. The Rs component, signifying electrolyte ohmic resistance, the semicircle
denoting charge transfer resistance (Rct), and the presence of slanting lines representing
the Warburg resistance of Li-ion diffusion collectively elucidate the intricate interfacial
processes within the electrodes. In Table 2, the remarkably low Rs and Rct values for
NEM 700@LFP, aligning with its highest pyrrolic nitrogen content (as indicated in Table 1),
underscore the pivotal role of nitrogen dopants. These dopants not only optimize the
charge transfer interfaces but also contribute to the creation of defects within the carbon
structure, enhancing disorder.
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fresh cells with fitting curves by using the inset equivalent circuit.

Table 2. The fitted parameters of bare LFP, NEM 600@LFP, NEM 700@LFP, and NEM 800@LFP, respectively.

Sample Code
Fitted Parameters

Rs (Ω) Rct (Ω)

Bare LFP 2.9 157.5
NEM 600@LFP 2.6 107
NEM 700@LFP 2.5 35.4
NEM 800@LFP 3.1 59.1

This disorder promotes efficient charge transfer kinetics, facilitating the rapid move-
ment of electrons and Li-ions. The synergistic effects of increased disorder and nitrogen
incorporation fostered by the nitrogen-doped carbon coating in NEM 700@LFP highlight a
dynamic interplay of factors that ultimately augment the efficiency of charge-transfer reac-
tions. These findings not only underscore the significance of nitrogen content in dictating
electrochemical performance but also illuminate the nuanced impact of carbon disorder,
providing valuable insights into the design principles of advanced electrode materials for
high-performance energy storage systems [43].

Between a potential range of 2.5 and 4.2 V, the electrochemical behaviors of bare LFP
and NEM 700@LFP were examined. Figure 5a shows the differential capacity vs. volt-
age curve for the first cycle of the two electrodes. The NEM 700@LFP exhibited sharp
redox peaks compared to the bare electrode within a voltage interval of approximately
0.076 V, whereas for bare LFP it was approximately 0.085 V. These results confirm that
the reversibility and kinetics of Li intercalation/deintercalation can be improved by coat-
ing with NEM. Figure 5b–c illustrate the galvanostatic profiles of the charge–discharge
curves measured at a 0.1 C current rate for bare LFP and NEM 700@LFP, respectively. Both
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materials demonstrate a plateau at around ~3.4 V, which corresponds to the two-phase
redox reaction involving LiFePO4 and FePO4. The NEM 700@LFP delivers a discharge
capacity of approximately 156.9 mAh g−1, which is higher than the discharge capacity of
132.4 mAh g−1 for bare LFP during the initial cycle. The enhanced discharge capacity of
NEM 700@LFP reveals the effective coating of nitrogen-doped carbon on the LFP. However,
after 50 cycles, the discharge capacities of NEM 700@LFP and bare LFP were obtained as
157.2 and 134.8 mAh g−1, respectively. Incorporating nitrogen into the carbon coatings
enhances both electronic and ionic conductivity by introducing additional charge carriers
and creating pathways for electrons and Li-ions, ensuring efficient charge and discharge
processes. Furthermore, these nitrogen dopants optimize the surface chemistry of LFP
particles, providing active sites for Li-ion adsorption and desorption, thus improving
electrochemical kinetics. Additionally, the nitrogen dopants contribute to the formation
of a stable solid-electrolyte interface (SEI) layer, minimizing electrolyte decomposition
and enhancing long-term cycling stability. Moreover, the facilitated Li-ion diffusion, fa-
cilitated by these nitrogen dopants, enables rapid movement of Li-ion between crystal
lattice sites, leading to high specific discharge capacities. Thus, compared to bare LFP, NEM
700@LFP was found to offer better electrochemical performance due to its nitrogen-doped
carbon coating.
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Figure 5. (a) The differential capacity vs. voltage curve for the first cycle of bare LFP and NEM
700@LFP, the galvanostatic potential profiles for (b) bare LFP, (c) NEM 700@LFP, and (d) cycling
performance profiles showing discharge capacity of bare LFP and NEM 700@LFP for 50 cycles
between the voltage window of 2.5 to 4.2 V at a current rate of 0.1 C.
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The results of the data-driven analysis are presented in Table 3 and Figure 6. The
discharge capacity estimation of NEM @LFP based on the trained NN models is presented
in Figure 6. Using transfer learning, the discharge capacity at a 0.1 C rate was predicted for
each synthesis temperature. Three NN models (NEM 600@LFP, NEM 700@LFP, and NEM
800@LFP) were trained, and those models showed that NEM 700@LFP would have the
highest capacity, which agrees with the findings of the chemical analysis. MAPE was kept
between 1% and 4% for all the experiments. The specific discharge capacities obtained from
our experimental analysis of the NEM 700@LFP material closely match the capacity values
estimated by the neural network NN models. This congruence between the experimental
data and the NN model predictions underscores the efficacy of transfer learning in accu-
rately estimating battery performance. The successful alignment of real-world data with
model predictions signifies a significant milestone in the field of battery technology. This
robust agreement not only confirms the reliability of our transfer learning approach but
also holds promising implications for practical applications. Accurate predictions derived
from transfer learning empower us to make informed decisions regarding the deployment
of batteries in various settings. By precisely estimating the battery’s performance, we
can optimize its utilization in specific applications where its characteristics align perfectly.
This precision ensures efficient resource utilization, cost-effectiveness, and sustainable
energy practices.

Table 3. Prediction performance of trained NN models for discharge capacity estimation.

NN Model MAE MAPE

Bare LFP 1.7895 0.0131
NEM 700@LFP 6.4702 0.0431
NEM 800@LFP 2.5696 0.0226
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4. Conclusions

The successful conversion of natural eggshell membrane, a biowaste, into a coating
additive material for energy storage was achieved. Through solid-state synthesis, biowaste-
derived nitrogen-doped carbon was coated on the surface of NEM 600@LFP, NEM 700@LFP,
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and NEM 800@LFP, consisting of pyridinic nitrogen, pyrrolic nitrogen, and oxidized pyri-
dinic nitrogen. NEM 700@LFP had the highest pyrrolic nitrogen content, which meant that
it also had the highest ionic and electrical conductivity. The EIS analysis also showed the
smallest Rct for NEM 700@LFP. In addition, when the capacity of the synthetic temperature
was predicted through data-driven analysis, the capacity at 700 ◦C was predicted to be the
highest. NEM 700@LFP also showed improved capacity and electrochemical performance
compared to its counterparts. The nitrogen-doped carbon coating layer promoted the
transportation of electrons and Li-ions between the electrolyte and electrode.
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