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Abstract: The values of the surface potentials of two sides of films of polyvinylidene fluoride, and
its copolymers with tetrafluoroethylene and hexafluoropropylene, were measured by the Kelvin
probe method. The microstructures of the chains in the surfaces on these sides were evaluated by
ATR IR spectroscopy. It was found that the observed surface potentials differed in the studied films.
Simultaneously, it was observed from the IR spectroscopy data that the microstructures of the chains
on both sides of the films also differed. It is concluded that the formation of the surface potential in
(self-polarized) ferroelectric polymers is controlled by the microstructure of the surface layer. The
reasons for the formation of a different microstructure on both sides of the films are suggested on the
basis of the general regularities of structure formation in flexible-chain crystallizing polymers.

Keywords: polymers; ferroelectric materials; microstructure; piezo force microscopy; self-polarization;
surface potential; biomedical; technology; scientific research; electricity

1. Introduction

The Kelvin probe force microscopy (KPFM) method of surface potential measurement
is widely used in the study of ferroelectric inorganic materials. The methodological and
experimental results are described in a number of papers [1–10]. It should be added to
the conclusions of these papers that the relaxation processes of the polarized domain
structure should take into account the noted surface potential [11]. In the case of polycrys-
tals, it is noted that grain boundaries play a special role in the formation of the surface
potential [12,13]. It is emphasized that the formed surface potential always consists of
polarization and surface charge [14–16]. The development of this method has allowed its
use in specific problems, such as the detection of graphite microchannels in diamonds [17],
and, in general, it is considered promising in electrochemistry [2]. Considerably less at-
tention is paid to the application of this method to the analysis of a relatively new class
of organic polymeric ferroelectrics, which, due to the specific properties of the condensed
state of chain molecules, have found application in a number of areas of engineering and
biomedicine [18–21]. The specificity of the noted materials comes down to the fact that,
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unlike inorganic ferroelectrics, the crystal phase (which is assumed to be the source of the
domains) accounts for only ~50% of the volume, while the rest of the volume is occupied
by the so-called amorphous phase. This is a special condition that may be related to the
“memory effect” in polymers [21,22]. The amorphous phase, having no long-range order at
room temperature, is in a liquid-like state, where the cooperative mobility of chains with
relaxation times of ~1 µs is realized [20]. Such a phase, having high dielectric susceptibility
and mechanical compliance, leads to a non-classical mechanism of the piezo effect, whereby
the main contribution is made by electrostriction and the “size effect” [18–20,23].

Self-polarized polymer films based on VDF and its copolymers are promising materials
with multifunctional responses. Obtaining self-polarized films can significantly optimize
the manufacturing processes of electronic devices. Materials based on VDF have excellent
mechanical properties, chemical stability, and biocompatibility, which make them suitable
materials for producing sensors, actuators, transducers, and nanogenerators [18]. Their
high chemical and thermal stabilities, and the proximity of the acoustic impedance value
to the value in the biological fluid, determine the prospects for their use as biomedical
materials. Devices based on such materials are used to detect human physiological signals,
in relation toelectrocardiograms, breath control, measuring body temperature, and pulse
waves. Copolymers in the form of films, fibers, porous membranes, and three-dimensional
porous frameworks are of great interest in the applications of tissue engineering for the
regeneration of bones, muscles, and nerves. Composite coatings of implants are made on
the basis of the VDF-TFE copolymers, which, due to their high osteoinductive properties
and ability to sorb stem cells, stimulate reparative osteogenesis [20].

As shown earlier, in the polymers considered at the synthesis stage, the intrachain
defects of the head-to-head (tail-to-tail) attachment of neighboring links appear in the
chains, which are registered using high-resolution NMR [24,25]. In addition, the presence
of oxygen-containing groups in the chains of these polymers has been observed [26]. These
noted chemical defects will prevent the crystallization of the chains (ideally with one-
dimensional long-range order) and should be displaced to the amorphous phase or even
to the surface [24,25]. In one of the few works wherein the KPFM method was used to
study thin ferroelectric polymer films [27] of small thickness, the sample was deposited
on the substrate by spin coating. Such a method of obtaining films, not only made of the
considered ferroelectrics but also made of other polymeric materials, immediately assumes
anisotropy in the properties of both surfaces. Indeed, the crystallization of the formed film
on the side of the substrate implies its contact with the substrate. The other side of the film,
meanwhile, is formed (due to solvent escape) in contact with air or another gas medium. It
is clear that the microstructure of both sides of the film must be different. This circumstance
should be taken into account when interpreting the subsequent measurements. In the
present work, this problem has been solved by studying a number of characteristics of
PVDF-based films obtained in the free state. In particular, surface potential values have
been measured on both sides of such films, which turned out not to be identical. The
capacitance involved in the measurement scheme also includes the capacitance formed by
the surface layer of the polymer. Therefore, the microstructures of both sides of the film
were analyzed using the ATR IR spectroscopy technique, in which the surface layer of the
film was probed. It was found that, in the case of different surface potentials of both sides
of a film, the microstructures of these surfaces were not identical either.

2. Materials and Methods

The objects of study were commercial films of PVDF and its copolymer with hexafluo-
ropropylene HFP, from the Arkema company (King of Prussia, PA, USA), the microstruc-
tures of which were investigated by high-resolution 19F NMR. The 19F NMR spectra of
solutions of VDF/HFP in acetone-d6 were recorded with H-decoupling at 303 K on a Bruker
Avance II spectrometer (Bruker Corporation, Karlsruhe, Germany) operating at a fluorine
frequency of 282.48 MHz. The 19F NMR chemical shifts were referenced externally to CFCl3
(0 ppm). In addition, the process was carried out on films of a copolymer of VDF with
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tetrafluoroethylene (TFE), which was characterized earlier [28]. X-ray diffraction patterns
were acquired with an EMPYREAN (PANalytical B.V.) diffractometer with Ni-filtered Cu
Kα-radiation in Bragg-Brentano geometry. The crystallite size lhkl in the direction normal
to the hkl plane was determined using the Debye–Scherer equation:

lc =
0.9kλ

cos θ
√

β2 − β2
et

, (1)

where k is the diffraction order, λ is the wavelength, and β and βet are the measured and
etalon peak full-widths at half-maximum.

ATR spectra were obtained on a VERTEX 70 (Bruker Corporation, Karlsruhe, Germany)
IR Fourier spectrometer in the range 4000–400 cm−1, using a PikeGladyATR single reflection
attachment (PIKE Technologies, Madison, WI, USA) with a diamond working element.
The spectra were corrected using the program included in the OPUS 7.0 software to take
into account the dependence of the penetration depth of radiation into the sample on
the wavelength. A surface polymer layer (0.5–2 µm thickness) was scanned. Absorption
spectra were measured on a TENZOR 37 IR Fourier spectrometer (Bruker Corporation,
Karlsruhe, Germany).

Topography and KPFM mappings of the polymer sample were carried out with a scan-
ning nanolaboratory Ntegra Prima (NT-MDT SI, Zelenograd, Russia) using an NSG10/Pt
(Tipsnano, Tallinn, Estonia) platinum conductive probe with a spring constant of 12 N/m.
For KPFM measurements, the probe scanned the surface topography using tapping mode
first and then a 1 V AC voltage was applied on the probe near its resonance frequency
(~180 kHz) to measure the sample’s surface potential distribution through a DC voltage
feedback loop. The scan rate was set to 0.5 Hz, and a lift scan height of approximately
50 nm was adopted. The topography and KPFM images were processed using the Gwyd-
dion 2.63 software.

3. Results

Previously [28], we studied the microstructure of a VDF/HFP copolymer containing
91.7/8.3 mol % VDF/HFP. The 19F NMR spectra of the copolymer studied in the present
work are similar to the spectra in [29] and demonstrate that the latter contains an even lower
amount of HFP units than the VDF/HFP 91.7/8.3 mol % copolymer (Figure 1). Indeed,
the calculation of the composition of the copolymer under consideration via the integrated
intensities of signals in the 19F NMR spectrum of a solution of VDF/HFP in acetone-d6
showed that the latter contained 95.5 and 4.5 mol % of VDF and HFP, respectively. Here, the
authors use the same nomenclature (taken from [29]) to describe the copolymer structure,
namely, 0, 1, 2, and 3. These numerals correspond to the numbers of fluorine atoms attached
to a carbon atom and denote CH2, CF, CF2, and CF3 groups, respectively. To distinguish
CF2 groups from VDF and HFP, 2 and 2 are used, respectively. Both comonomers (VDF
and HFP) are asymmetric, and this can add to the growing chain in two ways: either as 02
(normal unit) or 20 (reverse unit) for VDF, and either 21 (normal unit) or 12 for HFP. The
concentration of reverse units was calculated from 19F NMR spectra using the equations
reported in [29]. The results of the calculation for VDF/HFP 95.5/4.5 are presented in
Table 1.

Table 1. The results of NMR for VDF/HFP 95.5/4.5.

Monomer Unit Content, mol %

VDF normal 91.3

VDF reverse 4.2

HFP normal 4.2

HFP reverse 0.3
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Figure 1. CF2 range of the 19F NMR spectra of solutions of VDF/HFP copolymers of composition
91.8/8.3 and 95.5/4.5 in acetone-d6. The signals observed in the spectrum of PVDF homopolymer are
labeled with asterisks (*).

The forward addition mode of VDF units leads to the usual head-to-tail linkage and
produces 020202 sequences. By contrast, the reverse addition mode gives rise to the less
probable head-to-head linkages 0220 and 2002. For the PVDF polymer, the content of
reverse attachments has been estimated at ~5 mol %. Since the HFP units also contain
the CF2 group, the copolymerization of VDF with HFP can be thought of as a means for
introducing 22 additional defects. The contents of inverse linkages leading to 0220 and
2002 were estimated at 4.2 mol %. The most probable sequences of units in the VDF/HFP
95.5/4.5 mol % involving normally attached units like 0202022102020 contained 22 defects.
Thus, 22 was the most abundant defect in the copolymer chain. In addition, the introduction
of CF(CF3) fragments of HFP also led to the appearance of 0202210202 defects involving
side CF3 groups.

Figures 2–5 show the topographies and surface potential values on both sides of the
surfaces of all four films studied.

The analysis shows that the values of the surface potential in all films are different from
zero. Since the samples were not subjected to polarization beforehand, the authors believed
that self-polarization processes took place during their crystallization [30–33]. As shown in
Figures 2–5, the values of the surface potential on both sides of the films differ markedly, up
to the change of its sign. For polymeric ferroelectrics, such a fact has not been previously
noted by anyone, and therefore the details of the observed phenomenon were closely
observed. The practical use of the considered biocompatible materials in medicine [20]
also forced some authors to explore the mechanism of surface potential formation, which
can affect the vital activity of the body’s cells that are in contact with the film [21]. Since
the structure of the class of crystalline ferroelectric polymers (and, accordingly, domain)
considered essentially depends on the thermal prehistory of the crystallization process [34],
it is reasonable to give some structural characteristics of the investigated materials.

It is convenient to start with the VDF/TFE copolymer, the film spectrum for which is
presented in Figure 6. It shows that crystallization occurs predominantly in the β-phase
with planar zigzag conformation, although isomers with the conformation T3GT3G− (γ-
phase) and TGTG− (α-phase) are also present in some amount. It can be seen from the
inset to Figure 6 that the ratio of the intensities of the 470 and 490 cm–1 bands on both sides
of the film differs quite significantly. Such data are presented in more detail in Table 2.
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both sides of a vinylidene fluoride-tetrafluoroethylene copolymer film of composition 94/6.
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Table 2. Ratios of intensities of conformation-sensitive bands of ATR spectra and surface potential on
the 1 and 2 sides of the VDP-tetrafluoroethylene copolymer film of composition 94/6 crystallized in
β-phase.

Band, cm−1 442β/
430γ

470β/
490α

510β/
530α

1275β/
1235γ

Crystallinity Surface
Potential, V840cr/

905am

Ratio
side 1/

2
5.4/

4.8
0.87/

0.56
6.3/

6.1
0.9/

0.7
10.6/

12.9
0.4/

0.7

Therefore, in the case of the copolymer films under consideration, the ratios of in-
tensities and other conformationally sensitive absorption bands on both sides of the film
also differ. As could be seen from Figure 2 and the above table, the surface potentials on
these sides also differ. Such coregulation seems to us not accidental, and therefore research
has been carried out on three more types of films containing the considered ferroelectric
polymers. This seems appropriate for the following reason. As noted in our case, the sign
of the surface potential on both sides of the film is positive. On the other hand, the films
of copolymers of VDF with trifluoroethylene, which also crystallized in the polar phase,
always had a negative potential [27].

Figure 7 shows X-ray diffraction and ATR IR spectroscopy data for one side of the
Arkema PVDF film. From the presented data, it is evident that the above film crystallizes in
the nonpolar α-phase. The same conclusion can be derived from the data of IR-spectroscopy
(Figure 8). As can be seen in Figure 3 and Table 3, unlike the PVDF/TFE copolymer film,
the potential on both sides of the film was negative. This means that the sign of the surface
potential cannot be related only to the type of polymorphic modification of crystals in
the film. Irrespective of this circumstance, Table 3 shows that the ratios of intensities of
a number of characteristic bands for both sides of the film, as well as the values of their
surface potential, differ.
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Table 3. Ratios of intensity of conformation-sensitive bands of ATR spectra and surface potential on
sides 1 and 2 of PVDF films and their copolymers, crystallized in the phase.

Bands, cm−1 410α/
430ggn

2920/
3027

1720/
1750

1720/
1830

Crystallinity Surface
Potential, V765crα/

740am
975crα/

905am

PVDF Ratio
side 1/

2
2.7/

2.0
0.1/

0.04
1.9/

0.7
0.9/

0.7
5.1/

5.6
2.4/

2.6
− 2.1/

− 0.2

P(VDF-HFP)
side 1/

2
2.7/

2.3
0.6/

0.5
1.3/

0.9
0.3/

1.2
4.8/

5.6
1.9/

2.1
− 1.3/

0.2

Given the similar data obtained earlier on the copolymer of VDP with hexafluo-
ropropylene HFP of composition 92/8 [28], it is interesting to trace the features of the
observed regularities on the same copolymer, but with a different co-monomer ratio. For
this purpose, authors have used the Arkema copolymer VDF/HFP, whose microstructure
and component ratio we obtained from high-resolution 19F NMR data. From these data,
it can be observed that the above film contains 4 mol % HFP, and also crystallizes in the
nonpolar α-phase. For this conclusion, it is sufficient to compare Figures 7 and 9, where the
same reflexes are observed.
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4. Discussion

As noted above, the type of polymorphic modification of crystals does not determine
the sign of the surface potential of the film (Table 3). Indeed, for the VDP/HFP copolymer,
the sign of the potential on one side of the film is negative, while on the other side it is
positive. It could be thought that there are subtle details of the polymer structure that affect
the sign of the surface potential. The general equation for the electrostatic force acting
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between the cantilever (to which we applied only an alternating voltage of frequency ω)
and the charged surface of the polymer film is given below [4],

Fes = 1/2∆V2dC(z)/dz, (2)

where z is the normal direction with respect to the cantilever surface, and V, if we limit
ourselves to measuring only at the first harmonic, has the following form:

∆V = Vacsin ωt, (3)

The total capacitance C in Equation (2) could be written in the form of

Ctot = Cs + Cp + Cinj, (4)

where Cs—capacitance of the surface layer of the film with the charge on it, obtained
due to the self-polarization process, Cp—capacitance initiated by the polarization process,
and Cinj—capacitance resulting from the injection of carriers from the electrodes into
the polymer.

As noted in the studied case, the films were not pre-polarized, and therefore Cp = 0.
The amplitude of the alternating voltage Vac was 1 V, and therefore for films with a thickness
of 20–50 µm, the phenomena of carrier injection can be neglected. In this case Ctot = Cs;
therefore, for the interpretation of the data on the surface potential of both sides of the
film, it is possible to refer to the results of ATR IR spectroscopy for these sides. In this
case, the authors can associate the microstructure of the surface layer with the value of its
dielectric permittivity.

It should be recalled that the marked surface will contain a mixture of chain seg-
ments in different isomeric states. For PVDF and its copolymers, three conformations
are commonly referred to—(1) planar zigzag, (2) TGTG− and (3) T3GT3G−—which are
characteristic of β- (polar cell), α- (non-polar cell) and γ-phase (polar cell) crystals, respec-
tively [18–20]. In the IR spectra of the considered polymers, we can also identify bands
that are responsible for the amorphous phase: 600, 740 and 905 cm−1. This is an important
remark, since its chains at room temperature are in a liquid-like state, where the dielectric
permittivity is quite high.

In view of the above, it is possible to refer once again to Table 2, which shows com-
parative data for a number of absorption bands of the VDF/TFE copolymer film. It shows
that the increase in the proportion of β-phase isomers relative to those in the γ- or α-phase
for different sides of the film is accompanied by a decrease in the surface potential. From
the point of view of the previously mentioned, this can be explained by the fact that the
transverse component of the dipole moment of the link in the planar zigzag conformation
is higher than those for the TGTG− and T3GT3G− conformations. Due to this, the dielectric
constants of the layers (and as a consequence, the capacitance) on different sides of the film
are unequal, which leads to the difference in their surface potentials (Table 2). The reasons
for this may be related to the non-identical crystallization conditions of both sides of the
film [34] during its forming.

It could be seen from the second column of Table 3 that for PVDF and its copolymer
with HFP films, the change in the ratios of rotational isomers in their surface will also
affect the value of the surface potential. From the same table, one could infer that there
are additional factors that can affect the capacitance of the polymer surface layer. The
inset to Figure 8 shows the region of the spectrum where PVDF has no intrinsic absorp-
tion bands [18–20]. The highlighted absorption bands are associated with the presence of
chemical defects in the polymer chains in the form of a small number of oxygen-containing
(carbonyl or carboxyl) groups [26]. Such groups, without long-range order, reduce the
packing density of chains in the surface layer, changing the dielectric constant and, ac-
cordingly, its capacitance. It was shown earlier that such defects are displaced into the
surface during film crystallization, the chemical composition of which was controlled by
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X-ray photoelectron spectroscopy [26]. Another type of intrachain defect in the polymers
under consideration is the head-to-head (tail-to-tail) attachment of neighboring links. Their
tendency towards aggregation and displacement into the surface was found earlier on a
number of VDF copolymers [24,25]. This was proven by the fact that a second doublet
appeared in the ATR spectra in the region of valence vibrations of methylene groups, for
which the frequency position (2850 and 2920 cm−1) coincided with that of polyethylene [24].
It was proposed to consider the relative fraction of such defects in the surface via the ratios
of the intensities of the 2920/3024 cm−1 antisymmetric vibration bands. Such ratios for
the two objects of study are summarized in Table 2. Data on the VDF/HFP copolymer of
composition 92/8 have been published previously [28], and therefore, it seems reasonable
to compare some structural characteristics of this copolymer with those of the polymers
considered in this work, which also crystallize in the nonpolar α-phase.

The inset to Figure 10 shows an example of the separation of overlapping reflections,
from which the crystallinity χ of the films was calculated. Its variation with the fraction of
HFP in the copolymer is shown in Table 4. It decreased naturally with the increasing content
of the marked co-monomer. The crystal sizes along different directions were calculated
from the half-width of the separated reflections according to Equation (1). It follows from
Table 3 that these sizes also decrease with an increase in the fraction of HFP.
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Figure 10. Comparison of X-ray diffraction curves for PVDF films, VDF/HFP copolymer of compo-
sition 96/4 and VDF/HFP copolymer of composition 92/8; the inset is an example of splitting the
curve of the VDF/HFP copolymer of composition 96/4 into components for the calculation of the
X-ray degree of crystallinity.

The structure of peak–halo could be inferred from the angular position of 2θ~16 degrees,
which is often attributed to the amorphous phase. The noted peak–halo is observed
on a number of other copolymers of HDF, for example with tetrafluoroethylene TFE or
trifluoroethylene TrFE [24], which crystallize in the polar β-phase. Temperature X-ray
diffraction images show that it should be attributed to the presence of residuals of a
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metastable (at room temperature, which is significantly below the Curie point) paraelectric
phase. This can arise due to the manifestation of memory effects in the polymer melt or
solution during the crystallization of the film under conditions of high supercooling [21,22].
For the considered copolymers, the noted peak-halo is observed at 2θ~18, i.e., the para-
electric phase has less dense packing than the ferroelectric crystal [18–20].

Table 4. Comparison of crystal sizes (lhkl), crystallinity χ and intensity ratio of D2920/D3024 absorption
bands in PVDF copolymer P(VDF-HFP) films of different compositions.

Copolymer
lc Crystal, nm

lhalo, nm χ D2920
/

D3024l100 l020 l110

PVDF 17 26 22 3 0.49 0.1

P(VDF-HFP) 96-4 13 25 20 3 0.47 0.6

P(VDF-HFP) 92-8 7 23 16 4 0.40 4.2

Since the considered copolymers crystallize mainly in the nonpolar α-phase, the peak–
halo with an angular position of 2θ~16 degrees (Figure 10) cannot be formally attributed
to the paraelectric phase, since there is no “classical” ferroelectric β-phase. The specific
structures of the polymers under consideration and the presence of kink-defect movements
along the c-crystal axis in the α-phase create the possibility of forming domains in it as well,
as recorded earlier by piezo-force microscopy [35]. The data of [36] also agree with this
conclusion. Therein, the hysteresis curves on PVDF films crystallized in nonpolar α-phase
were also observed using the classical method (Sawyer–Tower scheme). In this regard,
the reflex halo with an angular position of 2θ~16 (Figure 10) can also be attributed to the
manifestation of the paraelectric phase, since in it the packing density is lower than in the
α-phase crystal. Separately, it should be emphasized that in VDF-HFP copolymers, the
observed halo appears to be shifted by about two degrees towards small angles compared
to VDF–TrFE copolymers [24]. This means that the packing density in the marked phase of
the VDF–HFP copolymer appears to be lower than that of the latter copolymers. This could
be explained by fact that the HFP group contains the -C-F3 bond, which for steric reasons
prevents the dense packing of chains.

Figure 11 shows what changes in the structure of the considered phase as the HFP
content in the considered copolymers increases. It can be seen that the increase in the
proportion of HFP in the copolymer changes the ratio of intensities of characteristic bands
2920 and 3024 cm−1 This is quantitatively reflected in Table 4. As noted above, the ratio
of intensities of the above bands can characterize the proportion of head-to-head defects
in the film surface. It is evident from Table 4 that this should be the maximum for films
of VDF/HFP copolymer of composition 92/8. This may be one of the reasons for the
observed positive surface potential in such a film. Since in these films the share of regions
with loose packing is the largest (Figure 10), it should be concluded that in less perfect
crystals, favorable conditions are created for the escape of these defects into the surface.
This chemical bonding defect contains two adjacent C–H bonds, wherein a positive charge
is localized on the protons, since the electron density must shift to carbon. Perhaps this is
one of the reasons for the observed positive surface potential in such a film [24]. At the
same time, it can be noted that in such a copolymer, the proportions of areas with loose
packaging are the largest (Figure 10). Therefore, it should be concluded that in this case,
these defects should be displaced in the surface.
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5. Conclusions

The influence of various factors on the formation of the surface potential of self-
polarizing films is discussed via the example of a number of HDF copolymers. The problem
of domain structure formation in the case of films crystallized in the nonpolar α-phase,
which is poorly covered in the literature, is touched upon. In this connection, the question
of the presence in the films under consideration at room temperature (much below the
Curie point) of metastable paraelectric phase residues is raised. The physical prerequisites
for this are memory effects in the melt or solution of the polymer, when the film is formed.
It was found that the introduction into the PVDF chain of the HFP co-monomer with large
steric hindrances during crystallization leads to the formation of a less densely packed
paraelectric phase, and IR spectroscopy data show that this is accompanied by an increase
in the probability of intrachain “head-to-head (tail-to-tail)” defects exiting to the surface.
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