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Abstract: In this study, various two-dimensional (2D) materials were used as supporting materials
for the bimetallic Co and Mo sulfide/oxide (CMSO) heterostructure. The water electrolysis activity of
CMSO supported on reduced graphene oxide (rGO), graphite carbon nitride (gC3Ny), and siloxene
(SiSh) was better than that of pristine CMSO. In particular, rGO-supported CMSO (CMSO@rGO)
exhibited a large surface area and a low interface charge-transfer resistance, leading to a low over-
potential and a Tafel slope of 259 mV (10 mA/cm?) and 85 mV/dec, respectively, with excellent
long-term stability over 40 h of continuous operation in the oxygen evolution reaction.

Keywords: oxygen evolution reaction; water splitting; cobalt molybdenum sulfide; cobalt molybdenum
oxide; reduced graphene oxide

1. Introduction

Hydrogen produced by electrolysis is one of the sustainable and promising energies
to alter the energy from fossil fuels because of several factors, including the abundance
of water as a feedstock, it being free of carbon dioxide emissions, and its wide range of
applications [1]. However, the efficiency and utilization of water electrolysis are hindered
by the low kinetics of the oxygen evolution reaction (OER) [2], which is the half-reaction of
the water-splitting reaction.

The heterostructure material, which is composed of two or more components, pos-
sesses the synergistic effect of all components to overcome the disadvantages of individual
ones. Additionally, the contact of the crystal components might change the electronic
structure and strain the material, rendering it appropriate for OER [3-5]. As a result, vari-
ous transition metals have been integrated in heterogeneous manners [6-8] to replace the
scarce and expensive benchmark precious-metal-based electrocatalysts such as RuO, or
IrO; in the OER process [9]. Among the transition metals, cobalt (Co) and molybdenum
(Mo) are considered to be the most promising candidates because of their earth abundance
and cost-effectiveness, as well as the excellent redox behavior of Co and high electrical
conductivity of Mo [10-13].

Recently, several studies revealed that the introduction of a sulfur anion into Co is
favorable for driving water oxidation. Wang et al. confirmed that the moderate replacement
of oxygen with sulfur could modify the electronic structure of the composite to achieve
optimal intrinsic OER activity [14]. Fei et al. reported that the co-substitution of Fe and S
in CoMoQy increased the charge-transfer ability and decreased the energy barrier of the
rate-determining step during OER [15]. Hu et al. confirmed that compared to a pure oxide
surface, a lattice oxygen—sulfur co-existing shell surface of (NiCo)OxS; 33— lowered the
applied potential for surface reconstruction [16].

Employing a two-dimensional (2D) material as a supporting material for electro-
catalysts can be an efficient strategy to increase the number of active sites and improve
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long-term stability [17]. Reduced graphene oxide (rGO) has been widely used as a sup-
porting material owing to its high specific surface area, high conductivity, and excellent
mechanical strength [18]. As another carbon-based 2D material, graphitic carbon nitride
(gC3Ny) can also be used as a support because of its facile availability, simple production
route, cost-effectiveness, and excellent chemical and thermal robustness [19,20]. Addition-
ally, as a hexagonal 2D material composed of six-membered rings of silicon separated from
each other by Si-O-Si bridges, siloxene (SiSh) also exhibits excellent properties when used
as a support [21,22], owing to the high specific surface area and the presence of hydroxyl
groups on the siloxene sheet [23].

Therefore, the heterogeneous structure of an oxide—sulfide composite of CoM0oQO,4/CoS/
MoS,; (CMSO) combined with the 2D material (CMSO@2D) is thought to be a good can-
didate out of the high-performance anode materials for the water-splitting reaction. This
study aimed to explore the potential of 2D materials, including rGO, gCsNy, and SiSh, as
supporting materials for CMSO to enhance the electrochemical activity and stability during
the OER process. By conducting instrumental analysis and electrochemical characterization,
rGO was found to be the best support for CMSO, and CMSO@rGO exhibited a low OER
overpotential and a Tafel slope of 259 mV (10 mA /cm?) and 85 mV /dec, respectively, which
were comparable to those of RuO,. In addition, a clear current drop was not observed even
after 40 h of continuous operation.

2. Experimental Section
2.1. Synthesis of Various 2D Materials

Graphene oxide was prepared by using the modified Hummer’s method, as reported
previously [24], and subsequently reduced using hydrazine monohydrate (N,Hy4-H,O) to
obtain rGO nanosheets. SiSh was synthesized using the procedure described previously [22].
To prepare gC3Ny, 10 g of melamine was added into a porcelain crucible and heated at
600 °C for 4 h. Then, the resulting yellow powder was mixed with 100 mL of deionized
(DI) water and subjected to sonication. The final product was obtained after centrifugation
and subsequent drying overnight at 100 °C in air.

2.2. Synthesis of CMSO@2D Materials

The CMSO@2D materials (viz. rGO, gCsNy, and SiSh) were fabricated using a two-step
method of solvothermal synthesis and vacuum annealing, respectively. In the solvothermal
step, thioacetamide (TAA) was added as a sulfur source of CMSO. Co-glycerate and
ammonium molybdate tetrahydrate (NH4)sM070,4-4H,0) were used as the precursors
for Co?* and Mo®*, respectively, which reacted with TAA to form Co/Mo sulfide. The used
2D material served as a support and template for the anchoring sites of Co/Mo sulfide.
During the vacuum annealing process, the materials were partially oxidized, resulting in
the formation of CoM0Qy4/Co0S/MoS,@2D (CMSO@2D, Scheme 1).

Typically, mixture A was prepared by dissolving 20 mg of the Co-glycerate precursor (fol-
lowing the procedure in the Supplementary Information, SI), 10 mg of (NH4)¢Mo70,4-4H,0,
and 50 mg of TAA in 20 mL of ethanol. Simultaneously, mixture B was formed by sonicating
20 mg of gC3Ny in 20 mL of ethanol. Then, mixture A was slowly added to mixture B
and stirred for 1 h. The resulting mixture was transferred into a Teflon-lined autoclave and
heated, and the temperature was maintained at 200 °C for 6 h. After centrifugation and
washing with ethanol and DI water, the product was dried in a vacuum oven at 60 °C for
12 h. Subsequently, the product was annealed at 500 °C under vacuum for 2 h. A similar
procedure was followed for the reactions of the other 2D materials, with gC3Ny substituted
by SiSh and rGO. In the case of rGO, 0.1 mL of NpH,-H,O was added to mixture B.

2.3. Synthesis of CMSO

CMSO spheres were synthesized using a process similar to that of CMSO@2D except
for the addition of the 2D materials.
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Scheme 1. Schematic of CMSO and various CMSO@2D materials (2D materials: 1GO, gC3Ny,
and SiSh).

3. Result and Discussion
3.1. Characterization of As-Prepared Materials

The crystal structure and phase composition of all materials were analyzed via X-ray
diffraction (XRD), as shown in Figure 1a. The XRD patterns of CMSO@rGO, CMSO@gC3Ny,
and CMSO@SiSh were similar to that of CMSO, indicating that a structural change did not
occur during the deposition of CMSO on 2D materials and that all samples exhibited distinct
MoS;, CoMoQy, and CoS phases. The diffraction peaks at 14.4° and 29.2° corresponded to
the (002) and (004) planes of MoS;, respectively (JCPDS No. 037-1492) [25]. The diffraction
peaks at 26.5°, 36.5°, 42.4°, 53.5°, 61.5°, 73.7°, and 77.5° were characteristic of the (220),
(400), (123), (333), (061), (622), and (350) planes of CoMoO, (JCPDS No. 04-017-6377),
respectively [26]. The peaks observed at 34.4° and 47.1° were ascribed to the (101) and (102)
planes of hexagonal CoS, respectively (JCPDS No. 65-3418) [27].
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Figure 1. (a) XRD patterns and (b) Raman spectra of various materials.
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Additionally, in the XRD pattern of CMSO@SiSh, the characteristic peaks of SiSh were
observed at 14.1°, 28.5°, and 56.1°, corresponding to the (001), (111), and (311) planes of
siloxene, respectively. The peak located at 27.5° in the XRD pattern of CMSO@gC3Ny4
was attributed to gC3Ny (JCPDS No. 87-1526). Because the specific peak of rGO at 26.8°
(JCPDS No. 89-8487) was overlapped with those of MoS, at 28.5° and CoMoOQy at 26.5°,
distinguishing the rGO-related peaks in the XRD pattern of CMSO@rGO was difficult. The
Raman spectra of the prepared materials are shown in Figure 1b. In the Raman spectrum
of CMSO, characteristic peaks for the bonding vibrations of Co-O-Mo at 808, 865, and
925 cm ™~ 1; MoOy at 328 and 352 cm ! [28]; CoS at 511 and 676 cm ™! [27]; and MoS, at
280 cm~! were observed [29]. In the Raman spectrum of CMSO@rGO, two additional peaks
were observed at 1351 cm ™! and 1596 cm 1. These peaks were assigned to the D band and
G band of rGO, respectively. The integrated area ratio of the D and G bands of pristine
rGO (Figure Sla) was 1.27, while that of CMSO@rGO increased to 1.46, indicating that after
the anchoring of CMSO, the defect density of the rGO surface increased. In the Raman
spectrum of CMSO@gC3N,, a broad peak was observed at approximately 1600 cm !, which
was similar to that of bulk gC3Ny (Figure S1b). In the Raman spectrum of CMSO®@SiSh, an
intense peak at 513 cm ! corresponding to the Si-Si vibration of SiSh was observed, which
was same as that of SiSh shown in Figure Slc.

Figure 2 shows the Brunauer-Emmett-Teller (BET) analysis of all materials. This
result revealed that the material exhibited a type IV isotherm according to the IUPAC
classification [30], indicative of the presence of a mesoporous structure with a pore size
ranging from 2 to 50 nm. Notably, CMSO@rGO exhibited a significantly higher nitrogen
adsorption amount, leading to the highest surface area among all of the materials. Accord-
ing to Figure S2 and Table 1, the average pore radii of CMSO, CMSO@rGO, CMSO@gC3Ny,
and CMSO@SiSh were approximately distributed at 3.9, 1.6, 1.6, and 2.0 nm, respectively,
corresponding to the pore volumes of 0.320, 1.154, 0.463, and 0.398 cm®/g.
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Figure 2. N, adsorption-desorption isotherms of various materials.

Table 1. Specific surface area, pore volume, and pore radius of various materials.

Specific Surface

. 3 .
Materials Area (m2/g) Pore Volume (cm®/g) Pore Radius (nm)
CMSO 116 0.320 3.9
CMSO@rGO 1392 1.154 1.6
CMSO@gC3Ny 156 0.463 1.6

CMSO@SiSh 201 0.398 2.0
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The specific surface area increased in the order of CMSO (116 m?/g) < CMSO@gC3Ny
(156 m? /g) < CMSO@SiSh (201 m?/g) < CMSO@rGO (1392 m?/g), indicating that the mod-
ification of CMSO with 2D materials led to an increase in the specific surface area. Notably,
the introduction of rGO substantially increased the specific surface area of the composite.

To investigate the morphology of the as-prepared materials, field-emission scanning
electron microscopy (FESEM) (Hitachi High-Tech Corporation, SU7000, Tokyo, Japan)
was conducted. The FESEM images are shown in Figure 3. CMSO exhibited highly
agglomerated nanosphere particles, resulting in the formation of large clusters (Figure 3a).
In contrast, when CMSO was supported on 2D materials, especially rGO (Figure 3b) and
gC3Ny (Figure 3c), the interparticle voids were increased, which could provide additional
pathways and spaces for the electrolytic ions to access the active sites. CMSO on SiSh
(Figure 3d) exhibited a non-uniform morphology and a high degree of agglomeration,
which could be attributed to a low number of functional groups that could anchor CMSO
nanoparticles. The elemental mapping of all materials is shown in Figures S3-56. The
constitutional elements exhibited a uniform distribution.

Figure 3. FESEM images of (a) CMSO, (b) CMSO@rGO, (c¢) CMSO@gC3Ny, and (d) CMSO@SiSh.

The elemental electronic states were investigated using X-ray photoelectron spec-
troscopy (XPS). In the deconvoluted Mo 3d spectra of CMSO (Figure 4a), dominant peaks
observed at 235.4 and 232.3 eV corresponded to 3d3/, and 3ds/, of Mo®*, respectively, and
those at 234.7 and 231.2 eV corresponded to 3d3/, and 3ds,, of Mo**, respectively [31].
The weak peak located at approximately 228 eV was associated with S 2s [32]. After the
addition of 2D materials, these peaks were positively shifted relative to bare CMSO. In the
deconvoluted Co 2p spectrum of CMSO (Figure 4b), two peaks located at 780.9 and 796.3 eV,
accompanied by two satellite peaks indicated by asterisks, were attributed to Co 2p3,, and
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Co 2p; /, of Co?*, respectively [33]. An additional peak at 779.8 eV was attributed to Co-S
bonding [27]. Interestingly, the position of Co 2p peaks in CMSO@rGO, CMSO@gC3Ny,
and CMSO@SiSh shifted to higher binding energies compared with that of pristine CMSO,
indicative of the loss of electrons in Co [34]. The deconvoluted S 2p spectrum (Figure 4c)
revealed four peaks. The peaks observed at 162.6 and 161.3 eV corresponded to S*~ of Co-S
and Mo-S, respectively [35,36]. Two additional peaks at 169 and 167.7 eV corresponded
to oxidized sulfur [32]. The high-resolution O 1s XPS spectra (Figure 4d) showed a major
peak at 530.2 eV, corresponding to O in CoMoOy [37]. After modification with 2D mate-
rials, the S 2p peaks exhibited a negative shift, and the O 1s peaks exhibited a positive
shift, indicative of the electronic interaction between CMSO and 2D materials [34]. Such
charge transfer between CMSO and supporting materials could induce adjustments in
energy-band alignment, which might thermodynamically facilitate the OER process [38].
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Figure 4. Deconvoluted high-resolution XPS spectra of (a) Mo 3d, (b) Co 2p, (c) S 2p, and (d) O 1s of
various materials (Asterisks indicate the satellite peak).

3.2. Electrocatalytic Activity of As-Prepared Materials

To evaluate the effect of 2D supporting materials on the activity of CMSO in the
OER process, the electrocatalytic properties of CMSO, CMSO@rGO, CMSO@gC3Ny, and
CMSO@SiSh were investigated and compared with those of RuO,, which was widely
recognized as a benchmark material for OER. The OER overpotentials of 2D material-
supported CMSO such as CMSO@rGO (259 mV 10 mA /cm?), CMSO@gC3Ny (270 mV), and
CMSO@SiSh (287 mV) were less than that of CMSO (384 mV), which indicated the improved
OER properties of CMSO by the 2D supporting materials (Figure 5a,b). In addition, the
overpotential of CMSO@rGO was less than that of RuO; (315 mV). To gain insights into
the OER kinetics, the Tafel slope was calculated based on overpotential and the logarithm
of current density data (Figure 5c). Same as the OER overpotential, the Tafel slopes of
CMSO@rGO (85 mV/dec), CMSO@gC3Ny4 (109 mV /dec), and CMSO@SiSh (86 mV /dec)
were lower than that of CMSO (141 mV /dec), which indicated the faster OER kinetics of
2D material-supported CMSO. Among the other material-supported CMSO, CMSO@rGO
exhibited the lowest Tafel slope, which was less than that of RuO, (136 mV /dec).
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Figure 5. (a) LSV curves, (b) comparison of the overpotential at 10 mA / cm?, () Tafel slope, (d) linear fit-
ting of the current density against scan rates, and (e) Nyquist plots of various materials. (f) Comparison
of the overpotential and Tafel slope of CMSO@rGO with those of previously reported cobalt-based
electrocatalysts [39-50] in OER.

The electrochemically active surface area (ECSA) and electrochemical impedance
spectroscopy (EIS) were measured to obtain better understanding of the improved OER
activity of CMSO rendered by the 2D supporting materials. The double layer capacitance
(Cq1), which was directly proportional to the ECSA value, of each material was measured
from the cyclic voltammetry curves shown in Figure S7. The C4 of CMSO was 2.9 mF/cm?,
and it was increased to 11.0 mF/cm? (CMSO@SiSh), 16.2 mF/cm? (CMSO@gC3Ny), and
35.2 mF/cm?(CMSO@rGO) (Figure 5d), which clearly indicated the effects of 2D materials
on the Cy) value. The highest Cg4; of CMSO@rGO could be strongly related to its highest
BET surface area, as shown in Figure S8.

The Nyquist plots obtained from the EIS of all materials exhibited a semicircle
(Figure 5e). Notably, the charge transfer resistance (R¢t) of CMSO@rGO was measured
to be 3.9 (), which was significantly lower than those obtained from other materials, as
summarized in Table 2. This result implied that CMSO@rGO exhibited a higher electron
and charge-transfer velocity than the other samples. The lower R value of CMSO@rGO
was consistent with its superior electrocatalytic activity, including lower overpotential,
smaller Tafel slope, and higher ECSA. The electrochemical performances of the investigated
materials are summarized in Table 2.

Table 2. OER properties and interfacial charge-transfer resistance of various materials.

Material Overpotential at Tafel Slope Interface Charge-Transfer
10 mA/cm? (mV) (mV/dec) Resistance (R¢t) (Q)
CMSO 384 141 56.5
CMSO@rGO 259 85 3.9
CMSO@gC3Ny 270 109 17.5
CMSO@SiSh 287 86 23.1
RuO; 315 136 51.3

The role of 2D materials as templates for anchoring CMSO not only exposed more
active sites to the electrolyte but also facilitated electron and charge transfer processes.

The combination of the high surface area and superior conductivity of rGO might enable
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CMSO@rGO to achieve the fastest reaction rate compared to the other materials [51]. The
observed overpotential and kinetics of CMSO@rGO fabricated herein were comparable
to those of previously reported cobalt-based electrocatalysts (Table S1 and Figure 5f),
revealing the high potential of CMSO@rGO as a promising electrocatalyst for OER in
water electrolysis.

Stability is another key parameter to evaluate electrochemical catalysts. Chronoam-
perometry (CA) measurements at a constant current density were conducted to evaluate
the stability of the investigated materials. The results are shown in Figure 6a. For CMSO,
CMSO@rGO, CMSO@gC3Ny, and CMSO®@SiSh, the potentials applied to achieve a current
density of ~10 mA/ cm? were 1.60 V, 1.49 V, 1.50 V, and 1.52 V, respectively. The current
densities of CMSO, CMSO@gC3Ny, and CMSO@SiSh started to decrease after 10 h of
continuous operation. However, the current density of CMSO@rGO decreased negligibly,
almost similar to that observed for the OER LSV curves (Figure 6b) and the unchanged
morphology (Figure S9) even after 40 h of continuous operation, indicative of the supe-
rior long-term stability of as-prepared CMSO@rGO. The strong interaction between rGO
sheets and CMSO might prevent the change in the morphology. Instead, a new peak was
observed at 504 cm~! in the Raman spectrum of CMSO@rGO after 40 h of the OER process
(Figure S10a), which could be attributed to the presence of CoOOOH [52]. Similarly, in the
XRD pattern of CMSO@rGO after the stability test (Figure S10b), a new peak was observed
at 20.2°, corresponding to the (003) plane of CoOOH (JCPDS No. 01-073-0497). The XPS
deconvoluted spectrum of Co 2p after the stability test (Figure S10c) exhibited a positive
shift, and two new peaks appeared at 780 and 795 eV, respectively, originating from the
Co’* species in CoOOH [53]. These results revealed that the active site CMSO on the
rGO sheet was partially converted into CoOOH, corresponding to the reconstruction phe-
nomenon that occurred typically on the surface of transition-metal-based electrocatalysts in
the water oxidation process [52,54]. This result suggested that the Co sites in CMSO@rGO
served as favorable catalytic reaction sites for OER. The presence of a highly active CoOOH
surface possibly impeded the further oxidation of the core electrocatalyst, and the inter-
action between the in situ oxyhydroxide and the original catalyst might be favorable in
driving water oxidation. Thus, the stability of the electrocatalyst was maintained during
the OER process [15,54]. The mechanism was described in the following reaction steps
(* corresponds to an active site):

*+OH —*OH +e~ D
*OH™ +OH™ - *O+H,O+e™ )
*O+OH™ — *OOH + e~ ©)]
*OOH+OH™ —*+ 0, + H)O +e™ 4)

A two-electrode system with CMSO@rGO as the anode and Pt/C (20%) as the cath-
ode was designed for overall water splitting to ensure stability and scalability in large-
scale industrial applications. The LSV curve (Figure 7a) of this system indicated that
the potential of the cell reached 10 mA/ cm? at 1.54 V, while that of the RuO,//Pt/C
system was greater by 60 mV. Even after a 40 h stability test, the chronopotentiometry
curve of CMSO@rGO/ /Pt/C in Figure 7b exhibited an excellent activity retention of
94.8%. Particularly, the potential slightly increased from 1.54 V to 1.62 V. This result in-
dicated that CMSO@rGO demonstrated excellent long-term stability even for the overall
water-splitting reaction.
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Figure 7. (a) LSV curves of two-electrode systems, (b) Chronopotentiometry curve for the overall

water-splitting reaction at 10 mA /cm? (inset photograph: CMSO@rGO(anode)/ /Pt/C(cathode); the
overall water-splitting system).

4. Conclusions

In this study, Co and Mo bimetallic oxide/sulfide hybrid structures supported on
various 2D materials such as rGO, gC3Ny, and SiSh were successfully synthesized. Among
these materials, CMSO@rGO exhibited the highest electrochemical activity, with a low
overpotential and a Tafel slope of 259 mV at 10 mA/cm? and 85 mV/dec, respectively.
Owing to the strong interaction between rGO and CMSO, the electronic structure of the
composite system was modulated, promoting the formation of oxyhydroxide surfaces, and
optimizing the performance of the electrocatalyst in driving water oxidation. Furthermore,
the current density of CMSO@rGO changed negligibly even after a 40 h long-term stability
test with no clear physical and electronic deformation, which was attributed to the high
number of functional groups and high surface area of rGO.
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