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Abstract: With the existing pressure sensors, it is difficult to achieve the unification of wide pressure
response range and high sensitivity. Furthermore, the preparation of pressure sensors with excellent
performance for sleep health monitoring has become a research difficulty. In this paper, based on
material and microstructure synergistic enhancement mechanism, a hybrid pressure sensor (HPS)
integrating triboelectric pressure sensor (TPS) and piezoelectric pressure sensor (PPS) is proposed.
For the TPS, a simple, low-cost, and structurally controllable microstructure preparation method is
proposed in order to investigate the effect of carbon nano-onions (CNOs) and hierarchical composite
microstructures on the electrical properties of CNOs@Ecoflex. The PPS is used to broaden the
pressure response range and reduce the pressure detection limit of HPS. It has been experimentally
demonstrated that the HPS has a high sensitivity of 2.46 V/104 Pa (50–600 kPa) and a wide response
range of up to 1200 kPa. Moreover, the HPS has a low detection limit (10 kPa), a high stability (over
100,000 cycles), and a fast response time. The sleep monitoring system constructed based on HPS
shows remarkable performance in breathing state recognition and sleeping posture supervisory
control, which will exhibit enormous potential in areas such as sleep health monitoring and potential
disease prediction.

Keywords: hybrid pressure sensor; CNOs@Ecoflex; hierarchical composite microstructure;
synergistic enhancement mechanism; multi-parameter sleep monitoring

1. Introduction

Sleep is an extremely vital physiological function that sustains human lives, among
which adequate sleep plays a more essential role in enhancing learning ability, promoting
physical and mental health, preventing chronic diseases, and most importantly, improv-
ing the quality of life [1,2]. However, with the accelerating pace of life and changing
lifestyles, staying up late and insomnia [3] have become a norm, especially for particular
groups of people. For the purpose of providing a sound and appropriate living envi-
ronment, sleep monitoring is crucial. At present, the most mainstream means of sleep
monitoring is polysomnography [4], but its shortcomings like high cost, time-consuming
nature, and complicated process limit its further promotion. In recent years, researchers
have devoted themselves to studying pressure sensors based on different mechanisms,
such as magnetic [5–7], triboelectric [8–11], piezoelectric [12–14], piezoresistive [15,16], or
capacitive [17,18], which have demonstrated tremendous potential in the field of sleep
monitoring [8,12,19–23]. T. Uchiyama et al. have developed sensitive micromagnetic sen-
sors based on magneto-impedance effect in amorphous wires, and they can monitor sleep
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through magnetoencephalography [7]. Lin Zhiming et al. reported a pressure-sensitive,
large-scale, and washable smart textile based on triboelectric nanogenerator (TENG) array
as bedsheet for real-time and self-powered sleep behavior monitoring [8]. Peng Min et al.
designed a sleep biosignals detection system based on low-cost piezoelectric ceramic sen-
sors. Under the action of the dynamic smoothing algorithm, piezoelectric ceramic sensors
can be used for respiratory rate and heart rate detection with high accuracy [12].

An ideal pressure sensor has performance indicators with high sensitivity and a wide
pressure response range. However, the high sensitivity of existing pressure sensors can
only be maintained over a limited pressure response range. Lou et al. report the fabrication
of a self-assembled 3D films platform for the first time [24]. The modular assembly of
the rGO-encapsulated P(VDF-TrFe) nanofibers led to the fabrication of a highly sensitive
pressure sensor (15.6kPa−1), but its pressure response range was only 1.2 Pa–55 kPa. Yang
et al. prepared a pressure sensor based on an air-capsule TENG consisting of activated
carbon/polyurethane and microsphere array electrodes, which has a pressure response
range up to 7.27 MPa, but it is not outstanding in terms of sensitivity [25]. Hence, it is
an enormous challenge to achieve the unification of high sensitivity and a wide pressure
response range.

Preparation of microstructured functional layers is a critical factor in solving the
above problems, and functional layer modification and microstructure preparation together
determine the performance of pressure sensors [26,27]. The addition of functional fillers to
the polymer matrix, which currently consist of nanoparticle fillers [28,29], liquid metals [30],
and ionic liquids [31], is considered to be the most significant approach to functional layer
modification. And the exploration of the type and content of functional fillers in the
polymer matrix is essential for the electrical output of the functional layer. In addition,
the fabrication methods of microstructures mainly include photolithographic template
method [32,33], natural template method [34,35], 3D printing method [36–38], and so
on. Despite the great progress in the research of microstructure preparation [34,39,40],
there are still deficiencies in process complexity, manufacturing cost, and microstructure
controllability. In view of this, the development of a simple, convenient, low-cost, and
structurally controllable microstructure fabrication process is also imminent.

In this study, a strategy based on a synergistic material and microstructure enhance-
ment mechanism is proposed for realizing the unification of high sensitivity with a wide
pressure response range in a hybrid pressure sensor (HPS). Triboelectric pressure sensors
(TPS) play an important role, and a butterfly mechanism designed using bionic strate-
gies lays the foundation for the operation of TPS. The Ecoflex matrix was modified by
adding carbon nano-onions (CNOs), and a simple, convenient, low-cost, and structurally
controllable fabrication process was proposed for the preparation of CNOs@Ecoflex with
hierarchical composite microstructures. In addition, the effect of material and microstruc-
ture synergies on the electrical properties of CNOs@Ecoflex was also investigated. The
piezoelectric pressure sensor (PPS) is used to sense the weak external pressure and reduce
the detection limit of the HPS. Finally, the TPS and the PPS are integrated into a structurally
stable all-in-one device. The experiment shows that the HPS not only realizes the unity of
high sensitivity and wide pressure response range, but also has fast response time, low
detection limit, and high stability. The sleep monitoring system constructed based on HPS
can be used for the acquisition of various health parameters such as respiratory status and
sleeping posture, which provide scientific data support for medical diagnosis and will play
an important role in the field of sleep health monitoring.

2. Experimental Section
2.1. Fabrication of the CNOs@Ecoflex

Preparation of hierarchical composite microstructured CNOs@Ecoflex films: In the
first step, a mold with a prismatic structure on the surface is prepared using 3D printing.
In the second step, a layer of conductive fabric is attached to the prismatic structure of
the mold. In the third step, Ecoflex component A and CNOs are added to the beaker
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in a certain proportion and stirred with an electric mixer for about 3–5 h. Thereafter,
Ecoflex component B is added and continued to be stirred for a period of time to form
a mixed solution. In the fourth step, the mixed solution is poured into the pre-prepared
molds and peeled off after one day of standing in a room temperature environment, at
which time the hierarchical composite microstructured CNOs@Ecoflex film is prepared.
In the fifth step, completed CNOs@Ecoflex is cut into a circular shape with a diameter of
1.2 cm as the negative electrode material for TENG. The detailed preparation procedure
for hierarchical composite microstructured CNOs@Ecoflex is shown in the Supporting
Information (Figure S1).

2.2. Fabrication of the HPS

HPS consists of a press mechanism, a circular connector, a butterfly mechanism, a
conductive fiber, a CNOs@Ecoflex film, a BTO@Ecoflex film, and a baseplate mechanism.
The press mechanism, the circular connector, and the baseplate mechanism are made
using 3D printing technology. Firstly, the conductive fiber is pasted on the bottom of the
press mechanism as the friction positive electrode layer of TENG, and the BTO@Ecoflex is
mounted on the bottom of the four support beams of the butterfly mechanism, and then
the butterfly mechanism is placed in the groove on the bottom of the press mechanism,
which is used for fixing the butterfly mechanism so that it can only move up and down.
Secondly, a layer of double-sided conductive fibers is pasted on the upper side of the
circular protrusion in the bottom plate mechanism, and CNOs@Ecoflex is pasted on the
other side of the double-sided conductive fiber as the friction negative electrode layer of
TENG. Finally, the press mechanism and the baseplate mechanism are encapsulated by
circular connectors to make a closed body. Detailed preparation of BTO@Ecoflex is shown
in the Supporting Information (Figure S2).

2.3. Characterization and Measurement

The surface morphology of CNOs@Ecoflex and CNOs was characterized with scanning
electron microscope (SEM, TESCAN MIRA LMS, TESCAN, Brno, Czech Republic). The
crystal structures of Ecoflex and CNOs@Ecoflex were tested using X-ray Diffractometer
(XRD, X’Pert PRO MPD). The constituent elements and chemical bonds of CNOs@Ecoflex
were analyzed with X-ray Photoelectron Spectroscopy (XPS, Thermo Scientific K-Alpha,
Thermo Fisher Scientific, Waltham, MA, USA). The molecular structure and chemical
bonding composition of Ecoflex and CNOs@Ecoflex were tested with a Fourier Transform
Infrared Spectrometer (FTIR, Thermo Scientific Nicolet iS20, Thermo Fisher Scientific,
Waltham, MA, USA). The types and relative contents of elements in CNOs@Ecoflex were
characterized with an X-ray Energy Dispersive Spectrometer (EDS). Output voltages were
measured using a digital oscilloscope (Tektronix MSO2024B, Tektronix, Beaverton, OR,
USA), and output currents were measured using a noise voltage preamplifier (Keithley
6514 system electrometer, Keithley, Cleveland, OH, USA). The potential distribution of
the TENG was simulated using COMSOL 5.6, and the forces on the butterfly mechanism
during operation were simulated using ANSYS 2023.

2.4. Statistical Analysis

Voltage and current data are preprocessed to reject outliers. Mean square error is
used to detect outliers, and if the voltage or current data at a point exceeds three times
the standard deviation, those points are defined as outliers. If there are missing values or
outliers in a set of data, the set is discarded.

3. Results and Discussion
3.1. Structure and Fabrication of the HPS

Figure 1a illustrates the structure of HPS, which consists of a TPS and a PPS. TPS
is based on the coupling effect of friction electricity and electrostatic induction, which
consists of two kinds of friction materials with opposite polarity, and it largely determines
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the sensing performance of HPS. PPS is based on the pressure-sensitive effect, which can
realize the conversion between mechanical energy and electrical energy. It is used as a
complement to HPS to sense the external weak signals.
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Figure 1. Structure of HPS. (a) Schematic of HPS. (b) Hierarchical composite microstructure prepara-
tion. (c) Photograph of the CNOs@Ecoflex. (d) Photograph of the butterfly mechanism. (e) Photo-
graph of HPS.

The positive and negative materials of the friction layer in TENG consist of conductive
fabrics and CNOs@Ecoflex, respectively. In order to characterize the HPS with both wide
pressure response range and high sensitivity, the friction layer was improved as follows.
On the one hand, CNOs were chosen as the functional filler material, and their layered
structures provide more effective interfaces and increase the efficiency of charge separation.
This design enables them to withstand long time, high frequency friction, high durability,
and stability. On the other hand, a simple, convenient, low-cost, and structurally control-
lable microstructure preparation method was proposed using 3D printing technology in
combination with the natural template method, as shown in Figure 1b. A groove structure
with a prismatic shape was fabricated using 3D printing technology, and subsequently con-
ductive fiber with a fibrous structure was pasted into the grooves, and finally, a hierarchical
composite microstructure mold with a prismatic-fibrous shape was prepared. Figure 1c
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shows a photograph of CNOs@Ecoflex, and the preparation of CNOs@Ecoflex is described
in the Supporting Information (Figure S1) and experiments section.

Based on the bionic strategy, the butterfly mechanism with a spring-like structure
is designed. The butterfly mechanism is injection molded with flexible plastic, which
has better elastic deformation and fatigue life, providing an important guarantee of the
contact-separation TENG operation. When HPS is subjected to externally pressure, the
pressing mechanism can only move vertically downward under the restriction of the
circular connector. At this time, the butterfly mechanism deforms under the action of
the press mechanism, and when the external force is released, the butterfly mechanism
returns to its original shape. Figure 1d illustrates a photograph of the butterfly mechanism.
Figure 1e shows a photograph of HPS, which is a fully encapsulated all-in-one structure
with a high degree of structural stability that helps to adapt to a variety of operating
environments. The structures and photographs of the various structural parts of HPS in
the Supporting Information (Figure S3).

Figure 2a represents the SEM image of CNOs, and it can be seen that CNOs present
a multilayer structure with high specific surface area and large pore size distribution.
Figure 2b,c represent the surface and cross-section microstructures of CNOs@Ecoflex,
respectively. It can be seen from the surface image that the surface of CNOs@Ecoflex has a
fiber-like structure, and from the cross-section image that CNOs@Ecoflex has a prismatic
structure. The composition of CNOs@Ecoflex is analyzed with EDS, and Figure 2d shows
that the major elements of CNOs@Ecoflex are C, O, and Si. In Figure 2e–g, CNOs are
evenly distributed throughout the Ecoflex matrix. The XPS image (Figure 2h) is able to
further confirm the presence of only C, O, and Si elements in CNOs@Ecoflex. As shown in
Figure 2i, CNOs@Ecoflex showed obvious D and G peaks near 1350 cm−1 and 1580 cm−1.
The D peak indicates the vibration caused by defects or impurities present in the CNOs,
and the G peak indicates the vibration of sp2-hybridized carbon atoms in the CNOs. As
shown in Figure 2j, there was no obvious characteristic peak of CNOs at 2θ = 25.56◦ for
CNOs@Ecoflex, indicating that CNOs did not form large CNOs agglomerates in the Ecoflex
matrix. In Figure 2k, the FTIR spectra of Ecoflex and CNOs@Ecoflex do not exhibit large
shifts, and CNOs@Ecoflex does not produce strong new peaks, suggesting that there is no
formation of new chemical bonds between Ecoflex and CNOs@Ecoflex, partly because of
the low doping content of CNOs, and partly because the content of CNOs has no effect on
the chemical structure of CNOs@Ecoflex.

3.2. Working Principle and Performance Characterization of the HPS

Figure 3a depicts the working principle of HPS, which contains two parts: the force
analysis of the butterfly mechanism (Video S1) and the friction layer charge transfer mech-
anism. The operating mode of TENG is the contact-separation mode, and the butterfly
mechanism is the basis for ensuring the successful operation of the contact-separation
mode. When external pressure is applied to the HPS (Stage I), the butterfly mechanism
deforms, and the surfaces of the friction layers come into contact with each other. Due to
the triboelectric effect, a charge transfer occurs between the two materials at the contact
area. The electrons on the surface of the conductive fiber are transferred to the surface of
the CNOs@Ecoflex, so that the surface of the conductive fiber is positively charged and the
surface of the CNOs@Ecoflex is negatively charged. When the external pressure on the
HPS is gradually released (Stage II), the two friction layers of the HPS are in the separation
stage due to the ability of the disc mechanism to automatically recover deformation, and a
potential difference is formed between the two electrodes. When the external pressure on
the HPS is completely released (stage III), the two friction layers of the HPS are separated
to the maximum distance, and the open-circuit voltage reaches the saturation value. When
a downward pressure is again applied to the HPS from the outside (Stage IV), the distance
between the two friction layers of the HPS becomes smaller again, the potential difference
between the two electrodes begins to decrease gradually, and the open-circuit voltage
begins to decrease gradually. When the two friction layers of HPS are in complete contact
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with the external pressure, the open-circuit voltage decreases to zero. Figure 3b shows
the simulation of the electric potential distribution when the friction layers are at different
distances using COMSOL Multiphysics software.
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Figure 4a shows the structure of the butterfly mechanism, and the angle between the
“wings” of the butterfly mechanism and the vertical direction is θ. θ has an important influ-
ence on the mechanical properties of the butterfly mechanism. The relationship between θ
and the maximum pressure on the butterfly mechanism, the maximum deformation of the
butterfly mechanism, and the fatigue life of the butterfly mechanism is mainly investigated,
and the results are shown in Figure 4b. The smaller the θ, the lower the maximum pressure
on the butterfly mechanism placed under during operation, which means it will have a
longer working life. However, the contact-separation distance of the TENG friction layer
becomes smaller, which seriously affects its electrical output performance. Compression
cycle experiments were carried out on the butterfly mechanism with different θ, and the
number of compressions was 100,000. The results showed that the deformation of the but-
terfly mechanism with 30◦~45◦ was 0.3%, which means that it has a significantly excellent
fatigue life. In summary, the θ of the butterfly mechanism is chosen to be 45◦. This ensures
the electrical output performance of the HPS and provides itself with a good fatigue life. A
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detailed experimental description of the mechanical properties of the butterfly mechanism
can be found in the Supporting Information (Figures S4–S6).
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butterfly mechanism. (b) Mechanical properties of the butterfly mechanism. (c) Dielectric constant,
dielectric loss of Ecoflex and CNOs@Ecoflex. (d) Electrical output properties of CNOs@Ecoflex.
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In order to evaluate the effect of different contents of CNOs on the performance of
CNOs@Ecoflex, an electrical experimental platform was built to test the electrical prop-
erties of CNOs@Ecoflex. Figure 4c shows the dielectric constant and dielectric loss of
CNOs@Ecoflex. Compared with Ecoflex, the dielectric constant of the CNOs@Ecoflex in-
creased from 1.68 to 18.06. This phenomenon is attributed to the high electrical conductivity
and surface area of the CNOs, which can improve the conductive properties and charge
transfer capability of Ecoflex, ultimately increasing the dielectric constant of CNOs@Ecoflex.
As shown in Figure 4d, the VOC (≈98.73 V) and ISC (≈4.42 µA) of CNOs@Ecoflex with 5%
CNOs content are enhanced by a factor of 1.83 and 2.04, respectively, compared with Ecoflex.
The electrical enhancement effect can be obtained using the following equation [41,42]:

σ =
Vεriε0

di
(1)

where σ is the surface charge density, V is the potential difference between the two elec-
trodes, ε0 is the vacuum dielectric constant, and di and εri are the thickness and dielectric
constant of the dielectric material between the electrodes, respectively. From this equation,
the maximum transferred charge density increases with the increase in dielectric constant,
and the increase in surface charge density ultimately enhances the electrical output of
CNOs@Ecoflex. However, CNOs are rigid nanofillers, and too high a proportion of CNOs
filling in Ecoflex tends to cause the phenomenon of regional aggregation [43,44], which
increases the interaction force between particles. The regional aggregation will reduce the
mechanical and electrical properties of CNOs@Ecoflex, thereby weakening the interfacial
bonding [45]. Therefore, the electrical performance of CNOs@Ecoflex are reduced after the
CNOs content exceeds 5%.

The preparation of different microstructures has proven to be an effective means of
improving the sensing performance of devices [46]. As shown in Figure 4e, the electrical
output of four different microstructures of CNOs@Ecoflex is compared. The SEM image
provides insight into the four different microstructures, with the hierarchical composite
microstructure being a combination of two single microstructures. It can be seen that the
CNOs@Ecoflex with hierarchical composite microstructures prepared in this paper has the
best electrical output performance compared to CNOs@Ecoflex with no microstructure
and with a single microstructure, and the VOC and ISC are enhanced by factors of 1.52 and
1.29, respectively, and the enhancement of the electrical performance of the CNOs@Ecoflex
provides a significant improvement in the sensing performance of the device.

Pressure response range refers to the range of pressure intervals over which a pressure
sensor can operate stably. Depending on the response range of the device, the sensor can
be used in various applications. Sensitivity is one of the most important performance
parameters of pressure sensors and is also closely related to the pressure response range.
As shown in Figure 5a–d, the pressure response range of HPS is 10–1200 kPa (1–120 N), and
the minimum pressure detection limit is 10 kPa (1 N). The voltage sensitivity of the HPS
was 0.566 V/104 Pa (0.566 V/N) at 10 to 50 kPa (region 1), 2.46 V/104 Pa (2.46 V/N) at 50
to 600 kPa (region 2), and 0.61 V/104 Pa (0.61 V/N) at 600 to 1200 kPa (region 3). HPS has a
voltage linearity of 0.997 over the range of 10 to 50 kPa (region 1); 0.992 over the range of
50 to 600 kPa (region 2); and 0.981 over the range of 600 to 1200 kPa (region 3).

Figure 5e shows the output voltage of HPS at a working frequency of 1–3 Hz (the
frequency and force are constant), and the response times of HPS at frequency of 1–3 Hz
are 107, 66, 48, 39, and 32 ms, which are able to adapt to the environment of different
frequencies. Stability is the change in sensing performance of a pressure sensor under
conditions of extended operation. It is an important parameter for evaluating whether the
device can be used in practical applications for a long time and multiple cycles. As shown
in Figure 5f, durability experiments have been conducted on HPS, and the VOC and the
ISC are intercepted after 100,000 times of continuous working. The results show that HPS
does not change significantly after a long period of time, which proves that HPS has high
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durability and stability. Therefore, the high intensity and long-term working conditions do
not lead to the degradation of the sensing performance of HPS.
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In conclusion, HPS designed in this paper is a pressure sensor with excellent overall
performance, which may be attributed to the following factors: (1) the synergistic effect of
TPS and PPS, (2) CNOs and hierarchical composite microstructures synergistic enhance-
ment mechanism, and (3) the butterfly mechanism with good elastic deformation and
fatigue life constructed based on bionic strategies. Table 1 shows the performance compar-
ison between HPS and previous studies. As shown in Table 1, HPS has a wide pressure
measurement range compared to Refs. [21,22,43,45]. HPS has high sensitivity compared to
Refs. [22,43–45]. HPS has a low detection limit compared to Refs. [44,45].
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Table 1. Comprehensive comparison of pressure sensors based on different mechanisms.

Sensor
Mechanism Sensitive Material Pressure

Response Range Limit of Detection Sensitivity References

Triboelectric Sensors P(VDF-TrFe) and
rGO 1.2 Pa–55 kPa 1.2 Pa 15.6 kPa−1 [24]

Triboelectric Sensors Arbon and
polyurethane Up to 7.27 MPa - 0.2 V/N [25]

Triboelectric Sensors Elastomer and
ionic hydrogel 1.3–101.2 kPa 1.3 kPa 0.013 kPa−1 [47]

Piezoelectric Sensor PVDF and BTO 12–243 N 12 N 0.775 V/N [48]
Piezoelectric Sensor BTO 5–50 N 5 N 0.05 V/N [49]

Hybrid Sensor CNOs and Ecoflex 10–1200 kPa
(1–120 N) 10 kPa (1 N) 0.246 kPa−1/

2.46 V/N
This work

3.3. Application of HPS in the Field of Sleep Monitoring

With our lifestyle change, the average amount of sleep people get is decreasing year
by year, and the quality of sleep is getting worse. As shown in Figure 6a, deterioration in
sleep quality will cause great harm to the physical and mental health of human beings,
and there is an urgent need for sleep monitoring in this group. However, traditional
monitoring means have the disadvantages of high price, cumbersome process, and poor
portability, which seriously limit the popularity of sleep monitoring means. Based on the
above analysis, a low-cost, easy-to-operate, and portable multi-parameter sleep monitoring
system is designed in Figure 6b, where the array-dispersed HPS can not only sense the pre-
breathing situation under different sleep conditions, but also record the sleeping posture
during sleep in real time. The collected sleep parameter information can be processed and
displayed through a visual interface (Figure 6c) to scientifically analyze the human sleep
condition and predict possible human health problems. In addition, the biocompatibility of
HPS is also discussed, and detailed information is provided in the Supporting Information
(Figure S7).

During sleep breathing, the human shoulder usually experiences some degree of
movement. As shown in Figure 7a, during inspiration, the volume of the thoracic cavity
increases due to thoracic expansion and diaphragmatic contraction, at which point there
is a rising action of the shoulders. During exhalation, the volume of the thoracic cavity
decreases, and a descending movement of the shoulders occurs. Based on the above
phenomena, the pressure situation of the shoulders is measured to reflect the breathing
situation in different sleep conditions. Figure 7b shows the breathing curves under four
different sleep conditions, where shallow breathing has the fastest respiratory rate and
deep breathing has the largest respiratory amplitude. The collected curves were recognized
by an improved VGG network model, and the schematic diagram of the improved VGG
network model is shown in Figure 7c. Figure 7d shows the accuracy and loss values of
the improved VGG network model during training, and the accuracy of the improved
VGG network model for system identification was stable at 100% after the third round of
training. Finally, the prediction samples are input to the improved VGG network model,
and the prediction results are shown in Figure 7e. The improved VGG network model can
effectively discriminate between the four different sleep breathing behaviors with 100%
accuracy (Video S2). Detailed information on the prediction process is provided in the
Supporting Information (Figure S8).
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Sleep posture is an important parameter for human sleep quality assessment, and
sleep posture monitoring can not only help people better understand their sleep habits
and sleep quality, but also improve their sleep experience and health by adjusting their
sleep posture. As shown in Figure 8a, there are five common sleeping postures including
supine, left recumbent, right recumbent, prone, and curl up. When the human body is
in different sleeping postures, there are obvious differences in the pressure of the head
and shoulders on the pillow and mattress. As shown in Figure 8b, the pressure values
of the arrayed HPSs were varied in different sleeping postures, and different sleeping
postures could be accurately distinguished by the pressure values of each HPS (Video S3).
In addition, the volunteers were monitored for up to 3 h of sleeping posture, and the results
are shown in Figure 8c. The volunteers rolled over six times during the sleep period, with
the supine being the longest, accounting for 63% of the total sleep time. In addition, a
detailed comparison of the sleep monitoring system designed in this work with existing
sleep monitoring systems was made, and the results of this comparison are provided in the
Supporting Information (Table S1).
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4. Conclusions

In conclusion, this work proposes a hybrid pressure sensor with CNOs and hierarchi-
cal composite microstructure synergistic enhancement mechanism for multi-parametric
human health sleep monitoring. It integrates the TPS and the PPS. On the one hand, for
the TPS, the butterfly mechanism constructed based on the bionics strategy has strong
elastic deformation and fatigue life. A simple, low-cost, and structurally controllable mi-
crostructure preparation method is also proposed. Under the synergistic effect of CNOs
and hierarchical composite microstructures, the prepared CNOs@Ecoflex film exhibits
excellent electrical properties, and its VOC and ISC are increased by 2.796 and 2.631 times,
respectively. On the other hand, the PPS, as a complement to the TPS, not only broadens the
pressure corresponding range, but also reduces the pressure detection limit. Experiments
have shown that HPS has a high sensitivity of 2.46 V/104 Pa (50–600 kPa) and a wide
detection range of up to 1200 kPa, with a minimum detection limit of 10 kPa. In addition,
HPS has excellent cyclic stability (more than 100,000 cycles) and can maintain excellent
electrical performance, stable response frequency, and fast response time under different
external forces and frequencies. The sleep monitoring system based on HPS shows excellent
performance in breathing monitoring and sleeping posture monitoring, and the improved
VGG network model can accurately identify breathing under different sleeping conditions
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with an accuracy of 100%. The array deployment of HPS can accurately reflect the sleeping
posture of the human body and can record changes in sleeping position in real time. HPS
shows great potential in sleep health monitoring, potential physiological disease prediction,
and other human–computer interaction fields.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13192692/s1, Figure S1: The detailed preparation procedure
for CNOs@Ecoflex. Figure S2: The detailed preparation procedure for BTO@Ecoflex. Figure S3:
Structure and photograph of various structural components of HPS. Figure S4: Maximum pressure
on butterfly mechanisms with different θ. Figure S5: Height of butterfly mechanisms with different
θ. Figure S6: Durability experiment of butterfly mechanisms with different θ. Figure S7: Schematic
diagram of the sleep monitoring system with integrated HPS. Figure S8: Detailed flow of prediction
algorithms for different breathing states. Video S1: Mechanical simulation of butterfly structures.
Video S2: Predicting different breathing conditions. Video S3: Sleep posture recognition.
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