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Abstract: The composites of transition metal-doped titania and carbon have emerged as promising
supports for Pt electrocatalysts in PEM fuel cells. In these multifunctional supports, the oxide
component stabilizes the Pt particles, while the dopant provides a co-catalytic function. Among other
elements, Sn is a valuable additive. Stong metal-support interaction (SMSI), i.e., the migration of a
partially reduced oxide species from the support to the surface of Pt during reductive treatment is
a general feature of TiO2-supported Pt catalysts. In order to explore the influence of SMSI on the
stability and performance of Pt/Ti0.8Sn0.2O2-C catalysts, the structural and catalytic properties of
the as prepared samples measured using XRD, TEM, XPS and electrochemical investigations were
compared to those obtained from catalysts reduced in hydrogen at elevated temperatures. According
to the observations, the uniform oxide coverage of the carbon backbone facilitated the formation
of Pt–oxide–C triple junctions at a high density. The electrocatalytic behavior of the as prepared
catalysts was determined by the atomic closeness of Sn to Pt, while even a low temperature reductive
treatment resulted in Sn–Pt alloying. The segregation of tin oxide on the surface of the alloy particles,
a characteristic material transport process in Sn–Pt alloys after oxygen exposure, contributed to a
better stability of the reduced catalysts.

Keywords: electrocatalyst; mixed oxide–carbon composite; platinum–tin interaction; strong
metal-support interaction

1. Introduction

Due to their specific properties, polymer electrolyte membrane fuel cells (PEMFCs)
comprise the most important type of fuel cells for small or medium-scale stationary, mobile
or portable hydrogen-based electricity generation [1]. The still unsurpassed properties
of platinum supported on high surface area carbon (Pt/C) make it the most widely used
electrocatalyst both at the anode and cathode side of PEMFCs. However, due to its scarce
availability, Pt is an expensive and critical raw material. At the same time, the corrosion
of the Pt/C catalysts results in a continuous performance decrease [2]. Thus, catalyst
degradation is the limiting factor determining the lifetime of the cell. This issue, along with
the limited performance of the Pt/C catalyst in the oxygen reduction reaction (cathode
process), is typically compensated by high Pt loads, especially at the cathode electrode.
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Thus, the electrocatalysts are responsible for approx. 30–40% of the price of the PEMFC [3].
Understandably, significant efforts are focused on either replacing Pt with cheaper alterna-
tives or enhancing the activity and longevity of the Pt catalyst, which could decrease the Pt
load and, in turn, the price of the electrodes [4].

A possibility for modulating the properties of the Pt catalyst is the dilution of the active
metal with an appropriate co-catalytic component in an alloy-type bimetallic system [5–7].
In such catalysts, the activity and selectivity are determined not only by the chemical nature
of the alloying element. Instead, structural factors, such as the distribution of the dopant
(e.g., randomly alloyed, core-shell arrangement, ordered intermetallic compound) or the
morphology of the catalyst (determined by both the nature of the metal–metal interaction
and the synthesis method), are also very important [8,9]. Among other alloying elements,
tin was identified as a particularly versatile material [10,11]. The Sn–Pt system was found
to be useful both at the anode (providing tolerance against CO poisoning in direct methanol
cells or if hydrogen obtained from reforming reactions is used) and the cathode (providing
good activity in the oxygen reduction reaction) of PEMFCs. The co-catalytic effect of Sn is
generally attributed to the easy formation of reactive OH species on Sn sites, which facilitate
the oxidation of poisoning CO intermediates adsorbed on Pt according to the well-known
bifunctional mechanism [12,13]. It was also suggested that SnOx species that form on
the surface of the alloy nanoparticles under reaction conditions can protect Pt sites from
oxidation and subsequent dissolution [9]. In particular, the Pt3Sn ordered intermetallic
compound phase appeared to be the most active and stable catalyst [14–17]. Nevertheless,
the synthesis of the supported Sn–Pt catalysts with tin exclusively connected to Pt is not
straightforward [18], although special methodologies are available for the preparation of
Pt3Sn on carbon or oxides [19].

Another strategy for enhancing the longevity of the PEMFC electrocatalysts is to
replace the corrosion-sensitive carbon support with a more stable oxide–carbon composite
material. The basic idea is to combine the nanoparticle stabilizing effect of inorganic oxides
with the good conductivity and high specific surface area of traditional or novel carbon
materials. As emphasized by numerous examples in the literature, the strong interaction
between the active metal and the composite support arising at metal–oxide–carbon triple
junctions is a key factor in enhancing the stability- and/or activity-related properties of the
system [20,21].

TiO2, which is widely used in heterogeneous catalysis and have an inherently higher
stability than carbon in acidic and oxidizing environments, is a good candidate for this pur-
pose. As TiO2 can also incorporate dopants such as W [22], Mo [23], Nb [24] or Sn [25], the
co-catalytic properties of these oxophilic elements can also be exploited for electrocatalytic
purposes. Indeed, Pt electrocatalysts supported on W- or Mo-doped rutile–carbon compos-
ites turned out to be highly CO-tolerant while showing an improved long-term stability
compared to Pt/C references not only in three-electrode electrochemical tests [26,27] but
also in fuel cell tests [28,29]. It should be noted that characteristic performance differences
were identified between the catalysts with different mixed oxide/carbon ratios [27], and
an optimal ratio should be determined depending on the purpose of the study. Surface
chemical investigations suggested that active sites responsible for the CO-tolerant behavior
were formed around the perimeter of the Pt particles at the oxide–carbon–Pt triple junc-
tions [30]. Nevertheless, the leaching of metal ions from the catalyst under the working
conditions of the cell is always a concern as these species can interfere with the proton
conducting property of the membrane [31]. Our previous results indicated that co-catalyst
metal dissolution can be prevented by incorporating the dopant into the substitution sites
of the TiO2 matrix, which also increases the conductivity of the oxide.

Studies using Pt/SnO2 catalysts identified the stabilizing effect of the oxide without a
loss in the catalytic performance compared to Pt/C [32], which can be attributed to a strong
interaction between the Pt particles and the oxide [33]. These interactions can range from
modulating the shape and structure of the Pt particle, often resulting in the formation of
Pt clusters with strained lattices, to the complete encapsulation of the Pt element by an
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ultrathin layer of the partially reduced oxide, similar to the classical strong metal-support
interaction (SMSI) phenomenon [34].

In fact, SMSI-like effects are often encountered in thermal catalysis at elevated temper-
atures between reducible metal oxides and platinum group metal nanoparticles. Their influ-
ence on the properties of the catalyst, especially on its selectivity, is well
documented [35–37]. In the electrocatalysis field, the SMSI-related phenomena become sig-
nificant due to their potential for enhancing the catalytic performance [36,38] and improving
the stability [39–42]. Importantly, the spontaneous development of such phenomena at
the typically low temperatures of electrochemical processes is improbable, as the required
material transport processes are thermodynamically favored but kinetically hindered. Ac-
cordingly, in electrocatalysis, evoking the SMSI state can be achieved as a specific step of
the catalyst preparation route via thermal pre-treatment (typically in reducing [32,34] but
in some systems in oxidizing [38] atmospheres) or the deposition of specific adsorbates to
direct the encapsulation [43]. Despite the promising benefits of SMSIs in electrocatalysis, its
application has been limited due to the challenges associated with creating a well-regulated
interaction between the materials. The controlling factors, such as the electron transfer, mass
transfer and the thickness of the encapsulation layer, are crucial for achieving uniformity in
the electrocatalytic surface [43,44].

In the case of co-catalyst-doped Ti(1−x)MxO2-C (M = W, Mo, Sn, Nb) composite-
supported catalysts, Pt and the oxide component are liable for a strong metal-support
interaction. In a previous study, the stability enhancement of a Pt/Ti0.8Mo0.2O2-C catalyst
after reductive pre-treatment was attributed to the migration of (ionic) Mo species to the
surface of the Pt particles [45]. Similarly, the reductive treatment of Pt/SnO2 catalysts was
identified as a promising method for improving their stability [46] or modulating their
surface properties [47]. However, the nature of the Pt-support interactions in Sn-doped
rutile–carbon composite-supported electrocatalysts, involving material transport processes
and structure formation via reductive pre-treatment, is still an open question, one that is in-
vestigated in the present contribution. A comparison of the structural, physicochemical and
electrochemical properties of the as prepared and reduced Pt/Ti0.8Sn0.2O2-C catalysts was
conducted in order to assess the potential of reductive treatment as a strategy for improving
the electrocatalytic performance of these tin-containing composite-supported systems.

2. Materials and Methods
2.1. Materials

The Ti0.8Sn0.2O2-C composite supports were prepared using Black Pearls 2000 active
carbon (Cabot Corporation, Boston, MA, USA). For the composite synthesis, titanium
isopropoxide (Sigma-Aldrich, St. Louis, MO, USA, 97%), tin (IV) chloride-5-hydrate (Hon-
eywell Riedel-de Haën GmbH, Seelze, Niedersachsen Germany, 98%), nitric acid (65%,
a.r., Molar Chemicals, Halásztelek, Hungary) and ultrapure water (18 MΩ cm, produced
by Millipore equipment, (Burlington, MA, USA)) were used. The Pt precursor for elec-
trocatalyst synthesis was H2PtCl6·6H2O (Sigma-Aldrich, St. Louis, MO, USA, 37.5% Pt).
Further chemicals used for the Pt loading were ethanol (99.55%), ethylene glycol (99.8%),
HCl (37%) and NaBH4 (99.95%) (all obtained from Molar Chemicals). The catalyst ink for
the electrochemical studies was prepared using a Nafion solution (DuPont™ Nafion® PFSA
Polymer Dispersions DE 520, The Chemours Company, Wilmington, DE, USA), isopropanol
(Molar Chemicals) and ultrapure water (see above).

2.2. Preparation of the Pt/Ti0.8Sn0.2O2-C Composite-Supported Electrocatalysts

The Ti0.8Sn0.2O2-C composite support containing 75 wt.% oxide and 25 wt.% Black
Pearls 2000 carbon was prepared using a variant of the multistep sol–gel synthesis method
that was developed for the production of the Ti0.8Mo0.2O2-C composites [27]. The key steps
of the process are shown in Scheme 1 [48].
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Scheme 1. Synthesis of the Ti0.8Sn0.2O2-C composite support.

The first step was the preparation of a transparent Ti sol by adding 1.889 mL of
titanium isopropoxide to an acidic aqueous solution, followed by the introduction of the
Sn precursor tin (IV) chloride pentahydrate (559.3 mg). After stirring the mixture at room
temperature, 250 mg of active carbon in water was added and stirring was continued for
4 days to deposit the rutile nuclei on the carbon backbone. Then, the solvent was evaporated
and the material was washed and dried at 80 ◦C. Finally, a high-temperature treatment step
(HTT, in argon flow at 500 ◦C for 8 h) was applied to improve the crystallinity of the oxide.

Pt (20 wt.%) was introduced using a modified NaBH4-assisted ethylene glycol (EG)
reduction–precipitation technique, as shown in Scheme 2 [49].
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Scheme 2. Pt loading of the Ti0.8Sn0.2O2-C composite.

An amount of 0.643 mmol H2PtCl6·6H2O was dissolved in 50 mL of ethanol, and a
200 mg composite support was added to the solution. A solution containing 7.8 mmol
NaBH4 with 3.7 mL ethylene glycol was dropwise added at 65 ◦C during continuous
stirring. After 3 h of stirring, 15 mL of 0.2 M HCl was added to the suspension, which was
then agitated for a further 2.5 h at room temperature to deposit the platinum particles onto
the support material. The Pt loading was completed by washing the catalyst three times,
and then the material was filtered, centrifuged and dried at 80 ◦C overnight.

2.3. Reductive Pre-Treatment

After the catalyst preparation, a fraction of the material was annealed in a hydrogen
flow at 200 ◦C for 2 h in order to induce the metal-support interactions. This temperature
was determined as a compromise between the extent of the surface chemistry changes and
the growth of platinum particles, and was also guided by our previous experience with
supported Sn–Pt alloy catalysts [19].

2.4. Phase Composition and Morphology

The synthesis of the composite was followed, and the catalysts in the as prepared
and reduced state were characterized via X-ray diffraction using a Philips model X’PERT
MPD and PW 3710-based PW 1050 Bragg–Brentano parafocusing goniometer (Philips
Analytical, Almelo, The Netherlands) with CuKα radiation, a graphite monochromator
and a proportional counter. The microstructure was investigated via transmission electron
microscopy (TEM) using a FEI Titan Themis 200 kV Cs—corrected TEM with 0.09 nm
HRTEM resolution (ThermoFisher Scientific, Waltham, MA, USA). The scanning trans-
mission electron microscopy (STEM) capabilities of the microscope were employed for
recording high-resolution elemental maps using the energy dispersive spectroscopy (EDS)
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technique. The Pt particle distribution was determined by measuring the diameters of at
least 800 randomly selected metal particles in five micrographs of each sample taken from
non-aggregated areas. The evaluation and processing of the high-resolution micrographs
was performed using the ImageJ software [50].

2.5. Surface Chemical Characterization

The surface composition of the as prepared and reduced catalysts as well as the chem-
ical states of their components were investigated via X-ray photoelectron spectroscopy
(XPS) using an Omicron EA 125 electron spectrometer (Omicron Nanotechnology GmbH,
Taunusstein, Germany) operated in the constant analyzer energy mode (pass energy 30 eV,
resolution around 1 eV). The photoelectrons were excited using MgKα radiation. In or-
der to follow the effect of the reductive pre-treatment on the surface chemistry of the
as prepared catalyst, a hydrogen exposure series in 100 mbar H2 for 1 h at different
temperatures (room temperature, 100 ◦C, 200 ◦C and 300 ◦C) was performed in the high-
pressure/high-temperature treatment chamber of the spectrometer without exposure to
ambient conditions. This treatment was completed by re-oxidation in O2 or air at room
temperature. Spectral information was collected after all the treatment steps. The spectra
were processed using the software Casa XPS [51] by fitting the data to a combination of
Gaussian–Lorentzian peaks with linear or Shirley backgrounds. The quantitative anal-
ysis was performed using the software XPS MultiQuant [52,53], assuming there was a
homogeneous distribution of the components as described in our previous studies.

The surface sensitivity of the XPS method is determined by the inelastic mean free
path of the photoelectrons, which is dependent on the kinetic energy of the electrons. In
general, the mean free path curve has a broad minimum approaching 0.4–0.5 nm, i.e.,
one or two monolayers around 40–100 eV then it gradually increases, reaching 2–3 nm
around 1000 eV [54]. The major contribution to the intensity of a given photoelectron peak
arises from the atoms located no deeper than one to two times the inelastic mean free path.
Qualitatively, it means that if a surface is covered by a thin overlayer, the intensity of the
lower kinetic energy peaks is suppressed to a much higher extent than that of the higher
kinetic energy peaks in comparison to the case of the uncovered surface. In this sense, the
intensity ratio of a low and high kinetic energy Pt peak can serve as an indicator of the
buried or exposed state of the surface Pt species. In order to exploit this effect for assessing
the state of the Pt particles, the spectra of a low energy Pt feature (Pt NOO Auger peak at
64 eV kinetic energy, mean free path around 0.4 nm) were recorded simultaneously with
the Pt 4f photoelectron peak (at 1180 eV kinetic energy for MgKα excitation, mean free path
around 3 nm) in the same mode of the energy analyzer (fixed retard ratio set to 7) and the
intensities were determined as the area under the peak after background subtraction.

2.6. Electrochemical Characterization

The as prepared and reduced electrocatalysts were investigated using cyclic voltamme-
try (CV) and COad stripping voltammetry that were completed by a short (500 CV cycles)
and long (5000 CV cycles) stability assessment. The measurements were performed in a
conventional three-electrode electrochemical glass cell using a Biologic SP150 potentiostat
and the EC-LAB software package (version 11.31) (BioLogic, Seyssinet-Pariset, France). The
working electrode (glassy carbon GC d = 0.3 cm, geometric surface A = 0.0707 cm2) was
polished before each test to remove any traces of organic impurities. The catalyst ink was
prepared using the standard method described in our previous work [27]. The applied
electrolyte was 0.5 M H2SO4. Pt was used as counter electrode and the reference electrode
was a reversible hydrogen electrode (RHE). All the potentials were given on RHE scale.

The electrochemically active surface area (ECSA) of the electrocatalysts was deter-
mined from the charge needed for oxidation under potentially deposited hydrogen [55]
using a conventional baseline correction as described in our previous studies [26,27].
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3. Results and Discussion

First, a structural description of the as prepared and reduced Pt/Ti0.8Sn0.2O2-C elec-
trocatalysts will be given. Afterwards, the surface chemistry peculiarities of the catalysts
will be explored, and finally their electrochemical properties will be discussed and related
to the presented structural and surface chemical information.

3.1. Structural Characteristics of the as Prepared and Reduced Pt/Ti0.8Sn0.2O2-C Catalysts

The composition and structure of the samples were investigated using XRD and
TEM/STEM that were completed using elemental mapping. The X-ray diffraction patterns
of the bare Ti0.8Sn0.2O2-C composite support, the as prepared electrocatalyst and its reduced
counterpart are shown in Figure 1.
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Figure 1. X-ray diffraction patterns of (a) the Ti0.8Sn0.2O2-C composite support, (b) the as prepared 
Pt/Ti0.8Sn0.2O2-C electrocatalyst and (c) the Pt/Ti0.8Sn0.2O2-C electrocatalyst reduced at 200 °C in a 
hydrogen flow. The expected reflection positions of rutile (JCPDS 21-1276), SnO2 (JCPDS 41-1445) 
and platinum (JCPDS 04-0802) are shown as bar graphs. 
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The lattice parameters obtained from the reflection angles are listed in Table 1. A slight 
increase with respect to the unit cell dimensions of pure rutile TiO2 was caused by the 
incorporation of Sn into the lattice. 

Figure 1. X-ray diffraction patterns of (a) the Ti0.8Sn0.2O2-C composite support, (b) the as prepared
Pt/Ti0.8Sn0.2O2-C electrocatalyst and (c) the Pt/Ti0.8Sn0.2O2-C electrocatalyst reduced at 200 ◦C in a
hydrogen flow. The expected reflection positions of rutile (JCPDS 21-1276), SnO2 (JCPDS 41-1445)
and platinum (JCPDS 04-0802) are shown as bar graphs.

The diffraction patterns demonstrated the exclusive presence of a rutile-type oxide.
No indication of another phase-like crystalline SnO2 or anatase-type TiO2 was observed.
The lattice parameters obtained from the reflection angles are listed in Table 1. A slight
increase with respect to the unit cell dimensions of pure rutile TiO2 was caused by the
incorporation of Sn into the lattice.

Table 1. Characterization of the Ti0.8Sn0.2O2-C composite support and the as prepared and reduced
Pt/Ti0.8Sn0.2O2-C electrocatalysts using XRD.

Sample ID
Crystallite Sizes (nm) a

Lattice Parameters, Å b Sn Substitution, % c

Rutile Pt

Ti0.8Sn0.2O2-C composite 12 n/a a = 4.61, c = 2.98 ~10
Pt/Ti0.8Sn0.2O2-C as prepared 10 3.3 a = 4.61, c = 2.98 ~10

Pt/Ti0.8Sn0.2O2-C reduced 8–9 4.1 a = 4.62, c = 2.99 ~10–20
a Estimated by the Scherrer formula; b lattice parameters of the rutile phase (pure rutile TiO2: a = 4.593 Å,
c = 2.959 Å), c relative amount of incorporated Sn determined by Vegard’s law [56].

The extent of the tin incorporation estimated from the lattice parameter changes using
Vegard’s law [56,57] is also given in Table 1. The data indicated an approx. 10–15% doping
level. As the estimated extent of the Sn incorporation was lower than the nominal tin
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content, the formation of a disordered tin-oxide containing phase seemed to be probable.
According to the Scherrer formula, the oxide crystallite sizes were around 10 nm.

Pt loading caused no obvious change in the rutile reflections. The broad peaks arising
from Pt could be explained by the well-dispersed nature of the platinum particles, as
demonstrated by the small particle size estimated using the Scherrer formula. A certain
enhancement of the Pt-related reflections was evident after the reductive treatment, which
suggested a slight particle size increase even at a relatively low temperature.

The EDS analysis over large sample areas resulted in composition values close to
the nominal data for both the as prepared and reduced electrocatalysts. The Ti:Sn atomic
ratio was approx. 4–5:1 (close to the nominal 4:1). The oxide:carbon weight ratio of
80–90:10–20 indicated that slightly more oxide was present in the analyzed area than the
nominal value, while the Pt content was approx. 20–21 wt.%, which was in excellent agree-
ment with the expectations. No composition change was detected in the reduced sample.

An overview of low magnification TEM micrographs of the samples, as shown in
Figure 2, evidenced the generally homogeneous appearance of the electrocatalysts. The
small particles with dark contrast were identified as Pt while the oxide component had a
much weaker contrast.
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The electron diffraction patterns of both the as prepared and reduced catalysts were
dominated by rings in the rutile phase. A broad band of overlapping rings arising from
the lattice planes with d-spacings between 0.233–0.197 nm contained the most intense
Pt-related features (the (111) and (200) rings at d-spacing around 0.227 nm and 0.196 nm,
respectively). Face-centered cubic Sn–Pt alloys can also contribute to this region (e.g.,
Pt3Sn(111) at 0.231 nm [58]), along with weaker rutile reflections (such as (200), (111) or
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(210)). The diffraction patterns, therefore, confirmed the coexistence of rutile and Pt/alloy
crystallites in both the as prepared and reduced systems.

The Pt particles were homogeneously dispersed in the as prepared catalyst and their
size distribution was narrow with an average size of 2.3 ± 0.5 nm. The reduction at 200 ◦C
initiated the enlargement of certain particles, leading to a broader size distribution and
a shift of the average particle size to 4.4 ± 1.1 nm. Note that the evaluation of the XRD
patterns essentially suggested the same crystallite sizes for Pt (Table 1).

The microstructure of the as prepared and reduced catalysts, along with elemental
maps of the depicted regions, is compared at higher magnification, as shown in Figure 3.
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Figure 3. TEM micrographs and elemental maps for (a) the as prepared Pt/Ti0.8Sn0.2O2-C electrocata-
lyst and (b) the Pt/Ti0.8Sn0.2O2-C electrocatalyst reduced at 200 ◦C. The locations of the details A and
B are indicated by yellow rectangles in the micrographs. The STEM/EDS elemental maps correspond
to the area of the red rectangle in (a) and to the entire image area in (b). Color code: red: Pt, green: Ti,
blue: Sn.
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As far as the as prepared Pt/Ti0.8Sn0.2O2-C catalyst (Figure 3a) is concerned, the
analysis of the lattice spacings and the comparison with the elemental maps confirmed that
the roundish small dark objects were indeed Pt particles that homogeneously covered the
catalyst surface. The 10–20 nm well-defined grey objects were rutile crystallites, which were
faceted and relatively homogeneously covered the carbonaceous backbone. The d-spacings
measured on these particles were very close to that of pure rutile (see details A and B),
although the difference between the parameters of pure and slightly Sn-doped rutile was
in the range of the uncertainties in the TEM measurements. As details A and B revealed,
the Pt particles were very often closely associated with the oxide grains. The Ti and Sn
content was concentrated into oxide particles (the maps of Ti, Sn and O (not shown) were
almost congruent). The Ti:Sn ratio measured using STEM-EDS on the oxide particles (4–5:1)
corresponded relatively well to the nominal value and the average value obtained over
larger sample areas.

In fact, it was repeatedly observed in the literature of sol–gel synthesized Sn-doped
TiO2 materials that the Sn introduction interferes with the rutile particle size growth during
high-temperature treatments [59–61]. This effect was generally attributed to the formation
of a segregated tin-oxide layer on the surface of the rutile crystallites. Therefore, the pres-
ence of a Sn-rich surface oxide would not be surprising in the systems investigated herein.

As already identified by the XRD investigations and particle size analysis, the most
obvious consequence of the reductive treatment was a certain growth of the particles with
dark contrast (Figure 3b). These particles retained the Pt-like face-centered cubic structure
with lattice parameter changes that did not exceed the experimental uncertainties, although
some Sn–Pt alloying could not be excluded. The rutile crystallites remained observable and
retained their 10–20 nm size. However, they exhibited a rounder shape and their contour
was more diffuse. As detail A demonstrated, the smaller metal particles were almost always
closely associated with the oxide crystals. However, overlapping metal and oxide lattices
were frequently characteristic for the larger Pt/alloy particles (detail B). The STEM-EDS
elemental map indicated that while the distribution of Ti and Sn remained congruent, they
appeared more homogeneously dispersed over the carbonaceous backbone, potentially
suggesting a spreading of the oxide material during the reductive treatment.

It should be noted that Pt particles are usually more stable against particle size changes
during low temperature annealing than observed herein. Early electrochemical investiga-
tions already revealed [62] and later TEM studies confirmed [63,64] that Pt nanoparticles
deposited on different types of high surface area carbon supports are relatively stable below
300 ◦C annealing/reduction temperatures and noticeable particle size growth is induced
only by temperatures exceeding 600 ◦C. In Pt/TiO2 systems, scant Pt particle growth was
experienced after reductive pre-treatment up to 400 ◦C [65], under n-hexane reforming
conditions up to 500 ◦C [66] or even during high-temperature vacuum annealing [67],
demonstrating the nanoparticle stabilizing property of the support. At the same time, the
introduction of tin can readily induce growth in Pt particles, and a significant increase in
the particle size during the modification of platinum with tin was observed, leading to
the formation of a Pt–Sn alloy [14]. Accordingly, we believe the interaction between Sn
and Pt is responsible for the metal particle size growth experienced during the present low
temperature reduction experiment.

3.2. Surface Chemistry of the as Prepared and Reduced Pt/Ti0.8Sn0.2O2-C Catalysts
3.2.1. Surface Composition and Chemical States of the as Prepared and Reduced Catalysts

The XPS investigations were performed to explore the surface composition of the elec-
trocatalysts and determine the bonding environment of the surface species. The analysis
of these data was essential to obtain insight into the nature of the interaction between the
oxide component of the support and the Pt particles. The Pt 4f spectra were evaluated as
described in our other works [68]. The processing of the Sn 3d spectra involved correction
for the satellite structure arising from the Sn 3d3/2 electrons excited by the MgKα3,4 radi-
ation (the resulting spectral features overlap with the low binding energy region of the
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Sn 3d5/2 peak), followed by modeling the spectra with a 3d5/2-3d3/2 spin–orbit doublet
with a symmetric peak shape for describing the ionic (Sn4+) contributions and with another
doublet at lower binding energies for modeling the more reduced/metallic tin signals
(if present).

In agreement with the results of the bulk-sensitive analytical methods (and the nominal
composition), the Pt content of the catalysts measured using XPS was approx. 20–22 wt.%
and the oxide:carbon weight ratio was close to 80:20. The actual composition data can be
seen in Table S1 (Supplementary Materials). As the quantitative evaluation of the XPS data
was based on the assumption of the homogeneous distribution of the components, this
agreement confirmed the homogeneity of the samples on the characteristic length scale
of XPS (~10 nm). This homogeneity was indeed observed on the electron micrographs
(Figure 3). At the same time, XPS revealed Ti:Sn ratios at approx. 2:1 on the catalyst surface,
instead of the 4–5:1 value characteristic for the bulk. This overrepresentation of Sn on
the surface could be explained by the formation of a tin-rich overlayer covering the rutile
crystals. Note that the XRD data, indicating a lower tin incorporation level than the nominal
value (Table 1) as well as the disruption of the growth of the rutile crystallites observed
by TEM, resulting in relatively small oxide particles (Figure 3) both pointed in the same
direction. Importantly, neither XRD, electron diffraction patterns nor high-resolution TEM
images contained direct indications regarding the tin-rich phase. Thus, we believe the
overlayer was disordered and invisible for the diffraction-based techniques. The reductive
pre-treatment caused no significant changes in the composition values (Table S1).

As expected for these systems, the carbon content of both catalysts was predom-
inantly graphite-like with the most intense C 1s peak at 284.4 eV binding energy [69],
accompanied by small signals from oxygen-bound carbon species. The O 1s spectra were
always dominated by contributions due to metal oxides (Ti- and Sn-oxides) at approx.
530.3–530.5 eV binding energy [69], while a weaker high binding energy peak at approx.
531.5–532 eV indicated the presence of hydroxyl groups on the surface. Practically no
difference was observed between the C 1s and O 1s spectra of the as prepared and re-
duced catalysts.

Table 2 summarizes the binding energies of the Pt 4f7/2, Sn 3d5/2 and Ti 2p3/2 core
levels measured for the catalysts along with their assignments in the initial state (i.e.,
air-exposed without any in situ treatment in the electron spectrometer).

Table 2. Core level binding energies for the Pt 4f7/2, Sn 3d5/2 and Ti 2p3/2 peaks (in the initial
air-exposed state).

Core Level
As Prepared Reduced Assignment

Binding Energy (eV) a

Pt 4f7/2

71.3 (93%) 71.3 (89%) metallic Pt [69]
72.6 (4%) 72.6 (9%) Pt2+: PtO, Pt(OH)2 [70]
75.1 (3%) 75.1 (2%) Pt4+: PtO2 [70]

Sn 3d5/2 487.0 (100%)
485.4 (5%) (quasi)metallic Sn

486.9 (96%) Sn4+: SnO2 [69]

Ti 2p3/2 459.1 459.0 Ti4+: TiO2 [69]
a numbers in parentheses indicate the relative contribution of the given chemical state.

The Pt content was predominantly metallic for both catalysts, although small ionic
contributions were always observed, which were attributed to a certain degree of oxidation
upon air exposure. The Pt 4f spectra of the as prepared and reduced catalysts are presented
in Figure S1 in the Supplementary Materials. In all the cases, Ti was completely oxidized.
The Sn 3d spectra were dominated by a 3d5/2-3d3/2 spin–orbit doublet feature with peaks
at approx. 487.0 and 495.5 eV (Figure 4a and Figure 4b, uppermost trace). The doublet was
assigned to fully oxidized Sn (Sn4+ ions) in a SnO2-like environment [69]. This assignment
was confirmed by the observation of the Sn M4N45N45 Auger peak, which appeared at
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approx. 431.7–432.0 eV kinetic energy, corresponding to the Auger parameter values (sum
of the Sn 3d5/2 binding energy and the Sn M4N45N45 kinetic energy) around 919 eV, in
excellent agreement with the literature data for Sn4+ [69]. In addition to the dominant
fully oxidized component, a rather weak reduced tin contribution was recognized in the
spectrum of the air-exposed reduced electrocatalyst with a Sn 3d5/2 binding energy slightly
above 485 eV (Figure 4b middle trace). Its assignment requires further considerations.
While the reference data for Pt, TiO2, Sn or SnO2 are readily available in data bases [69],
information on closely coupled Sn–Pt systems can be obtained from model experiments [71,
72]. Based on these investigations, the Sn 3d5/2 binding energies of pure metallic tin and
metallic Sn–Pt alloys seemed to be essentially identical. Additionally, a special tin state was
identified that exclusively appears on oxidized alloy surfaces. This state is characterized
by an intermediate binding energy between those of the metallic and ionic tin forms,
namely, around 485.5 eV and is interpreted as tin species alloyed with surface Pt atoms
but still partly O-bound [71–73]. In fact, in air-exposed Pt-Sn alloy nanoparticles, the
lowest binding energy tin species is frequently observed around 485.4–485.6 eV. Therefore,
it is usually identified as the Sn0 state, although it is sometimes noted that its binding
energy is unusually high [11,19,74,75]. Considering this information, the weak reduced tin
component observed in the spectrum of the reduced electrocatalyst was identified as this
quasi-metallic tin state.
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The dominance of the Sn4+ species at the surface of the electrocatalysts indicated that
the (presumably) disordered tin-rich layer evidenced by the quantitative XPS measurements
was completely oxidized.
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3.2.2. In Situ Reductive Treatment of the Electrocatalyst Samples

In order to obtain a more detailed insight into the interaction of Pt with the Sn-
rich surface of the support, a series of in situ reduction treatments of the as prepared
Pt/Ti0.8Sn0.2O2-C electrocatalyst was performed in the preparation chamber of the electron
spectrometer at room and elevated temperatures. The reduction series was followed by
oxygen and air exposure to assess the re-oxidation tendency of the materials, while the
final step was a repeated reduction. The experiment was designed to model the reduction
treatment (followed by the inevitable air exposure) for the preparation of the reduced
Pt/Ti0.8Sn0.2O2-C electrocatalyst.

The Pt 4f spectra measured during this experiment revealed a complete reduction of
Pt even after a slight hydrogen exposure. Otherwise, only marginal line shape changes
were observed during the treatment series (Figure S1, Supplementary Materials).

The Sn 3d spectra collected during the in situ treatment series of the as prepared
catalyst are shown in Figure 4a. In Figure 4b, the slight difference between the Sn 3d5/2 line
shapes for the as prepared and reduced catalysts is emphasized, along with the spectral
response of the latter system to a re-reduction treatment.

As already discussed, the symmetric and narrow Sn 3d peak shapes measured on
the as prepared Pt/Ti0.8Sn0.2O2-C electrocatalyst in its initial air-exposed state, along
with the Sn 3d5/2 binding energy around 487.0 eV, evidenced that Sn was completely
oxidized (Figure 4a). Nevertheless, even after room temperature hydrogen exposure, a
slight asymmetry emerged at the low binding energy part of the Sn 3d envelope, indicating
the formation of a reduced component. The curve fitting revealed a Sn 3d5/2 binding energy
of 484.8–485.0 eV for this new state, which accounted for 5% of the total Sn content. The
binding energy of the reduced component was characteristic for metallic tin (Table 2 [69]).
The elevation of the reduction temperature resulted in marginal shifts of the reduced Sn
contribution, along with its continuous increase (10% at 100 ◦C, 20% at 200 ◦C and 40%
at 300 ◦C). However, the described reduction of Sn was almost completely reversible. A
decrease in the reduced tin signal to 10% of the total Sn intensity occurred after a few hours
of room temperature O2 exposure, while the metallic Sn 3d5/2 peak remained slightly above
the 485.0 eV binding energy. A longer (36 h) air exposure did not result in a further decrease
in the reduced tin content. However, a shift in the 3d5/2 peak of the reduced component
was observed at 485.5–485.6 eV, which indicated the formation of quasi-metallic tin species.
Finally, a repeated reduction at 100 ◦C almost completely restored the situation observed
before the oxidative treatments by increasing the reduced Sn content to 30%, accompanied
by a shift in the metallic Sn 3d5/2 peak to 485.0–485.2 eV.

As shown in Figure 4b, the Sn 3d spectra of the as prepared electrocatalyst and its
counterpart ex situ reduced at 200 ◦C in a H2 flow in the initial (air-exposed) state were
rather similar, although a small contribution around 485.4–485.5 eV accounting for approx.
5% of the total intensity revealed the presence of quasi-metallic tin in the latter system.
After a re-reduction of the latter sample in the electron spectrometer at 100 ◦C, the reduced
Sn contribution increased to approx. 10% of the total tin signal and its 3d5/2 binding energy
shifted to 485.1 eV, indicating the formation of metallic tin species.

A comparison between Figures 4a and 4b confirmed the correspondence between the
re-reduction behavior of the as prepared catalyst in situ reduced in the electron spectrometer
and the ex situ reduced catalyst. Therefore, from a surface chemistry point of view, the
two systems can be regarded as identical and the in situ reduction series modeled the
changes induced by the reductive pretreatment.

In previous investigations, it was established that easy reduction of Sn-oxides to
the metallic state was feasible only in the atomic vicinity of Pt sites [76–78]. Therefore,
the appearance of reduced tin species even after room temperature hydrogen exposure
confirmed the close contact of Pt with the tin-containing oxide component of the composite
support, as already established by the TEM investigations. At the same time, according
to the literature data [71–73] as well as to our own observations [11,19,79] on systems
containing tin species on Pt, the formation of the quasi-metallic tin state as the result of
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oxidation could be used as a spectroscopic fingerprint of Sn–Pt alloying. Since the quasi-
metallic state was not observed in the initial state of the as prepared catalyst, we believe that
the Pt particles contained scant or negligible amounts of surface tin adsorbates and the tin
species reduced during the first hydrogen exposure could be mostly identified as moieties
bound around the perimeter of the Pt particles. A reduction at elevated temperatures
certainly caused the migration of tin to the surface of the Pt particles, as evidenced by the
appearance of the quasi-metallic state after air exposure.

Very similar conclusions were drawn from studying the development of the Sn MNN
Auger peaks as well as the Sn 3d5/2–Sn M4N45N45 Auger parameter during the treatment
series in the electron spectrometer. The Sn Auger spectra for the as prepared Pt/Ti0.8Sn0.2O2-
C electrocatalyst are shown in Figure 5a. In the initial air-exposed state, the Sn MNN Auger
spectrum was essentially identical to that of SnO2, with the Sn M4N45N45 peak at a kinetic
energy of 432.0 eV (Auger parameter of 919.0 eV), which confirmed the fully oxidized
nature of tin in the as prepared catalyst. While the completely oxidized signal at 432.0 eV
kinetic energy was persistent during the reduction series (arising from ionic tin either
incorporated into the rutile particles or at least located away from the Pt particles), a weak
but clear component appeared in the kinetic energy range characteristic for metallic tin
after the 100 ◦C step. After the reductive treatment at 200 ◦C and especially 300 ◦C, a
well-defined peak emerged at a kinetic energy of 436.3 eV, which was considerably lower
than that measured in the case of pure metallic tin (around 437.0 eV), resulting in an Auger
parameter of 921.4–921.5 eV that was clearly below the characteristic value for metallic tin
(approx. 922 eV). Since the kinetic energy of this peak and the resultant Auger parameter
coincided with the values measured in the reduced Sn–Pt alloy catalysts [79], it was safe to
conclude that during the 200–300 ◦C reduction, the transfer of tin to the Pt particles and
subsequent tin–platinum alloying occurred in the composite-supported electrocatalyst. It
is interesting to note that, due to the alloying, the state of tin after O2 or air exposure was
different from the initial state of the catalyst. Even if the Sn 3d spectra suggested almost
complete re-oxidation (apart from the small quasi-metallic fraction), the increased intensity
of the Sn M4N45N45 Auger peak in the kinetic energy region above 432 eV evidenced the
presence of a range of partially oxidized tin species. These were presumably protected
from complete oxidation by their Pt-bound nature. The situation was analogous to the case
of Sn–Pt alloy nanoparticles, where a broad Sn M4N45N45 Auger band at approx. 433.1 eV
kinetic energy emerged after oxidation due to the formation of incompletely oxidized tin
species on the surface of the alloy particles [19].

A particular feature of the weakly oxidized Sn–Pt surface alloys (which are mainly
in the quasi-metallic state) is that they are readily reduced upon hydrogen exposure. The
disordered monolayers are particularly reactive, resulting in a completely reduced tin
state even at room temperature [73]. Reduction of thicker disordered tin-oxide layers may
require elevated temperatures. It seems that reduction of these tin species occurs by the
spillover of hydrogen from nearby Pt sites where hydrogen is activated.

In this sense, the response of the electrocatalysts for the surrounding atmosphere
is reversible. Under oxidative conditions, a range of partially oxidized tin species is
developed in the atomic vicinity of the Pt sites, which, under reductive conditions, are
readily transformed into a metallic Sn–Pt alloy state. Sn species not associated to Pt were
not found to be influenced by this reversible redox transition. Instead, they retain their
fully oxidized nature. However, the transformation leading to Sn–Pt alloying—induced
by the reductive treatment—is irreversible as the initial state of the catalysts could not be
restored using mild oxidative treatments.

In fact, a known peculiarity of the Sn–Pt alloy systems is their dynamic response to the
surrounding ambient. Earlier works [80,81] involving our own results [79] demonstrated
that while Sn–Pt alloy nanosystems are metallic under reductive conditions, the segregation
of tin to the surface accompanied by its oxidation occurs in oxidative environments.
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Figure 5. (a) Sn MNN Auger spectra for the as prepared Pt/Ti0.8Sn0.2O2-C electrocatalyst during
in situ treatments in the electron spectrometer. For comparison, the reference spectra measured on
SnO2 and the bulk metallic tin are also shown. (b) Pt NOO (64 eV)/Pt 4f (1180 eV) intensity ratio
recorded at different stages of the in situ treatment series for the as prepared catalyst sample. Error
bars represent the scatter in the ratio at a given treatment step, which was dominated by fluctuations
in the measurements of the Pt NOO intensity.

In addition to the spectroscopic results discussed so far, a semiquantitative analysis
also confirmed the reversible formation of a tin-oxide layer on the alloyed Pt particles during
the in situ reduction/re-oxidation of the as prepared Pt/Ti0.8Sn0.2O2-C electrocatalyst. In
this experiment, the variation of the intensity ratio of the low kinetic energy Pt NOO Auger
transition and the high kinetic energy Pt 4f photoelectron peak was followed during the
in situ treatment sequence. As described in Section 2.5, the intensity ratio is sensitive for
the buried/exposed state of the Pt-containing particles. The observed variation of the
intensity ratio is shown in Figure 5b. In the initial air-exposed state, a ratio close to that of a
clean Pt surface was observed. It hardly changed during the reduction steps, indicating
that Pt was a consistent surface species. However, the O2 exposure and especially the air
exposure at the end of the reduction series resulted in significant decrease in the ratio,
which was interpreted as a sign of burying Pt by a thin Sn-oxide overlayer. While 100 ◦C
annealing in vacuum hardly influenced the ratio, its increase almost to the original value
after a re-reduction at 100 ◦C indicated that the situation after the reduction steps could
be restored.

To summarize this subsection, the surface spectroscopy investigations revealed con-
siderable Sn–Pt alloying induced by a reductive treatment in the 100–300 ◦C range and a
reversible encapsulation of the alloyed particles after air exposure by a Sn-oxide overlayer.
However, the quantitative data suggested that the extent of Sn–Pt alloying was tuneable
depending on the choice of the reduction temperature, which offers possibilities for the
optimization of the functional properties of the catalysts.

Both the easy Sn–Pt alloying and the dynamic redox response of the alloys can be
explained by the thermodynamics of the system. As the enthalpy of mixing Sn and Pt is
strongly negative in the entire composition range [82], there is a significant driving force
for alloying. Thus, fast mixing can be expected if metallic tin species (formed by a spillover
of H activated on Pt) are in the atomic vicinity of Pt. On the other hand, the surface energy
of SnO2, and even that of metallic Sn, is lower than that of pure Pt [83–85]. Therefore, there
is a clear driving force for the segregation and oxidation of tin at the surface of the alloyed
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particles, in analogy to the classical strong metal-support interaction phenomenon. Since
the activation energies for both the reduction and oxidation of tin on the alloyed surface are
negligible [80], both processes are initiated spontaneously and immediately upon changing
the atmosphere.

3.3. Electrocatalytic Properties of the As Prepared and Reduced Pt/Ti0.8Sn0.2O2-C Catalysts

According to the surface analytical results obtained during the in situ reduction series,
the treatment at 200 ◦C resulted in less severe surface chemical changes compared to the
treatment performed at 300 ◦C. Therefore, a hydrogen treatment temperature of 200 ◦C
was selected for the preparation of the reduced electrocatalyst sample, as mentioned
previously (see Section 2.3). The electrochemical performances of the as prepared and
200 ◦C reduced Pt/Ti0.8Sn0.2O2-C catalysts were compared using a three-electrode system.
The performed tests involved cyclic voltammetry (CV), COads stripping voltammetry and
a stability assessment that used continuous cycling between 0.05–1.00 V potential limits.

Figure 6 summarizes the cyclic voltammograms of the as prepared and 200 ◦C hy-
drogen reduced electrocatalysts obtained before and after the short 500-cycle stability
test runs. Certain electrochemical features derived from the voltammograms are listed
in Table 3. Briefly, the voltammograms were dominated by the desorption/adsorption
peaks of underpotentially deposited hydrogen in the 50–350 mV potential range and the
oxidation/reduction of Pt above 800 mV. Additionally, in the double layer region (be-
tween 300–700 mV), weakly expressed peaks of the quinone–hydroquinone redox couple at
550 mV were also detected. The quinone-type-oxygen group usually appears on the surface
of carbonaceous materials oxidized with nitric acid [86,87], involving e.g., MWCNTs-
supported Pt/SnOx composite catalysts [88]. It should be noted that we observed a similar
shape of CVs on the Pt electrocatalysts supported on TiO2-C hybrid materials (C: Black
Pearls 2000 and graphite oxide (GO) derived carbon) that were prepared using a similar
procedure [89].
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In addition to the quinone-type-oxygen groups, the redox peaks in the double layer
region can also be associated with tin species. The redox peaks reported previously in model
Sn–Pt systems [90,91] observed at 400–600 mV were usually attributed to the Sn(II)/Sn(IV)
redox couple for tin-oxide/hydroxide species immobilized onto Pt. It should be noted
that these Sn(II)/Sn(IV) redox peaks were much more pronounced and depended on the
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surface concentration of tin. This is not our case. Our preliminary experiments indicate the
independence of the magnitude of these peaks from the surface concentration of tin [48].
It should be noted that an assumption was also made about the possibility of attributing
these surface redox pairs to the adsorption of sulfate anions [90,91]. However, based on the
results of model Sn–Pt catalytic systems measured in various electrolytes, this hypothesis
was not confirmed.

Table 3. Electrochemical performance of the as prepared and reduced Pt/Ti0.8Sn0.2O2-C catalysts.

Sample ID ECO,onset, a mV ECO,max, b mV
ECSA1, c

m2/gPt

∆ECSA500,
% d

∆ECSA5000,
% d

As Prepared Pt/Ti0.8Sn0.2O2-C ~200 795 (sh: 695) 53.2 9.1 41.9
775 (sh: 695) *

Reduced Pt/Ti0.8Sn0.2O2-C ~200 765 (sh: 695) 39.7 6.8 32.9
765 (sh: 695) *

a The onset potential for the CO electrooxidation; b the position of the main CO stripping peak measured on
fresh catalysts and after the 500-cycle stability test (indicated by *); c the ECSA1 value obtained on fresh catalysts;
d ∆ECSA500 and ∆ECSA5000 were calculated from the charges originated from the hydrogen desorption in the
first and N= 500th or 5000th cycles, according to the Equation ∆ECSAN = {1 − (ECSAN/ECSA1)} × 100%;
sh = shoulder.

The voltammograms presented in Figure 6 are similar to those reported for other Ti–Sn
mixed oxide-containing Pt/Ti(1−x)SnxO2 electrocatalytic systems [25,92]. In particular, the
electrochemically active surface area (ECSA) deduced from the underpotentially deposited
hydrogen adsorption/desorption peaks (Table 3) is comparable to those mentioned in the
literature (40 to 60 m2 g−1) [92].

In addition, the CVs of the as prepared and H2 treated samples had similar fea-
tures, although the reduced sample showed a slight decrease in the hydrogen adsorp-
tion/desorption peaks compared to those obtained on the as prepared system. As a result,
the initial ECSA value of the as prepared catalyst after reduction decreased from 53.2 to
39.7 m2/gPt (Table 3). The ECSA loss in this system due to reduction can be attributed
to the combined effect of the broadening of the Pt size distribution (formation of larger
particles during the reduction, see the TEM results) and the encapsulation of the alloyed
particles by segregated Sn-oxides (as suggested by the electron spectroscopy results).

The performance of both the as prepared and H2-reduced electrocatalyst was studied
using short 500-cycle and long-term 5000-cycle electrochemical stability tests (Table 3 and
Figure 7). The values of the electrochemically active Pt surface area loss (∆ECSA) as a
function of the number of cycles of the stability test are presented in Table 3. In the case
of the as prepared catalyst, a continuous ECSA decrease approaching 10% by the end of
the 500-cycle test (Figure 7a) and more than 40% after the long-term test (Figure 7b) was
recorded. On the other hand, an initial ECSA increase was observed for the reduced sample
at the beginning of the short test (Figure 7a). It can be interpreted as the cleaning of the
catalyst surface from residual impurities or oxides that cause the blocking effect [45,93,94].

It should be noted that we previously observed similar behavior on the alloy-type
Sn–Pt/C electrocatalysts prepared using controlled surface reactions [19]. In analogy with
the results of the surface chemistry investigations described above, it was suggested that
after the contact of the alloy-type Sn–Pt/C samples with air, a site-blocking effect arose
due to the segregation of tin, probably in the form of a thin layer of SnOx over the Pt–
Sn alloy phase (and/or Pt), which was the reason for a pronounced decrease in the H2
adsorption/desorption. It is known that SnO2 suffers from poor stability at high potentials
since SnO2 can dissolve under acidic conditions [95]. It has been shown [11,19] that with
an increase in the number of cycles of cyclic polarization, there is a slight increase in the
value of the ECSA, which is associated with the cleaning of the electrode surface from
SnOx species.
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The initial ECSA increase in the reduced catalyst turned into a decrease after approx.
100 cycles. Nevertheless, the decrease remained moderate and the relative ECSA loss was
always smaller than that of the as prepared sample, indicating the stability enhancement
effect of the reductive pre-treatment. However, the calculation of the ECSA from the
hydrogen adsorption/desorption region included some uncertainties. It is known that
capacitive currents, which originate from double layer charging, have to be subtracted
before HUPD charges can be calculated. Different methods of background current correction
can be used, such as (i) a constant capacitive current in the HUPD potential range (a
straight line correction) or (ii) the CO stripping curve baseline correction (which yields to
considerably higher HUPD charges) [96,97]. Both methods exhibited inaccuracies, but the
difference between the as prepared and reduced catalysts at the end of the test was large
enough to demonstrate the beneficial effect of the reductive treatment.

For the investigation of the CO tolerance of the catalysts and to obtain electrochemical
information about the surface chemistry of the system, the oxidation of CO adsorbed
(COads) on the catalyst surface from the CO-saturated electrolyte was studied. The COads
stripping voltammograms for the as prepared and reduced catalysts obtained before and
after 500 cycles of the stability test are shown in Figure 8.
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As shown in Figure 8, the COads oxidation on these catalysts resulted in a broad feature
containing a shoulder and a main peak from ca. 200 to 850 mV. As presented in Table 3, for
both samples, the onset potential of CO electrooxidation (ECO,onset) was approx. 200 mV. A
slight difference was observed in the position of the maximum of the main CO oxidation
peak (795 mV for the as prepared catalyst and 765 mV for the reduced catalyst), while the
shoulder appeared at 695 mV in both cases.

According to the literature, the oxidation of CO on Sn-modified Pt/C catalysts follows
a bifunctional mechanism in which CO is adsorbed onto Pt, while Sn sites nucleate OHads
species at less positive potentials than Pt [98,99]. In this regard, it should be emphasized
that CO electrooxidation on Pt-based electrodes also occurs in the presence of OHads species,
which are formed on Pt/C in an acidic medium at E > 600 mV, but are available on the
surface of Sn-containing electrodes at potentials less than 100 mV.

It is well documented for the Pt/SnOx/C catalysts that the CO oxidation peaks sig-
nificantly broaden and split into at least two components. The peak at higher poten-
tial is usually attributed to the CO oxidation on Pt, while the lower potential shoulder
(≤700 mV) is ascribed to the CO oxidation on Pt close to the interface with adjacent tin-
oxide species [100]. In our previous studies [19], the COads stripping peak at ~700 mV was
attributed to CO electrooxidation on the Sn–Pt/C alloy-type electrocatalysts. In ref. [101],
the COads oxidation began at approx. 200 mV and exhibited only a single peak centered
at ~640 mV on the commercial Pt3Sn alloy catalyst (20 wt.%, E-TEK). Further studies of
platinum catalysts supported on tin oxide (Pt/SnOx) confirmed the COads oxidation on-
set potentials below 400 mV, indicating an increase in the CO electrooxidation capability
compared to state-of-the-art CO-tolerant PtRu/C catalysts [46]. Compared to these data, ad-
ditional positive values for both the ECO,onset (707 mV) and ECO,max (839 mV) were obtained
on a Ti0.9Sn0.1O2-C composite-supported Pt electrocatalyst by Li et al. [92]. Accordingly, the
electrochemical behavior of both the as prepared and reduced Pt/Ti0.8Sn0.2O2-C composite-
supported electrocatalysts reflected the known characteristics of the Pt/SnOx-containing
systems, confirming the importance of direct Sn–Pt interactions in determining the cat-
alytic properties.

Although the onset potential for COads oxidation as well as the potentials of the
features of the main CO oxidation envelope remained close in the reduced catalyst to
those in the as prepared sample, an essential change in the shape of the COads stripping
voltammogram was evident. The suppression of the main peak as well as the relative
enhancement of the shoulder region resulted in a voltammogram shape resembling those
observed for the Sn–Pt alloy electrocatalysts [19]. This observation was in agreement with
the conclusions drawn from the surface analytical investigations, which also suggested
Sn–Pt alloying upon reduction.

As shown in Figure 8, after the 500-cycle stability test of the as prepared catalyst,
the currents related to low-potential CO oxidation became less pronounced, and a certain
shift (~10–20 mV) of the main peak was observed towards less positive potential values
compared to that obtained on the fresh sample. It is possible that this shift was associated
with some agglomeration of Pt nanoparticles [102]. The qualitatively similar but more
moderate changes in the voltammogram of the reduced sample, along with unchanged
peak positions, identified its enhanced stability. The changes induced by cycling (involving
decreasing currents in the pre-peak region and a sharpening of the main peaks) may point
to the dissolution/deactivation of certain tin species responsible for the CO tolerance,
although the resistance of both the as prepared and reduced catalysts against CO poisoning
was maintained during the 500-cycle stability test.

4. Conclusions

Pt electrocatalysts were prepared on a novel Ti0.8Sn0.2O2-C-type composite support in
order to assess their performance as corrosion resistant replacements for Pt/C in PEMFC
applications and to identify the effect of reductive pre-treatment on the catalytic behavior.
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Structural investigations evidenced a good coverage of the carbon backbone by the
oxide phase and TEM images confirmed a close connection between the Pt particles and the
oxide crystallites. At the same time, the XRD data suggested a moderate tin incorporation
into the mixed oxide phase and XPS indicated the presence of a tin oxide-rich overlayer.
The XPS and electrochemical investigations both evidenced a strong coupling between the
surface Sn species and Pt.

The microstructure of the catalyst allowed for the anchoring of the Pt nanoparticles at
the oxide–carbon interface, leading to the formation of Pt–oxide–carbon triple junctions at
a high density, which was a prerequisite for high dispersion, stability and activity.

Our assumption was that reductive pre-treatment could further enhance this coupling
by initiating a solid state migration of support oxide-related species to the surface of the Pt
particles in analogy with strong metal-support interaction. The electrochemical stability
tests revealed a better long-term stability for the reduced system. At the same time, the XPS
and electrochemical investigations identified that an important structural change, Sn–Pt
alloying, occurred during the reductive treatment, which was the combined result of the
intimate connection of Pt and Sn surface species and the thermodynamics of the Sn–Pt
system. A consequence of the alloying was the reversible partial encapsulation of the metal
particles by a tin-oxide overlayer under oxidative conditions.

The presence of quasi-metallic tin species proved to be an excellent descriptor for the
alloying between Sn and Pt.

As the extent of alloying can be influenced by treatment parameters such as the
reduction temperature, the reductive pre-treatment can be identified as a suitable method
for modulating the metal-support interaction in these and other tin-oxide-containing Pt-
based electrocatalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13152245/s1, Figure S1: Pt 4f spectra of the as prepared
and reduced electrocatalysts; Table S1: composition of the as prepared and reduced electrocatalysts
determined using XPS.
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