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Abstract: Surface wrinkling instability in thin films attached to a compliant substrate is a well-
recognized form of deformation under mechanical loading. The influence of the loading history on
the formation of instability patterns has not been studied. In this work, the effects of the deformation
history involving different loading sequences were investigated via comprehensive large-scale finite
element simulations. We employed a recently developed embedded imperfection technique which is
capable of direct numerical predictions of the surface instability patterns and eliminates the need
for re-defining the imperfection after each analysis step. Attention was devoted to both uniaxial
compression and biaxial compression. We show that, after the formation of wrinkles, the surface
patterns could still be eliminated upon complete unloading of the elastic film–substrate structure.
The loading path, however, played an important role in the temporal development of wrinkle
configurations. With the same final biaxial state, different deformation histories could lead to different
surface patterns. The finding brings about possibilities for creating variants of wrinkle morphologies
controlled by the actual deformation path. This study also offers a mechanistic rationale for prior
experimental observations.

Keywords: thin film; wrinkle; deformation; surface instability; finite element analysis

1. Introduction

The formation of wrinkles (periodic buckles) on a thin film attached to a compliant
substrate has received considerable attention in recent years. This form of surface instability
is widely observed in nature and now increasingly encountered in flexible electronics and
other functional devices [1–6]. Thin-film buckling can be triggered by the direct application
of an in-plane compressive strain. It may also occur in response to applied tension, where a
mismatch in lateral contraction between the thin film and a thick substrate forces the films
into compression [7]. Wrinkling instability relaxes the compressive strain in the film layer,
thus reducing the elastic strain energy. While the formation of wrinkles is traditionally
viewed as an undesirable feature, it is increasingly exploited to enhance the mechanical
and/or functional performances of energy and biomedical devices [8–13].

Theoretical solutions for the critical stress of wrinkle initiation, along with the wave-
length and amplitude of the waveform, are available for the simplest forms of wrin-
kles [14–18]. The prediction of complex surface patterns resulting from the various loading,
geometrical, and material conditions, however, will rely on computational means. Most
numerical studies utilized the multi-step approach, with a pre-buckling step followed by a
post-buckling analysis which essentially builds a waveform into the model [19–25]. The
implementation can be laborious and lacks a true predictive capability. Other numerical
techniques based on an applied fictitious/dummy load have been proposed [24,26–28],
but multi-step analyses were still involved. Some of the recent studies followed simi-
lar approaches but focused more on wrinkling on curved composites [29,30]. Dynamic
surface-instability simulations have also been conducted [31,32]; however, the verification
and validation of the numerical outcomes are challenging, taking into account the lack of
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reliable experimental results or closed-form solutions to loading-rate-dependent deforma-
tion instability problems. Recently, a peridynamics analysis of wrinkling instabilities has
also been reported [33,34], but the validity of non-local theories (such as peridynamics) in
reproducing the actual physical phenomenon is still uncertain. Moreover, defining some of
the free parameters such as the “horizon size” is also cumbersome.

The analytical/numerical studies of surface instability were mostly performed under
the consideration of an instantaneous and non-sequential in-plane uniaxial or biaxial
loading. The potential effects of different loading sequences on instability patterns, though
leading to an identical final state of strains, have not been investigated. It is worthy of
mention that the possibility of such effects on wrinkling configurations have been implied
in some earlier experimental studies [15,35].

We recently developed a practical finite element modelling approach to simulate wrin-
kle formation using the embedded imperfection technique [36,37]. The temporal wrinkling
evolution can be captured in a straightforward manner, and the methodology has been
employed to study complex surface patterns in the three-dimensional (3D) setting [38,39].
The present work extends our previous 3D analysis to cover the effects of the deformation
history. Using the model system of a polymeric thin film on an elastomeric substrate
under in-plane uniaxial and equi-biaxial compressions, we first studied the evolution of
the surface instability patterns and how they might gradually disappear when the applied
compression was reverted back to zero. Note that our modelling approach allows such
process to be carried out in one simulation run. In the case of biaxial loading, we further in-
vestigated the effect of the deformation history by comparing the surface patterns resulting
from simultaneous loading and sequential loading along the two axes. Our results revealed
the sensitivity of the wrinkling patterns to the loading sequence and identified new forms
of surface pattern evolution affected by the deformation history.

2. Numerical Model Description

The model consisted of a thin film bonded to a compliant substrate with an embedded
imperfection. The film surface was square-shaped, and the substrate was sufficiently
thick in comparison with the film. Figure 1 shows the problem geometry, boundary
conditions, and directions of the applied displacement employed in the finite element
analysis. All materials were chosen as linear elastic isotropic solids in the present study.
The initial thickness of the film layer, tf, was 0.1 µm. One of the common polymeric film
materials used in organic optoelectronics and photovoltaics, namely, P3HT:PCBM [8], was
considered. The Young’s modulus of the thin film was Ef = 7300 MPa [8], and the Poisson’s
ratio was νf = 0.35. The elastomeric substrate layer was PDMS, with Young’s modulus
Es = 2.97 MPa [40] and Poisson’s ratio νs = 0.495 (set slightly smaller than 0.5 to mitigate
potential convergence issues). As schematically shown in Figure 1, the problem domain
contained a single embedded imperfection. It was a regular finite element at the exact
center of the top layer elements in the substrate, immediately below the film–substrate
interface. The embedded imperfection, while underneath the interface in the substrate
domain, was assigned the material properties of the film layer. This approach has been
systematically tested and proven to be a reliable way to trigger deformation instabilities in
our earlier studies [38,39,41].
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Figure 1. Schematics of the problem geometry, boundary conditions, and directions of the applied
displacement [39].

Numerical simulations were performed using the finite element software ABAQUS
(Version 2017, Dassault Systems Simulia Corp., Johnston, RI, USA). Throughout the model,
20-noded brick elements were used, with a uniform element distribution in the film layer
(four layers of elements along the film thickness). An adapted element distribution existed
in the substrate, with the element size increasing gradually from top to bottom. The in-
plane mesh density of 10 elements per analytical sinusoidal wavelength was chosen to
ensure mesh-convergent numerical solutions [38]. In addition to the mesh considerations,
the displacement increment in the loading step was kept sufficiently small to avoid the
potential increment dependency of the solutions [37]. The analyses were conducted via
high-performance computing using the Message Passing Interface (MPI) parallelization
technique. Preliminary calculations were carried out to ensure that the numerical results
were independent of the parallel analysis procedures. Mesh convergence and model
verification were also performed [38,39].
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As shown in Figure 1, the roller boundary condition was imposed on the faces z = 0
and x = 0, and a corner point at the bottom of the substrate was fully fixed. The top face of
the film and the bottom face of the substrate were kept traction-free. In addition, the faces z
= Wz and x = Wx were constrained to remain vertical during the deformation. Therefore,
the problem domain represented a unit cell of a large periodic structure [42]. The problem
domain size was scaled by the value of the theoretical critical wavelength of the sinusoidal
mode [14,16],

λcr = 2πt f

 (1− ν2
s
)
E f

3
(

1− ν2
f

)
Es

1/3

(1)

The domain dimensions were Wx = Wz = 10λcr (=55.92 µm) with the overall
depth of D = 5λcr. The dimensions of Wx = Wz = 10λcr were rationally chosen so that
10λcr ∼= 7(λcr)Cb, where (λcr)Cb =

√
2λcr is the analytical wavelength of the square checker-

board instability mode under equi-biaxial compression [16]. Thus, the model size was
well-suited to simulate various surface patterns in conformity with available analytical so-
lutions. Displacement-controlled uniaxial and equi-biaxial compressions were considered.
For uniaxial compression, a uniform displacement was applied in the x-direction only; for
equi-biaxial compression, uniform displacements with equal magnitudes were applied
concurrently in both the x- and the z-directions. The biaxiality ratio, BR, is defined as the
ratio of the prescribed final z-displacement and x-displacement, in a given loading step. As
a consequence, the uniaxial compression and equi-biaxial compression can be represented
by BR = 0 and 1, respectively. In this study, we also considered non-equi-biaxial loading
with a BR value between 0 and 1.

The critical stress at the onset of the primary bifurcation, σcr, was analytically derived
as [14,16,43]

σcr =

 E f

4
(

1− ν2
f

)
3

(
1− ν2

f

)
Es

(1− ν2
s )E f

2/3

(2)

assuming that the stress state was uniform (in the sufficiently thin film with the cross-
section area of t f ·wz (or t f ·wx), as shown in Figure 1). It has been postulated that the
critical wrinkling stress in Equation (2) is applicable to any possible biaxial wrinkling mode
(including the 1D sinusoidal form and the square checkerboard) [13]. The critical strain for
the primary instability modes under pure uniaxial (BR = 0) and equi-biaxial compression
(BR = 1) were reported as [14,16,23,44]

(ecr)1D =

(
1
4

)3
(

1− ν2
f

)
Es

(1− ν2
s )E f

2/3

(3)

and

(ecr)Cb =

 1

4
(

1 + ν f

)
3

(
1− ν2

f

)
Es

(1− ν2
s )E f

2/3

(4)

where (ecr)1D and (ecr)Cb are the critical wrinkling strains of sinusoidal and square checker-
board wrinkles, respectively. It should be noted that Equations (3) and (4) were apparently
obtained by dividing the critical stress in Equation (2) by, respectively, the plane strain
modulus and the biaxial modulus of the film layer, namely, (ecr)1D = σcr/[E f /(1− ν2

f )] and

(ecr)Cb = σcr/
[

E f /
(

1− ν f

)]
. As can be recognized from Equations (3) and (4), considering

the value of νf for the polymeric film material studied in this paper,
(ecr)1D > (ecr)Cb. Moreover, for other cases of non-equi-biaxial compression, 0 < BR < 1,
closed-form theoretical solutions for the critical strain do not exist; however, from our
earlier numerical studies [39], the critical strain associated with any BR lies within the range
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between (ecr)1D and (ecr)Cb and varies with BR monotonically, with (ecr)1D being the upper
limit at BR = 0, and (ecr)Cb being the lower limit at BR = 1. It was also demonstrated that
the numerically obtained ecr at any BR is slightly higher than the corresponding analytical
values (if available) [39]. When presenting the results in the following sections, we used
the numerically obtained critical strain in the x-direction at the onset of bifurcation, i.e., ecr,
for the corresponding BR loading state.

3. Results
3.1. Uniaxial Compression

We first considered a uniaxial compressive loading along the x-direction (BR = 0).
Figure 2 shows the evolution of sinusoidal wrinkles during the loading and unloading
phases. The color contours represent the extents of displacement in the out-of-plane (y)
direction. In the loading phase (Figure 2a–c), the model was subjected to a compressive
displacement from 0 to −0.42 µm (corresponding to a compressive strain of −0.0075). The
extent of the applied compression in terms of normalized strain was exx/ecr ∼= 2.0, where
exx is the applied compressive strain in the x direction, and ecr is the critical wrinkling strain
obtained from the simulations [36]. As can be seen, fully developed sinusoidal wrinkles
were obtained at the end of the loading phase (Figure 2c). Subsequently, the analysis was
continued with an unloading phase, in that the applied strain was reverted back to zero
(Figure 2c–e). The wrinkles tended to disappear gradually during unloading, and a fully
flat surface was in place when the compressive strain was completely removed. The overall
load–displacement response resulting from the simulation is shown in Figure 2f, with the
model snapshots at different stages (Figure 2a–e) labeled along the curves. It is evident
that the loading and unloading responses follow the same path. At the onset of instability
during loading (and at the reversal of instability during unloading), there is a distinct
change in slope of the load–displacement behavior.
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ing phase (from (c–e)) under uniaxial compression. (f) Overall load–displacement response for the
entire deformation history, with the five stages (a–e) labeled along the curves.

3.2. Equi-Biaxial Compression

Attention was then turned to in-plane equi-biaxial loading along the x- and z-directions
(BR = 1). The dominant mode of surface wrinkling at the onset of instability caused by
an equi-biaxial loading is the square checkerboard pattern [15,39]. Although the pattern
will eventually evolve into the labyrinth mode in the post-instability regime [39], the
current section is limited to the primary mode of instability. Figure 3 shows the simulated
evolution of the square-checkerboard wrinkles during loading (a–c) and unloading (c–e).
The maximum equi-biaxial displacement of −0.138 µm was applied during loading, which
corresponded to exx/ecr ∼= 1.03, with ecr being 0.0024. The development of a wrinkling
pattern from the pre-instability flat face to the square checkerboard pattern can be clearly
seen in Figure 3a–c. During the unloading phase (Figure 3c–e), the surface pattern gradually
faded away, and the flat surface reappeared. Figure 3f shows the overall load–displacement
response in the x-direction during the equi-biaxial loading/unloading. The points of the
snapshots of Figure 3a–e are also labeled along the curves. As can be seen, similar to
the case of uniaxial compression discussed in Section 3.1, the equi-biaxial loading and
unloading responses also followed the same path. The entire history of the reversible
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deformation involving mechanical instabilities could thus be captured by our modeling
approach in a straightforward manner.
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3.3. Simultaneous vs. Sequential Loading

In this section, we compare the surface wrinkling patterns based on simultaneous and
sequential loadings leading to the same final state of strains. Consider the case of equi-
biaxial compression (BR = 1) where the target applied strain corresponds to exx/ecr ∼= 1.03
(maximum equi-biaxial displacement of −0.138 µm). The result of simultaneous loading
is presented in Section 3.2. For a sequential loading, a uniform compression along the
x-direction only was first applied, which was followed by a second phase of compression
along the z-direction.

At the end of the second phase, ux = uz = −0.138 µm, which is the same as the case
presented in Section 3.2. Figure 4a,b show the surface patterns at the end of each phase
of the sequential loading. After phase 1, the surface remained flat because the applied
displacement had not reached the critical value for uniaxial compression (see Figure 2f). At
the end of phase 2, a checkerboard-like pattern appeared, but it was not of the exact square
type, as can be seen from the different numbers of waves along the x- and z-directions.

Figure 4c,d show the top views of the surface patterns resulting from the simultaneous
and sequential loadings, respectively, for a direct comparison. Despite the same end state
of equi-biaxial compressive strains, the sequential loading led to a non-square checker-
board pattern, as opposed to the perfect square checkerboard pattern obtained with the
simultaneous loading. It is apparent that the mechanical instability rendered the simple
elastic deformation history-dependent. Such a dependence may be attributed to the change
in the domain geometry after the first phase of compression along the x-direction. The
longer span in the z-direction at the end of the first phase (or equivalently, at the start of the
second phase), coupled with the fixed constraint maintained in the x-direction during the
second phase, contributed to the formation of a rectangular type of checkerboard pattern.
The present finding also brings about the possibilities for creating variants of wrinkle
patterns controlled by the deformation path, which is worthy of further theoretical and
experimental investigations.

3.4. Simultaneous vs. Sequential Loading: Further Instability Modes

The history dependency of the surface wrinkling patterns was not limited to the
primary bifurcation mode. It was even more apparent as the deformation extended into
the post-instability regime. For demonstration, consider the same problem in Figure 4, but
the specimen was now subjected to a higher maximum equi-biaxial target displacement of
−0.51 µm (which corresponds to exx/ecr ∼= 3.80). Figure 5a,b show the final surface states
for the simultaneous and sequential loadings, respectively, with very different wrinkle
patterns. Their temporal developments for the cases of simultaneous and sequential loading
are presented in Figure 5c,d, respectively. Under simultaneous loading (Figure 5c), the
primary instability mode was the square checkerboard, which, with further straining,
eventually evolved into a labyrinth pattern. Under sequential loading (Figure 5d), the
primary instability was the 1D mode, since phase 1 involved only a uniaxial compression
applied in the x-direction. During phase 2, the superposition of z-compression led to a
herringbone-like structure, which eventually became a labyrinth. It was again observed
that the same final strain states in Figure 5c,d via different deformation histories, had
distinctly different surface patterns.
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the end of each simulation are presented in (a,b). The evolution of the wrinkling patterns (starting
from a flat surface until reaching the target strains) are shown in (c,d). The directions of the applied
displacements are also schematically shown.
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4. Discussion

The results presented in Sections 3.3 and 3.4 clearly demonstrated the path dependence
of surface instability, even when the materials are treated as linearly elastic. It is worthy of
note that except for very rare cases [45], a true square-checkerboard wrinkling configuration
has never been obtained in real experimentation [15]. Various potential reasons, such as
a curved initial geometry and a special constitutive behavior of the materials, have been
proposed [15,25,30,39,46]. The finding presented in Figure 4 of this work, under equi-
biaxial compression, points to yet another possibility, i.e., that deviations from the true
simultaneous uniform loading along the two directions (e.g., slight interruptions of loading
continuity in any one direction) may create a favorable condition for the non-square-type
checkerboard pattern.

Aside from the uniaxial and equi-biaxial loadings considered above, one can explore
a non-equi-biaxial loading with the BR value falling between 0 and 1. Here, we will
discuss the case of BR = 0.7. Three sets of simulations with the maximum applied displace-
ments of ux = −0.51 µm and uz = −0.357 µm, corresponding to a final deformation of
exx/ecr ∼= 3.50 (ecr = 0.0026), were first considered: (i) simultaneous loading along the x-
and z-directions, (ii) two-phase sequential loading with x-compression applied first and
z-compression applied afterward, (iii) two-phase sequential loading with z-compression
applied first and x-compression afterward. In the following, the two sequential cases (ii)
and (iii) are also referred to as “sequential loading 1” and “sequential loading 2,” respec-
tively. The numerical results are shown in Figure 6, with Figure 6a–c displaying the final
wrinkle patterns at the end of simultaneous loading, sequential loading 1, and sequential
loading 2, respectively. As can be seen, different wrinkle patterns were obtained with
different deformation paths, while the loading biaxiality was identical (BR = 0.7) at the end
of each simulation.

The temporal evolutions of instability are presented in Figure 6d for simultaneous
loading, Figure 6e for sequential loading 1, and Figure 6f for sequential loading 2, all
from a flat pre-instability state well into post-instability. Under simultaneous loading at
BR = 0.7 (Figure 6d), the primary 1D instability mode transformed into a herringbone
and later a labyrinth pattern, which is consistent with our previous studies and other
experimental/analytical investigations reported in the literature [15,25,39,44,47]. A qualita-
tively similar evolution path was observed for the case of sequential loading 1 (Figure 6e),
where the x-compression was applied first (during loading phase 1). It should be noted
that, although the evolution paths in Figure 6d,e are similar, the actual herringbone and
labyrinth surface patterns were different. This difference can be attributed to the more
prominent sinusoidal wave amplitude in the case of sequential loading 1 at the end of
loading phase 1, since the maximum applied displacement of ux = −0.51 µm was already
reached, while in the case of simultaneous loading, the mode transformation from a 1D to a
herringbone pattern happened much earlier. Sequential loading 2, where the z-compression
was applied first, triggered the formation of 1D wrinkles in the perpendicular direction
(Figure 6f). Note that, with BR = 0.7, the applied displacement at the end of the loading
phase 1 was uz = −0.357 µm, which rendered yet another sinusoidal wave amplitude.
A subsequent x-compression during the loading phase 2 therefore led to different forms
of herringbone and then labyrinth configurations. It is worth noting that the wrinkle
amplitude was directly proportional to the intensity of the applied strain, as documented
in many analytical/experimental/numerical studies in the literature [14,15,39].
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Figure 6. Snapshots of the simulated wrinkling patterns for BR = 0.7 and exx/ecr ∼= 3.50, for the
case of (a,d): simultaneous loading, (b,e): sequential loading 1, and (c,f): sequential loading 2. The
wrinkling configurations at the end of each simulation are presented in (a–c). The evolution of the
wrinkling patterns (starting from a flat surface until reaching the target strains) are shown in (d–f).
The directions of the applied displacements are also schematically shown.
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Figure 7 shows the results for another set of simulations at BR = 0.7, with a smaller
target strain of exx/ecr ∼= 1.96. The maximum applied displacements were ux = −0.284 µm
and uz = −0.199 µm. The final wrinkling configurations are shown in Figure 7a–c, respec-
tively, for the three cases of simultaneous loading, sequential loading 1 (x-compression first),
and sequential loading 2 (z-compression first). The history-dependent wrinkle patterns
are again evident. The deformation progression is shown in Figure 7d–f for the cases of
simultaneous loading, sequential loading 1, and sequential loading 2, respectively. As in the
case of Figure 6, simultaneous loading in Figure 7d and sequential loading 1 (x-compression
first) in Figure 7e resulted in a similar kind of pattern evolution, but the detailed wrinkle
morphologies were not the same. An interesting pattern evolution, however, was observed
for sequential loading 2 in Figure 7f (with z-compression first). Here, the primary instability
did not occur at the end of the loading phase 1. This was due to the smaller target strain; the
maximum applied displacement (uz = −0.199 µm) corresponded to the applied strain of
ezz = −0.0036, which was still below the critical strain of ecr ∼= −0.0037. At the beginning
of the second loading phase, only a slight compression of ux triggers the formation of 1D
wrinkles in the original z-direction. With increasing x-compression, the bifurcation mode
changed to herringbone and then labyrinth.

Figures 5–7 demonstrated that the history dependency is not limited to the primary
form of instability. The development of further wrinkle patterns can be influenced by the
sequence of loading and its extent. The findings in this work also suggest wide-ranging
possibilities for generating variants of wrinkle patterns controlled by the deformation
history for various functionalities, including optics [6], friction [46], wetting [5], antifoul-
ing [48], etc. It is also worthy of note that the embedded imperfection technique used
here is particularly suited for multi-phase loading processes such as cyclic deformation.
The need for re-defining imperfections in each loading phase can be completely avoided.
Future studies may incorporate inelastic and/or damage constitutive behaviors to simulate
complex cyclic deformation histories and fatigue damage of film–substrate systems.
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Figure 7. Snapshots of the simulated wrinkling patterns for BR = 0.7 and exx/ecr ∼= 1.96, for the
case of (a,d): simultaneous loading, (b,e): sequential loading 1, and (c,f): sequential loading 2. The
wrinkling configurations at the end of each simulation are presented in (a–c). The evolution of the
wrinkling patterns (starting from a flat surface until reaching the target strains) are shown in (d–f).
The directions of the applied displacements are also schematically shown.
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5. Conclusions

This paper presents a numerical study on the formation of wrinkle patterns in thin
film/compliant substrate material systems. The embedded imperfection approach was
successfully applied for direct three-dimensional finite element simulations of surface
wrinkling, accounting for loading/unloading and the effect of the deformation history. The
modeling technique is robust and easy to implement and avoids the need of re-defining
imperfections in each loading phase. Other salient findings and concluding remarks are
summarized below.

• Within the linear elastic framework free of material damage, deformation instabilities
in the form of surface wrinkles are recoverable under uniaxial and equi-biaxial loading
and unloading.

• Using different deformation paths to reach the same equi-biaxial and non-equi-biaxial
states, however, results in different wrinkle configurations.

• The history dependency is applicable to the primary instability mode as well as to
subsequent transformations of wrinkle patterns.

• The history dependency also raises the possibilities of devising special loading se-
quences in actual experiments to achieve specific surface patterns.

• This study paves the way for future explorations involving complex deformation
paths, inelastic deformation and damage, and cyclic responses.
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