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Abstract: Ni-modified Ag/SiO2 catalysts containing 0~3 wt.% Ni were obtained by impregnating
Ni species onto Ag/SiO2 followed by calcination and reduction. The catalysts’ performance in the
hydrogenation of dimethyl oxalate (DMO) to methyl glycolate (MG) was tested. Ag-0.5%Ni/SiO2

showed the highest catalytic activity among these catalysts and exhibited excellent catalytic stability.
The effects of the Ni content on the structure and surface chemical states of catalysts were investi-
gated by XRF, N2-sorption, XRD, TEM, EDX-mapping, FT-IR, H2-TPR, UV–vis, and XPS. The better
catalytic activity and stability of Ni-modified Ag/SiO2 (versus Ag/SiO2) are ascribed to the improved
dispersion of active Ag species as well as the higher resistance to the growth of Ag particles due to
the presence of Ni species.

Keywords: dimethyl oxalate; methyl glycolate; selective hydrogenation; nickel modification; Ag/SiO2

1. Introduction

Methyl glycolate (MG), containing both hydroxyl and ester groups, is an important
fine chemical [1–3]. As it has similar chemical properties to alcohol and ester, MG can
undergo various reactions such as carbonylation, hydrolyzation, and oxidation [4,5]. Many
traditional synthetic technologies, such as the carboxylation of formaldehyde and conden-
sation of methyl formate with formaldehyde [2,6,7], have been applied for the synthesis of
MG. However, disadvantages such as environmental pollution, harsh production process,
and low stability of catalyst are obvious [2,6,7]. Thus, the development of a green synthetic
method with high efficiency is warranted. The synthesis of MG by catalytic hydrogenation
of dimethyl oxalate (DMO) has been proposed as a more economical and environmentally
friendly route compared with other catalytic procedures [2,3,8–10].

The hydrogenation of DMO contains the successive hydrogenation of DMO to MG, MG
to ethylene glycol (EG), and EG to ethanol (EtOH) [11]. To make sure that the hydrogenation
of DMO stops at the formation of MG, catalysts with relatively weak hydrogenolysis
ability should be used. Ag-based catalysts such as Ag/MCM-41 [12], Ag/SBA-15 [13],
Ag/CNT [14], Ag/KCC-1 [15,16], Ag/SiO2 [17], Ag/AC-N [18], and Ag/AS [7] have
been reported for that purpose. However, the catalytic activity and stability should be
improved [19,20] in order to satisfy industrial demands and practical application.

The catalytic properties and stability of metallic catalysts can be improved by adding
a promoter [21–24]. The promoted catalysts can exhibit superior catalytic performance in
many reactions such as catalytic reforming [21], selective oxidation of alcohols [22], and
selective hydrogenation [23,24]. Recently, several Ag-containing promoted catalysts were
applied in the MG synthesis from selective hydrogenation of DMO [5,19,25]. For instance,
Zheng et al. [25] demonstrated that Au-Ag/SBA-15 showed high efficiency and revealed
that the changes of particle dispersion and electronic structure of metal particles promote
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the activity. Li et al. [19] and Zhou et al. [5] reported that both the catalytic activity and
stability of Ag-Ni/SBA-15 were higher than those of Ag/SBA-15. It is known that silica
sol is cheaper than SBA-15, and the nanoscale SiO2 particle is highly dispersed, so it is a
good support for loading metal components. Recently, our group found that the 1 wt.%
Ni modified 10% Ag/SiO2 prepared by a single-step ammonia-evaporation deposition-
precipitation method exhibited lower activity and selectivity than 10% Ag/SiO2 [26].

Herein, we report Ag-Ni/SiO2 catalysts with several Ni loadings for the vapor-phase
hydrogenation of DMO to MG. The catalysts were synthesized by ammonia evaporation
with cheap silica sol followed by simple impregnation of an aqueous Ni(NO3)2 solution.
The preparation method is different from that in our previous work [26] and leads to better
catalytic performance. The effects of Ni loadings on the physicochemical properties of Ag-
Ni/SiO2 were investigated via comprehensive characterization, and the structure–activity
correlation was also discussed.

2. Experimental
2.1. Materials

The analytical grade chemical reagents including AgNO3, Ni(NO3)2•6H2O, and aque-
ous ammonia solution were obtained from Adamas (Shanghai, China). The 30 wt.% silica
sol was purchased from Qingdao Haiyang Chemicals (Qingdao, China). All the above
reagents were used as received.

2.2. Preparation

Ag/SiO2 with a preset Ag loading of 10 wt.% was prepared by an ammonia-evaporation
method [26]. First, a certain amount of AgNO3 was dissolved in 150 mL of deionized water.
An aqueous ammonia solution was then added, and the mixture was stirred vigorously
for 30 min at 60 ◦C. A certain amount of 30 wt.% silica sol was added, and the mixture
was stirred vigorously for 4 h. The suspension, with an initial pH value of 11–12, was
heated at 90 ◦C to allow for the evaporation of ammonia, the decrease in pH value, and
the deposition of Ag species onto silica. The evaporation process was ended when the pH
value was 7–8. The precipitate was washed with deionized water three times, and the filter
cake was dried at 120 ◦C overnight to obtain Ag/SiO2 precursor (gray powders).

Ni-modified Ag/SiO2 precursors were prepared by impregnation. A calculated
amount of Ni(NO3)2•6H2O was dissolved in 10 mL deionized water, then the Ni(NO3)2
solution was dropped onto 5 g Ag/SiO2 placed in a 100 mL crucible. The slurry was
ultrasonically treated at room temperature for 30 min, dried at 120 ◦C overnight, and
calcined in an oven at 350 ◦C under static air for 4 h, yielding Ni-modified Ag/SiO2. The
heating rate before reaching 350 ◦C was 1 ◦C·min−1. The samples were denoted as Ag-
x%Ni/SiO2 in which x% represents the weight percentage of Ni. For the preparation of
Ag-0.2%Ni/SiO2, Ag-0.5%Ni/SiO2, Ag-1%Ni/SiO2, and Ag-3%Ni/SiO2, the amounts of
dissolved Ni(NO3)2•6H2O were 0.051, 0.128, 0.256, and 0.769 g, respectively. The method
used for the preparation of 0.5%Ni/SiO2 was the same as that of Ag-0.5%Ni/SiO2 except
that no AgNO3 was added in the ammonia-evaporation step.

2.3. Characterization

The chemical compositions of as-prepared samples were determined by using X-ray
fluorescence spectroscopy (XRF, ZSX Priums, Rigaku, Tokyo, Japan).

The textural properties of the catalysts degassed under vacuum at 200 ◦C for 6 h were
determined using N2 sorption at −196 ◦C on a Micromeritics ASAP 2020 HD88 apparatus
(Norcross, GA, USA). The total pore volumes were derived from the adsorbed N2 volume
at P/P0 = 0.99, and the pore size distributions and average pore diameters were derived
based on the BJH method according to the desorption isotherms.

TEM images were recorded using a JEOL JEM 2100F transmission electron microscope
(Tokyo, Japan) operated at an acceleration voltage of 200 kV. EDX-mapping experiments
were conducted with a scanning TEM (STEM) mode.
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IR spectra of translucent disks prepared by pressing powder samples dispersed in
KBr (2 wt.%) were obtained on a Nicolet iZ10 FT-IR instrument (Thermo Fisher Scientific,
Baltimore, MD, USA). The spectral resolution was 4 cm−1, and 32 scans were recorded in
order to generate each spectrum.

Temperature-programmed reduction with H2 (H2-TPR) was conducted on a linear
quartz micro-reactor in which 100 mg catalyst was pretreated at 200 ◦C for 2 h under N2.
After being cooled down to room temperature, the catalyst was exposed to 10% H2/N2
mixture (30 cm3·min−1), and the temperature of the catalyst bed was ramped to 650 ◦C at
a rate of 10 ◦C·min−1. The H2 consumption was recorded using a thermal conductivity
detector (TCD).

XRD patterns were obtained on a PANalytical X’Pert instrument (Malvern, UK) us-
ing Ni-filtered Cu Kα radiation. The reduced catalysts were prepared in 10% H2/N2
(50 cm3·min−1) at 300 ◦C for 2 h. The full width at half maximum of the Ag(111) peak at
38.1◦ was used to calculate the metal particle sizes based on the Scherrer equation.

UV–vis diffuse reflectance spectra (DRS) of the catalysts freshly reduced in 10%
H2/N2 at 300 ◦C for 2 h were obtained on a UV–vis-NIR UV-3600 instrument (Shimadzu,
Kyoto, Japan).

XPS data were obtained on an ESCALA 250 Xi spectrometer (Thermo Fisher Scien-
tific, Baltimore, MD, USA) with a standard Al Kα X-ray source (1486.6 eV). The C 1s
peak at 284.6 eV was used for calibration. The samples were reduced with 10% H2/N2
(50 cm3·min−1) at 300 ◦C for 2 h before measurement. Afterwards, the samples were sent
to the laboratory for the XPS measurements as soon as possible. The experimental error
was given within ±0.1 eV.

2.4. Reaction Testing

The catalytic activity test was conducted on a continuous-flow, fixed-bed reactor.
Typically, 0.5 g catalyst (40–60 mesh) was packed in between two layers of quartz sand in a
stainless-steel tubular reactor. Prior to testing, the catalyst was activated at 300 ◦C (heating
rate = 1 ◦C·min−1) for 4 h in flowing pure H2 (50 cm3·min−1) under atmospheric pressure.
After the catalyst bed was cooled to the reaction temperature and the system pressure was
maintained at 1.5 MPa, a methanol solution containing 13 wt.% DMO was injected by using
a Series 2PB constant-flux pump. The products were analyzed with a Qiyang GC-9860
gas chromatograph fitted with a HP-INNOWAX capillary column and a flame ionization
detector. The DMO conversion (XDMO) and product selectivity (Si) were calculated:

XDMO = (1 − ADMO fDMO/∑ Ai fi)× 100% (1)

Si = (Ai fi/∑ Ai fi)× 100% (2)

where Ai and fi are the peak area and the molar correction factor of the individual compo-
nent i in the product stream, respectively.

The turnover frequency (TOF, the moles of DMO converted per hour by each mole of
surface Ag) was calculated [5]:

TOF =
CDMO × XDMO × V

D × NAg
(3)

where CDMO is the DMO concentration in the DMO/methanol solution, XDMO is the DMO
conversion, V is the flow rate of the DMO/methanol solution, D is the Ag dispersion based
on the XRD analyses and NAg is the total amount of Ag. The DMO conversion was limited
to less than 30% to provide proper data for the TOF calculation by adjusting LHSV [13].
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3. Results and Discussion
3.1. Characterization

The compositions of calcined catalysts were examined using XRF (Table 1). The
actual Ag loading is close to the designed value (10 wt.%), signifying the effectiveness
of the ammonia-evaporation method [26]. The actual amounts of Ni are slightly lower
than the theoretical values, probably due to a partial loss of the Ni species during the
catalyst preparation.

Table 1. Physicochemical properties of calcined Ag/SiO2 and Ag-Ni/SiO2 catalysts.

Catalyst SBET
a (m2·g) Dpore

b (nm) Vpore
c (cm3·g)

Ag Loading (wt.%) Ni Loading (wt.%)

Theoretical Actual d Theoretical Actual d

Ag/SiO2 179.4 10.6 0.65 10 9.8 0 -
Ag-0.2%Ni/SiO2 171.4 12.6 0.64 10 9.8 0.2 0.17
Ag-0.5%Ni/SiO2 161.1 12.0 0.60 10 9.9 0.5 0.46
Ag-1%Ni/SiO2 164.6 12.4 0.61 10 9.7 1.0 0.89
Ag-3%Ni/SiO2 153.9 12.6 0.60 10 9.8 3.0 2.85

a BET specific surface area; b average pore diameter; c pore volume; d determined by XRF.

The textural properties of calcined catalysts were characterized. In Table 1, the BET
surface areas of Ag-Ni/SiO2 catalysts range from 171.4 to 153.9 m2·g−1, lower than that of
Ag/SiO2 (179.4 m2·g−1). The pore volume of Ag/SiO2 is 0.65 cm3·g−1. The incorporation
of Ni species slightly decreases the pore volume to 0.64–0.60 cm3·g−1, whereas the pore
diameters of Ag-Ni/SiO2 catalysts enlarged slightly. The decrease in the BET surface areas
and pore volume of Ag-Ni/SiO2 catalysts may be due to the pore-clogging effect of the
deposited Ni species.

The N2 sorption isotherms of calcined catalysts (Figure 1A) all exhibited Langmuir
type IV isotherms with H1-type hysteresis loop, characteristic of nanostructured materials
with uniform mesopores [27,28]. The BJH pore size distribution curves based on the
desorption isotherms all displayed only one pore distribution peak (Figure 1B), indicating
that the pore size distribution of each sample was concentrated, and the pore size was in
the mesoporous range. Compared with Ag/SiO2, the larger pore could be observed in the
Ni-containing catalysts, illustrating that the incorporation of Ni species probably covered
some small pores [12].

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 17 
 

 

  
Figure 1. N2 sorption isotherms (A) and BJH pore size distributions (B) of the calcined catalysts. 

The FT-IR spectra of the calcined samples were obtained to give more information. 
In Figure 2, all the samples have the adsorption bands at 1113, 801, and 476 cm−1, ascribed 
to the different vibration modes of the Si–O bonds of SiO2 [29]. Compared with Ag/SiO2, 
a new peak appeared at 962 cm−1 in Ag-Ni/SiO2. The band at 962 cm−1 can be assigned to 
Si–O vibrations of the Ni–O–Si group [30,31], since absorption bands characteristic of the 
metal–O–Si groups appear in the 900–1100 cm−1 region. Moreover, the relative intensity of 
the band at 962 cm−1 increased with the Ni content in the catalysts. 

 
Figure 2. FT-IR spectra of calcined catalysts: (a) Ag/SiO2, (b) Ag-0.2%Ni/SiO2, (c) Ag-0.5%Ni/SiO2, 
(d) Ag-1%Ni/SiO2, and (e) Ag-3%Ni/SiO2. 

The morphologies of the representative catalysts were investigated by TEM (Figure 
3). For both calcined Ag/SiO2 and Ag-0.5%Ni/SiO2, their SiO2 supports are irregular and 
the supported Ag species are spherical. Based on our group’s previous study [26], Ag 

0.0 0.2 0.4 0.6 0.8 1.0

(A)

Ag-3%Ni/SiO2

Ag-1%Ni/SiO2

Ag-0.5%Ni/SiO2

Ag-0.2%Ni/SiO2

Ag/SiO2

Relative Pressure / P/Po

Q
ua

nt
ity

 A
ds

or
be

d 
/ c

m
3 /g

 S
TP

Figure 1. N2 sorption isotherms (A) and BJH pore size distributions (B) of the calcined catalysts.
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The FT-IR spectra of the calcined samples were obtained to give more information. In
Figure 2, all the samples have the adsorption bands at 1113, 801, and 476 cm−1, ascribed to
the different vibration modes of the Si–O bonds of SiO2 [29]. Compared with Ag/SiO2, a
new peak appeared at 962 cm−1 in Ag-Ni/SiO2. The band at 962 cm−1 can be assigned to
Si–O vibrations of the Ni–O–Si group [30,31], since absorption bands characteristic of the
metal–O–Si groups appear in the 900–1100 cm−1 region. Moreover, the relative intensity of
the band at 962 cm−1 increased with the Ni content in the catalysts.
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Figure 2. FT-IR spectra of calcined catalysts: (a) Ag/SiO2, (b) Ag-0.2%Ni/SiO2, (c) Ag-0.5%Ni/SiO2,
(d) Ag-1%Ni/SiO2, and (e) Ag-3%Ni/SiO2.

The morphologies of the representative catalysts were investigated by TEM (Figure 3).
For both calcined Ag/SiO2 and Ag-0.5%Ni/SiO2, their SiO2 supports are irregular and the
supported Ag species are spherical. Based on our group’s previous study [26], Ag species
on calcined catalysts were mainly metallic Ag. The average Ag particle sizes on Ag/SiO2
(Figure 3a,b) are 10–20 nm. However, obviously smaller Ag particles of approximately
2–4 nm are obtained for Ag-0.5%Ni/SiO2 (Figure 3c,d). Furthermore, EDX-mapping was
used to investigate the dispersion of Ag species (Figure 4 and Figure S1). Compared with
Ag/SiO2 (Figure 4b), Ag species are better dispersed on Ag-0.5%Ni/SiO2 (Figure 4d).
The above results indicated that the introduction of Ni could suppress the growth of Ag
particles and promote the dispersion of Ag species on SiO2. In addition, the Ni species on
Ag-0.5%Ni/SiO2 is also highly dispersed (Figure 4e).
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H2-TPR was used to study the effect of the Ni content on the redox properties of
calcined Ag-based catalysts (Figure 5). For Ag/SiO2, only one H2 consumption peak could
be observed at 137 ◦C, corresponding to the reduction of a small amount of silver oxides to
metallic Ag [5,13]. However, a new H2 consumption peak appeared in Ag-Ni/SiO2 catalysts
at ca. 350 ◦C, which was ascribed to the reduction of nickel oxide species [5,32]. Compared
with Ag/SiO2, the reduction peaks of silver oxide in Ag-Ni/SiO2 catalysts shifted to a
lower temperature. Specifically, a small amount (0.2 wt.%) of Ni species introduced into
Ag-Ni/SiO2 exerted a slight impact on the reduction behavior of silver oxide. With the
increment of Ni loading from 0.5 wt.% to 3.0 wt.%, the center of the reduction peak shifted
from 134 to 113 ◦C. These results revealed that after the incorporation of Ni, the interaction
between the sliver oxide with silica was disturbed, and the reduction of silver oxide species
was promoted, which also confirmed the interaction between Ag and Ni species [5]. In
contrast, the reduction peaks of NiO shifted from 341 to 357 ◦C with the Ni loading varying
from 0.2 wt.% to 3 wt.%, which may be attributed to the presence of more NiO.
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The XRD patterns of the reduced catalysts were collected. As shown in Figure 6, for
Ag/SiO2, four obvious peaks at 2θ = 38.1◦, 44.3◦, 64.4◦, and 77.4◦ can be assigned to the
(111), (200), (220), and (311) crystal planes of metallic Ag (PDF # 87-0597) [15], indicating
that Ag species exist in the form of metallic Ag on the reduced catalyst. Notably, broader
Ag peaks can be detected in Ag-Ni/SiO2 catalysts, suggesting that the introduction of Ni
to Ag/SiO2 could enhance the dispersion of Ag nanoparticles. On the other hand, when
the loading of Ni was lower than 1.0 wt.%, no characteristic peaks of Ni species could
be detected. This result is possibly due to the presence of highly dispersed Ni species
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and/or the content of Ni was low and not sufficiently large enough to be detected by XRD.
With increasing the Ni loading, the peaks of metallic Ni (44.3◦ and 51.7◦) first appeared
in Ag-1%Ni/SiO2 and became more obvious when the loading of Ni was increased to
3.0 wt.%. Additionally, Ag-1%Ni/SiO2 and Ag-3%Ni/SiO2 showed a weak shoulder peak
at 43.3◦ corresponding to NiO, indicating that there was still a small amount of NiO in the
reduced samples. A broad and faint peak at about 22◦ (due to amorphous SiO2 [33]) can be
observed in all the catalysts.
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The Ag crystallite sizes of the reduced catalysts were obtained according to the Scherrer
equation. The average crystalline sizes of Ag in the Ag-Ni/SiO2 catalysts (3.9–4.7 nm) are
smaller than that in Ag/SiO2 (16.9 nm). Specifically, with a Ni loading no higher than
0.5 wt.%, the particle sizes of Ag distinctly decreased from 16.9 to 3.9 nm, whereas further
rising Ni loading in the range of 0.5–3 wt.% resulted in a gradual increase in the particle
sizes of Ag from 3.9 to 4.7 nm. Evidently, Ag-0.5%Ni/SiO2 exhibited the smallest particle
sizes herein. The results demonstrated that the introduction of Ni in Ag-Ni/SiO2 could
improve the dispersion of Ag, and the improvement extent was the largest when the Ni
loading was 0.5 wt.%. Additionally, the size of most particles in TEM was smaller than
that measured by XRD, which may be due to the aggregation of some particles caused by
high-temperature reduction.

UV–vis DRS data of reduced catalysts were measured to elucidate the interaction
between Ag and Ni. In Figure 7, Ag/SiO2 exhibited a broad peak centered at 421 nm,
attributed to the surface plasmon resonance (SPR) band of Ag nanoparticles [34–36]. The
maximum wavelength and width of the SPR are primarily dependent on the size and
shape of the nanoparticles [36]. Meanwhile, the UV–vis DRS data of Ag-Ni/SiO2 catalysts
also presented a single SPR band between 300 and 600 nm. No characteristic absorption
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band of Ni nanoparticles could be detected. However, there is some controversy in the
literature about the optical absorption of Ni NPs. Xiang et al. [37] found the absorption
bands at ca. 370 nm assigned to oxidized nickel nanoparticles and a broad absorption
band at 550–700 nm assigned to nanostructures containing Ni2+ ions. Creighton et al. [38]
demonstrated the calculated spectrum of Ni nanoparticles with an SPR in the 300–400 nm
regions. Additionally, after incorporating Ni species, a blue shift for the absorption peak of
Ag NPs was observed, implying that a chemical interaction occurred between Ag and Ni
components, and the electronic properties of the bimetallic surfaces were changed [39,40].
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XPS was employed to identify the chemical states and surface compositions of the
reduced catalysts. For Ag/SiO2, the Ag 3d XPS peaks corresponding to the metallic
Ag 3d5/2 and Ag 3d3/2 appeared at 367.8 and 373.9 eV, respectively (Figure 8A) [41].
Nevertheless, the BE of Ag 3d5/2 shifted to higher values with rising Ni concentrations,
implying that the electronic effect was more obvious. The Ni 2p XPS spectra of the reduced
Ag-Ni/SiO2 catalysts are shown in Figure 8B. The BE of Ni 2p3/2 was mainly at 856.1 eV
which was assigned to Ni2+ species on the surface of the catalysts, and no characteristic
peak corresponded to metallic Ni species (852.7 eV) [42]. This was probably because Ni
was active, so metallic Ni on the surfaces of the reduced catalysts was easily oxidized to
NiO during the sample installation operation in air [43].
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From the XPS results (Table 2), the Ag 3d5/2 peak of the reduced Ag-Ni/SiO2 catalysts
shifted to relatively lower BE values compared with Ag/SiO2. Specifically, as the Ni
content increases, the BE values of Ag species decreased from 368.5 to 368.0 eV, while the
BE values of Ni species increased from 855.3 to 856.4 eV. These results showed that the
charge transfer occurred between Ag and Ni species [5,32]. As shown in Figure 9, the
surface Ag concentration (Table 2) increases gradually with the decrease in the Ag particle
sizes (Table 3). The concentration of surface Ag reached the maximum when 0.5 wt.%
Ni was loaded. When further increasing the Ni loading, the concentration of surface Ag
decreased. Based on the deviation analysis, Figure 9 also illustrates that the difference in the
Ag surface concentration was due to the different Ni concentration, not due to experimental
incertitude. The above results clearly prove that for the supported catalysts with the same
content of active component, the smaller size of the active component particles, the more
active sites on the catalyst surface.

Table 2. XPS results for reduced Ag/SiO2 and Ag-Ni/SiO2 catalysts.

Catalyst
Binding Energy (eV) Surface Elemental Concentration

(at.%)

Ag 3d5/2 Ni 2p Ag Ni

Ag/SiO2 367.8 - 0.53 -
Ag-0.2%Ni/SiO2 368.5 855.3 0.85 0.26
Ag-0.5%Ni/SiO2 368.4 856.1 0.91 0.32
Ag-1%Ni/SiO2 368.1 856.2 0.80 0.89
Ag-3%Ni/SiO2 368.0 856.4 0.76 1.02
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Table 3. TOF of Ag-Ni/SiO2 catalysts for DMO hydrogenation a.

Catalyst Conversion/%
Selectivity/%

dAg
c (nm) DAg

d/% TOFXRD
e/h−1

MG Others b

Ag/SiO2
f 15.7 91.9 8.1 16.9 9.0 10.4

Ag-0.2%Ni/SiO2 24.7 95.6 4.4 4.2 28.0 15.6
Ag-0.5%Ni/SiO2 29.6 100 0 3.9 30.2 18.7
Ag-1%Ni/SiO2 23.2 97.6 2.5 4.4 26.8 15.4
Ag-3%Ni/SiO2 19.5 96.1 3.9 4.7 25.1 13.8

a Reaction conditions: T = 493 K, P = 1.5 MPa, H2/DMO molar ratio = 150, LHSV = 1.73 h−1; b others include EG
and MF; c average diameter of particle sizes of the reduced catalysts calculated by Scherrer equation; d dispersion
of metallic Ag determined by XRD; e TOFXRD was calculated by Ag dispersion; f LHSV = 0.58 h−1.

3.2. Catalytic Performance

As shown in Scheme 1, DMO hydrogenation includes DMO hydrogenation to MG,
MG hydrogenation to EG, and EG hydrogenation to EtOH [5].
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Scheme 1. The reaction pathway for DMO hydrogenation.

Under identical conditions for the evaluation of gas-phase DMO hydrogenation to
MG, the catalytic performance of Ag/SiO2 and Ag-Ni/SiO2 was investigated. As shown
in Table 4, both the DMO conversion and MG selectivity increased with the increase in
Ni loading until they reached maxima at the same Ni loading of 0.5 wt.%. Therefore,
Ag-0.5%Ni/SiO2 exhibited the highest MG yield (92.5%). This value is significantly higher
than that of Ag/SiO2 (69.5%). We additionally prepared 0.5%Ni/SiO2, but it showed almost
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no catalytic activity in the reaction. For comparison, Zhou’s best Ag-Ni/SBA-15 catalyst
showed 97.6% DMO conversion and 92.8% MG selectivity [5].

Table 4. Catalytic performance of Ag/SiO2 and Ag-Ni/SiO2 catalysts for DMO hydrogenation a.

Catalyst Conversion/%
Selectivity/%

MG Yield/%
MG MF EG

Ag/SiO2 77.8 89.3 2.2 8.5 69.5
Ag-0.2%Ni/SiO2 96.7 90.7 3.7 5.6 87.7
Ag-0.5%Ni/SiO2 100 92.5 0 7.5 92.5
Ag-1%Ni/SiO2 92.7 89.3 2.7 8.0 82.7
Ag-3%Ni/SiO2 87.2 89.1 5.0 6.0 77.7

a Reaction conditions: T = 493 K, P = 1.5 MPa, H2/DMO molar ratio = 150, LHSV = 0.28 h−1.

To clearly compare the catalytic performance between Ag/SiO2 and Ag-Ni/SiO2 in
DMO hydrogenation, the TOF values of all catalysts were measured at the conversion of
DMO lower than 30% by regulating the DMO liquid hourly space velocity (LHSV) [13].
The DMO conversion data were used to calculate the TOF according to the active metal
dispersion (Table 3). When increasing the content of Ni, both the TOF and DAg values
increased first, passing through a maximum, and then decreased at higher Ni contents.
Ag-0.5%Ni/SiO2 with the highest catalytic activity possessed a TOF of 18.7 h−1, superior to
Ag/SiO2 (10.4 h−1). Moreover, the addition of Ni into Ag/SiO2 promoted the dispersion of
Ag on SiO2, consistent with TEM results. The TOF values as a function of Ag particle sizes
of the different catalysts are shown in Figure 10. The TOF value declines gradually with the
increase in Ag particle size over these catalysts, suggesting that the DMO hydrogenation is
a structure-sensitive reaction [4,16,26].
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Generally, the changes in the structural properties and chemical states of active com-
ponent might be the key factors affecting the catalytic behavior of Ag-based catalysts in
DMO hydrogenation [19,27]. In our case, the MG yield of Ag-Ni/SiO2 catalysts is well
consistent with the surface Ag concentration (Figure 11). In particular, Ag-0.5%Ni/SiO2
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had the smallest Ag particle sizes and, hence, the largest number of exposed active sites,
thus exhibiting the highest catalytic activity. Furthermore, the hydrogenation of DMO
to MG is a structure-sensitive reaction on Ag-Ni/SiO2, and the intrinsic catalytic activity
(TOF) increased with the decrease in Ag particle sizes (Figure 10). In addition, the MG yield
of various Ag-Ni/SiO2 catalysts was in good agreement with the TOF values (Figure 11).
In summary, it can be concluded that the addition of Ni improves the dispersion of Ag and
reduces the Ag particle sizes, thus increasing the number of active sites and the specific
activity of unit active site simultaneously, which ultimately improves the activity.
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Figure 11. The influence of Ni content on MG yield, surface Ag concentration, and TOF values.

3.3. Catalyst Stability

To investigate the effect of Ni on the stability, the long-term stability test of Ag-
0.5%Ni/SiO2 and Ag/SiO2 was conducted under identical reaction conditions (Figure 12).
Ag-0.5%Ni/SiO2 exhibited significantly improved performance in both DMO conversion
and selectivity to MG, with no obvious changes, during catalytic reaction for 300 h. In
contrast, Ag/SiO2 was distinctly deactivated within 90 h. Consequently, these results
clearly proved that the stability of Ag catalysts could be improved distinctly by Ni doping.

XRD patterns of the used catalysts were measured (Figure 13). Comparing the XRD
patterns of Ag/SiO2 before and after the long-term performance testing, the average particle
size of the deactivated catalyst increased to 18.9 nm, whereas that for the fresh catalyst
was 16.9 nm (Table 3). For comparison, the size of Ag crystallites over Ag-0.5%Ni/SiO2
after 300 h reaction test was 4.1 nm, almost identical to that of the fresh catalyst (3.9 nm).
Therefore, the deactivation of Ag/SiO2 was mainly caused by the growth of Ag particles,
which resulted in the loss of active sites and the decreased TOF, as discussed above. Due
to the weak interaction between Ag species and silica support, the Ag particles were
prone to mobilize and accumulate to larger particles during calcination and reduction
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processes [44]. The extremely increased catalytic stability of Ag-0.5%Ni/SiO2 may be
attributed to the stabilizing effect of the Ni species on the surface Ag species via strong
interaction. According to the literature [5], the synergistic effect between Ni and Ag
species prevented the surface transmigration of metallic Ag nanoparticles. Therefore, the
aggregation of metallic Ag nanoparticles was limited after long-term testing. Similarly,
Ni addition was also favorable for impeding the growth of Cu crystallites upon heat
treatment [43].
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Figure 12. The long-term performance of the Ag/SiO2 and Ag-0.5%Ni/SiO2 catalysts. Reaction
conditions: 493 K, 1.5 MPa, H2/DMO molar ratio = 150, LHSV = 0.28 h−1.
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4. Conclusions

The catalytic performance of a series of Ni-modified Ag/SiO2 catalysts for the hydro-
genation of DMO to MG was investigated. Ag-0.5%Ni/SiO2 with a Ni content of 0.5 wt.%
exhibited the best catalytic activity (complete conversion of DMO, 92.5% selectivity to MG).
Moreover, Ag-0.5%Ni/SiO2 showed good stability on stream. The optimal Ni-modified
Ag/SiO2 had higher dispersion of Ag species, more active sites, and higher sintering
resistance due to the strong interaction between Ag and Ni species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12030407/s1, Figure S1: Additional EDX-mapping images
of Ag/SiO2 (a) and Ag-0.5%Ni/SiO2 (b).
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