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Abstract: In this work, a dual interfacial passivation layer (IPL) consisting of TaON/GeON is
implemented in GaAs metal-oxide-semiconductor (MOS) capacitors with ZrTaON as a high-k layer to
obtain superior interfacial and electrical properties. As compared to the samples with only GeON IPL
or no IPL, the sample with the dual IPL of TaON/GeON exhibits the best performance: low interface-
state density (1.31 x 10'? cm~2 eV~!), small gate leakage current density (1.62 x 107> A cm~2 at
Vi +1V) and large equivalent dielectric constant (18.0). These exceptional results can be attributed to
the effective blocking action of the TaON/GeON dual IPL. It efficiently prevents the out-diffusion of
Ga/As atoms and the in-diffusion of oxygen, thereby safeguarding the gate stack against degradation.
Additionally, the insertion of the thin TaON layer successfully hinders the interdiffusion of Zr/Ge
atoms, thus averting any reaction between Zr and Ge. Consequently, the occurrence of defects in the
gate stack and at/near the GaAs surface is significantly reduced.
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1. Introduction

Recently, as Si-based CMOS technology is approaching its fundamental limit, high-
mobility semiconductors such as Ge or III-V compound semiconductors have become
inevitable for future CMOS technology development [1,2]. Among them, the GaAs-based
MOS device has been considered as the most viable candidate due to its higher mobility,
higher breakdown voltage, and larger band gap than Si [3]. Meanwhile, many high-k
materials, e.g., HfO, [4], TiO; [5], LapO3 [6], Y203 [7], etc., have been introduced into GaAs-
based MOS devices for the scaling down of the device dimension. However, since GaAs
easily forms oxides of Ga and As that create interface defects and contain border traps, high
interface-state density (Dj) at the interface of high-k/GaAs is generated, leading to the
degradation of device performance [8]. In order to passivate the surface of GaAs, various
wet chemical surface treatments have been studied. Sulfide passivation using (NH4),S,
for example, has been proven to be effective in removing the native oxide and elemental
arsenic from the surface of GaAs by creating an S termination. But this termination tends
to be unstable when exposed to air or water and thus it has to be protected by a dielectric
layer [9]. Additionally, prior research has confirmed that the intrinsic oxides on the GaAs
surface can be removed effectively using silicon nitride (SixNy) or Al,O3. However, these
methods inevitably lead to a low-k interfacial layer between the GaAs substrate and the
high-k gate dielectric, which are unfavorable for decreasing the equivalent oxide thick-
ness (EOT) and improving the dielectric constant [10,11]. Among these high-k materials,
Zirconium dioxide (ZrO;) has a high k value (~24) and a large bandgap (5.8 eV) [12],
and has been used as a high-k gate dielectric for GaAs MOS devices with good electrical
properties [13-15]. However, the low crystallization temperature (400-500 °C) of ZrO,
may facilitate its crystallization [16,17], thereby increasing the gate leakage current [17,18].
Fortunately, doping Ta into ZrO, can improve its crystallinity, and the high k value (~25)
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of Ta oxide can maintain a high dielectric constant for the novel binary oxide [19]. In
addition, incorporating nitrogen into the oxide can usually increase the k value, reduce gate
leakage current, passivate oxygen vacancies, and form strong N-related bonds at/near the
dielectric/semiconductor interface to further enhance the thermal stability and reliability
of the devices [20,21]. Therefore, in this work, Ta-doped Zr-oxynitride (ZrTaON) will be
employed as a high-k gate dielectric to fabricate GaAs MOS devices. Further, in order to
improve the interfacial properties of the devices, an interfacial passivation layer (IPL) is
typically implemented prior to depositing the high-k layer [6,14,20]. Due to the excellent
crystallographic matching between germanium (Ge) and GaAs (the lattice constant is
5.653 A for GaAs and 5.658 A for Ge [22]) and the passivation effect on the defect-related
Ga/As-O or As-As bonds, Ge could be regarded as a promising IPL material for GaAs
MOS devices. However, Ge is an amphoteric dopant for GaAs, which may alter the doping
concentration or even induce the counterdoping of the GaAs substrate when using it as
IPL [23]. So, Ge oxynitride (GeON) will be used as an IPL instead of Ge. Furthermore, to
avoid the reaction between Zr (from ZrTaON) and Ge (from GeON) that can degrade the
quality of the gate stack [24], a thin TaON film, which can strongly block interdiffusion of
elements, is inserted between the GeON IPL and high-k layer. As a result, the GaAs MOS
capacitor with ZrTaON as the high-k gate dielectric and TaON/GeON as the dual IPL is
proposed and fabricated, and excellent interfacial and electrical properties are achieved for
the device.

2. Experiments

N-GaAs (100) wafers with a resistivity of 0.002-0.005 Qcm were employed to fabricate
the MOS capacitors. The wafers were firstly degreased in acetone, ethanol, and isopropanol,
and then dipped in diluted HCI to remove the native oxides. This was followed by (NHy),S
dipping for 40 min at room temperature for surface sulfur passivation, and finally rinsing
in de-ionized water for several times [25]. After drying with Ny, the wafers were divided
into different samples that were fabricated with different gate stacks: (1) the sample would
receive ~1 nm GeN and then ~1 nm TaN as the dual IPL by sputtering Ge (RF) and Ta
(DC) targets, respectively, followed by depositing ~8 nm ZrTaN as the high-k layer via co-
sputtering Zr (RF) and Ta (DC) targets (TaON/GeON sample); (2) the sample would receive
~2nm GeN (IPL) and then ~8 nm ZrTaN (high-k layer) (GeON sample); (3) the sample
would only receive ~10 nm ZrTaN film as the high-k layer (control sample). The cross-
section diagrams of the three samples are shown in Figure 1, respectively. The sputtering
was performed in an ambient of Ar:N, =24 sccm: 12 scem at room temperature (RT) using a
Denton Vacuum Discovery Deposition System. Subsequently, these samples were annealed
at 600 °C for 60 s in an atmosphere of N; (500 sccm) + O, (50 sccm) to form the ultimate
oxynitrides. Finally, Al was thermally evaporated and patterned by photolithography as
the gate electrode (7.85 x 107> cm?) and also as back electrode, followed by forming-gas
(5% Hy + 95% Nj) annealing at 300 °C for 20 min to reduce the contact resistance [25].

ZrTaON ZxTaON ZrTaON
TaON~| GeON
GeON
N-GaAs(100) N-GaAs(100) N-GaAs(100)
(a) (b) (c)

Figure 1. The cross-section diagrams for the three samples: (a) TaON/GeON sample, (b) GeON
sample, and (c) control sample.

The capacitance-voltage (C-V) and J,-V, curves (/¢ is the gate leakage current density
and Vy is the gate voltage) were measured using an Agilent 4284A precision LCR meter
and a Keithley 4200-SCS semiconductor characterization system from the United States,
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respectively. The XPS method was used to analyze chemical states at/near the gate dielec-
tric/GaAs interface using a XPS equipment with a type of VG Multilab 2000 produced
by Thermo Fisher in the United States. The physical thickness of the gate dielectric was
determined by spectroscopic ellipsometry produced by J. A. Woollam in the United States.
All measurements were performed in a dark environment with electromagnetic shielding
at RT.

3. Results and Discussion

Figure 2 shows the typical HF (1-MHz) C-V curves of the three samples, swept in
two directions (from inversion to accumulation and back). It is evident that compared
to the control sample, the GeON sample and especially the TaON/GeON sample dis-
play significantly improved electrical characteristics with reduced “stretch-out” and a
more saturated accumulation region, indicating an improved high-k/GaAs interface with
fewer defect-related Ga/As-O and As-As bonds (as confirmed by the XPS analyses be-
low) [6,20]. Also, the accumulation capacitance for the TaON/GeON and GeON samples
is much larger than that of the control sample, which should be attributed to the reduced
low-k Ga/As oxides on the GaAs surface for the two samples [6]. The largest accumu-
lation capacitance for the TaON/GeON sample can be attributed to the least interfacial
Ga/As oxides and the much larger k value of TaON compared to GeON, which results
in the largest equivalent k value (18) and the smallest capacitance equivalent thickness
(CET = ¢epksion/ Cox = 2.17 nm, where kg;7 is the relative permittivity of SiO,) for the stacked
gate dielectric, as summarized in Table 1. The hysteresis voltages (AVj,) obtained from the
HF C-V measurements are found to be 60 mV, 70 mV, and 130 mV for the TaON/GeON,
GeON, and control samples, respectively. These results suggest that the TaON/GeON
sample exhibits the least pronounced slow states, primarily located in the IPL and near/at
the IPL/GaAs interface. The enhanced electrical properties observed in the GeON sample
can be attributed to the inhibitory role of the GeON IPL, which prevents the out-diffusion of
Ga/As atoms and the in-diffusion of oxygen. Consequently, the GaAs surface is protected
from oxidation, preserving the quality of the interface. Furthermore, the insertion of a 1 nm
TaON layer between the high-k layer of ZrTaON and the GeON IPL is proved to be effective
in preventing the reaction between Zr and Ge by blocking the interdiffusion of Zr/Ge
atoms [24]. This additional layer contributes to the maintenance of the good quality of the
GeON IPL and further reduces defects near/at the GeON/GaAs interface. As a result, it
enables the achievement of optimal interfacial properties for the TaON/GeON sample.
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Figure 2. HF (1-MHz) C-V curves for the three samples.
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Table 1. Parameters of the GaAs MOS capacitors extracted from their HF C-V curves.
\7 Dy Cox Qox (1012) CET
Samples V) (em2eV)  (uF/em?) (lem?) k (nm)
TaON/GeON  0.70 1.31 x 1012 1.60 —5.98 18.0 2.17
GeON 0.85 1.65 x 1012 1.52 —7.09 17.2 2.27
Control 1.41 8.06 x 1012 0.88 -7.17 10.0 3.90

Some other physical and electrical parameters of the capacitors can also be extracted
from the HF C-V curves of the three samples, like oxide capacitance on unit area (Cyy),
flat-band voltage (V), equivalent density of oxide charges (Qox), equivalent gate dielectric
k value (k = Cox-Tox/€0; Tox is the total gate dielectric thickness; g is the vacuum dielectric
constant), and density of interface states (D;;) evaluated by Terman’s method [26], as listed
in Table 1. The samples with IPL exhibit much lower D;; than the sample without IPL
(the control sample), implying a great passivation effect of the GeON IPL, especially the
TaON/GeON dual IPL. Also, the positive Vg, shows the presence of negative oxide charge
(Qox) in the gate stack, and the smallest Vi, (0.70 V) for the TaON/GeON sample indicates
the least Qoy in the gate stack and thus the best quality of the gate dielectric, due to less
Ga/ As out-diffusion and a reduced reaction between Zr and Ge, as mentioned above.

Figure 3 shows the frequency dispersion of the three samples measured at different
frequencies. Clearly, the control and GeON samples show a large dispersion behavior in
both the depletion and accumulation regions, which is probably due to the effects of the
interface traps [27,28] and the border traps in the gate dielectric near the interface [29],
respectively. Fortunately, using the dual IPL of TaON/GeON can effectively prevent the
reaction between Zr and Ge to maintain the good quality of the GeON IPL and achieve an
excellent passivation effect on the GaAs surface, thus largely reducing the interface traps
and leading to much improved frequency dispersion properties, as shown in Figure 3.

: 6_GeON/TaON Sample | GeON Sample Control Sample
- —1 MHZ —1 MH2 —1 MHz
& ——500 kHz ——500 kHz ——500 kHz
8, | —200kHz ——200 kHz ——200 kHz
g 4l ——100 kHz [ —— 100 kHz ~———100 kHz
= — 50 kH2 e 50 kH2z — 50 kHz
T | —20kHz —20 kHz ——— 20 kHz
Sosf
E
]
2
=04
&)
0.0 " " i " " “ 7 - " " "
-1 0 1 2 3 1 0 1 2 3 -1 0 1 2 3
Gate voltage/V Gate voltage/V Gate voltage/V

Figure 3. Frequency dispersions of C-V curves at room temperature for the three samples.

The gate leakage properties (J; vs. V) of the three samples are shown in Figure 4.
The control sample exhibits much worse gate leakage properties than the GeON and
especially TaON/GeON samples; at Vg, + 1V, the gate leakage current is 5.88 x 1073 A/cm?,
439 x 107° A/cm?, and 2.23 x 10~° A/cm? for the control, GeON, and GeON/TaON
samples, respectively. The large gate leakage current for the control sample should originate
from the strong trap-assisted tunneling of carriers by the traps in the gate dielectric and at
the high-k/GaAs interface, associated with its large Qo and Dj; values, as listed in Table 1.
Also, the reduction of the conduction-band offset induced by the much Ga/As oxides
at the interface may be another reason [27]. For the TaON/GeON sample, however, the
smallest gate leakage current is obtained due to the largely improved gate stack quality
and interface properties by the dual IPL of TaON/GeON.
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Figure 4. | vs. V, characteristics for the three samples.

To confirm the above discussion, XPS analyses were carried out for the three samples to
investigate the interfacial chemical states between the high-k dielectric and GaAs substrate.
For this purpose, the thickness of the gate dielectric layer is thinned to ~3 nm from the
GaAs surface by using an in situ Ar* ion beam. The energy scale of the three samples is
calibrated by fixing the C 1s at a binding energy (BE) of 285 eV to eliminate the charging
effect. The Zr 3d spectra for the three samples are shown in Figure 5, indicating the presence
of Zr in the gate stack. Also, the presence of N and O can be confirmed by the O 1s and
N 1s spectra in the insets of Figure 5. In Figure 6, showing the Ta 4f spectra for the three
samples, the two peaks at 26.51 eV and 28.36 eV originated from Ta,Os, respectively, and
the two peaks at 24.65 V and 26.50 eV should originate from TaO; [30], demonstrating
the existence of Ta oxides in the IPL and near the GaAs surface. These results confirm
the formation of the ZrTaON high-k layer. Obviously, in Figure 6, the peak intensity of
TaO, for the TAON/GeON sample is stronger than that for the other two samples due to
presence of the 1 nm TaON interlayer. Especially, in Figure 6, a Ge 3d peak can be found for
the TaON/GeON and GeON samples, indicating the presence of Ge on the GaAs surface.
The stronger Ge 3d peak for the GeON sample than the TaAON/GeON sample should be
due to the thicker GeON IPL for the former (~2 nm) compared to the latter (~1 nm). In
Figure 6a, showing the TaON/GeON sample, the Ge 3d peak is located at 30.25 eV, which
should be assigned to GeOxNy [31]; however, the Ge 3d peak in Figure 6b, showing the
GeON sample, has a positive shift of ~0.85 eV. Similarly, the Zr 3d spectrum for the GeON
sample in Figure 5 also has a slight shift to higher energy as compared to the other two
samples. These are associated with the reaction between Zr and Ge in the gate stack to form
ZrGeON [24], which would degrade the gate stack quality and thus the electrical properties
of the devices. However, the reaction between Zr and Ge has been greatly suppressed for
the TaON/GeON sample, which can be attributed to the strong blocking role of the 1 nm
TaON IPL against the interdiffusion of the Zr and Ge atoms, thus avoiding the degradation
of the gate stack and maintaining the excellent interface quality and electrical properties.
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Figure 5. XPS spectrum of Zr 3d for the three samples. The insets (a,b) are the O 1s and N 1s
spectra, respectively.
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Figure 6. XPS spectra of Ta 4f for the three samples.

The high D;; observed on the GaAs surface can primarily be attributed to the presence
of native oxides of Ga and As. Additionally, another potential source of D;; is arsenic,
which can exist in the form of dimers or as elemental arsenic. Arsenic dimers are commonly
found in various surface reconstructions of GaAs, whereas elemental arsenic may result
from preferential oxidation of Ga and the instability of As;O3; on the GaAs surface, as
described by the chemical reaction [10]: As;O3 + 2GaAs — 4As + GayO3. The As 2p3/2
and Ga 3d spectra of the samples are shown in Figures 7 and 8, respectively, where the
As-S, Ga-S, and Ga-N peaks can be found due to the sulfur passivation by the (NHy4),S
dipping and the nitridation induced by sputtering in an Np-contained ambient. In Figure 7,
an As-O peak can be found at 1326.2 eV for the three samples, and in Figure 8, all three
samples exhibit a Ga-O peak at 21.1 eV, indicating the oxidation of the GaAs surface. As
compared to the control sample, the As/Ga-O peaks and the As-As peaks are weakened
for the GeON sample and especially for TaON/GeON sample, implying that the formation
of low-k native oxides on the GaAs surface and arsenic dimers is effectively suppressed
by GeON IPL, especially by the dual IPL of TaON/GeON, due to its strong blocking role
against O in-diffusion toward the GaAs substrate and the reduced reaction between Zr and
Ge in the gate stack. The strong As/Ga-O peaks and As-As peaks of the control sample in
its As 2p3/2 and Ga 3d spectra (Figures 7c and 8c) indicate a large amount of low-k Ga/As-
oxides and arsenic dimers on the GaAs surface, leading to a much smaller accumulation
capacitance in Figure 2 and a high D;;. In addition, the weakest As-As peak is also observed
in Figure 7 for the TaON/GeON sample, suggesting the suppressed formation of the As-As
bonds on the GaAs surface. It is well known that the Ga/As-O and As-As bonds are closely
related to the defects at/near the surface, and so it can be concluded that the use of the
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TaON/GeON dual IPL can effectively reduce the defects at/near the GaAs surface, thus
leading to much improved electrical properties of the devices, as described above.

(a) GeON/TaON Sample As 2p3/2 |{b) GeON Sample As 2p3/2 | (c) Control Sample As 2p3/2

Intensity(a.u.)

i 1 1 il 1 1 1 1
1320 1324 1328 1320 1324 1328 1320 1324 1328

Binding energy/eV Binding energy/eV Binding energyfeV

Figure 7. XPS spectra of As 2p3/2 for the three samples.

(a) GeON/TaON Sample Ga 3d |(b) GeON Sample Ga 3d |(c) Contrel Sample Ga 3d

Ga-0

Intensity(a.u.)

Ga-As

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 18 20 22 24 16 18 20 22 24 16 18 20 22 24
Binding energyleV Binding energy/eV Binding energyfeV

Figure 8. XPS spectra of Ga 3d for the three samples.

A comprehensive comparison of the electrical and physical properties between the
samples presented in this study and other existing solutions in the literature is provided in
Table 2. The results clearly demonstrate that this work yields the smallest flat-band voltage
and a Dj value that is comparable to, and in some cases even lower than, those reported
in the literature. Notably, these superior outcomes are particularly pronounced for the
samples exhibiting high k values (exceeding 18).

Table 2. Comparison of electrical and physical properties of the GaAs MOS devices between this
work and other works in the literature.

W This Work  Y,03/ALO3[7]  GGO/HfTiON [20]  AIN/ALO;[22]  LaGeON/ZrON [25]
Parameters
k 8.2 25.1 7.9 12.7
Vi (V) ~1.0 1.28 ~1.0 0.8
Dy (cm~2 eV 1.3 x 1012 2.5 x 1012 3.3 x 1012 2 x 1012 1.2 x 1012

4. Conclusions

The GaAs MOS capacitors with GeON IPL or TaON/GeON dual IPL are fabricated
and their interfacial and electrical properties are investigated. A comparison is made with
a control sample lacking any IPL. The results demonstrate that the inclusion of the GeON
IPL, and particularly the TaON/GeON dual IPL, effectively impedes the out-diffusion
of Ga/As atoms and the in-diffusion of oxygen. Consequently, it provides protection
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against oxidation of the GaAs surface. Inserting a thin TaON layer between the high-k
ZrTaON layer and the GeON IPL is proved to be even more effective in blocking Ga/As
out-diffusion and oxygen in-diffusion. Simultaneously, it efficiently suppresses the reaction
between Zr and Ge by preventing the interdiffusion of Zr/Ge atoms. As a result, defects
near/at the GaAs surface are further reduced, preserving the quality of the stacked gate
and avoiding its degradation. Therefore, it can be concluded that the utilization of the
TaON/GeON dual IPL can lead to improved gate stack quality and interfacial properties.
Consequently, it yields excellent electrical properties for GaAs MOS devices.
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