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Abstract: In this study, an silver (Ag) plating with micro/nano-dendrite structures is prepared on the
304 stainless steel (SS304) surface by potentiostatic deposition (Ag/SS304). After being modified by
n-dodecyl mercaptan (NDM) with the low surface energy, the obtained sample (NDM@Ag/SS304)
exhibits stable superhydrophobicity and excellent hot-water repellency. The surface morphology and
composition of NDM@Ag/SS304 are analyzed by scanning electron microscope (SEM), X-ray spec-
trometer (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectrometer (XPS) characteri-
zation. The electrochemical measurements, tests of water contact angle (WCA), and interfacial contact
resistance (ICR) are employed to systematically study the performance of the NDM@Ag/SS304 in the
simulated cathode environment of proton exchange membrane fuel cell (PEMFC). The results show
that the NDM@Ag/SS304 has high corrosion potential (~0.25 V) and low corrosion current density
(~4.04 µA/cm2); after potentiostatic polarization (0.6 V, 5 h), the NDM@Ag/SS304 also shows high
superhydrophobic stability.

Keywords: bipolar plates; stainless steel; PEMFC; hot-water super-repellency; silver; n-dodecyl
mercaptan; electrodeposition; corrosion resistance; conductivity; wettability

1. Introduction

Proton exchange membrane fuel cell (PEMFC) is a green and efficient hydrogen power
generation device [1]. Bipolar plates, as the core conductive component of PEMFC [2,3], usually
work in an environmental condition with weak acidity (pH, 3~6) [4,5] and high temperature of
about 80 ◦C [6]. The severe PEMFC environment requires bipolar plates to possess excellent
corrosion resistance [7–9], extremely high conductivity [10], and low wettability [11], in order
to achieve the efficient, safe, and stable operation of PEMFC as well as the discharge of product
water. Stainless steel (SS), especially SS304, has been widely studied as an excellent candidate
material for bipolar plates due to its balanced performance [12], low material cost, rapid
passivation ability, and outstanding corrosion resistance [13–15]. However, the passivation of
stainless steel can seriously reduce the conductivity and hydrophobicity of the surface, thus
affecting the performance of bipolar plates, and almost all stainless steels need to be addressed
by surface modification, e.g., SS310S [16], SS304 [17], SS304L [18], SS316L [19], SS410 [20],
SS430 [21], 2205 duplex SS [22]. At present, numerous surface modification studies with various
coatings have been carried out on SS304 bipolar plates, such as carbon-based film [23], metal or
alloy [24], metal oxide [25], conductive ceramic [17], and conductive composite coating [26].
Nevertheless, most of the research on coating systems only focuses on improving the corrosion
resistance or surface conductivity of stainless-steel bipolar plates, and few studies are able to
achieve their high surface hydrophobicity. The surface wettability of bipolar plates not only
affects the smooth discharge of product water [10], but also influences the corrosion behavior
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of the surface [27]. High surface wettability can promote the adhesion of corrosive solution
and thus easily aggravate local corrosion [11,27]. Furthermore, the wettability of bipolar plates
is closely related to the water management of PEMFC [28,29], and good water management
can significantly improve the working performance of PEMFC [30]. Therefore, it is of great
significance to develop SS304-based bipolar plates with high surface hydrophobicity, but it is
far from enough to have high repellency to room temperature water. The working temperature
of bipolar plates is as high as 80 ◦C, and their surface wettability increases significantly in an
aqueous solution [31,32]. Therefore, it is urgent to develop bipolar plates with high and stable
hot-water repellency.

Silver (Ag) is not easily oxidized, demonstrating excellent stability, conductivity, and
corrosion resistance. At room temperature, the resistivity of Ag is only 1.59 × 10−8 Ω·m [33],
and the standard electrode potential Ag 
 Ag+ is 0.799 V (vs. SHE) [34]. A large body
of research shows that the preparation of Ag coating on stainless-steel bipolar plates can
markedly ameliorate the conductivity [35,36] and corrosion resistance [35–37]. For instance,
Feng et al. [35] prepared the silver-implanted SS316L, of which the interfacial contact
resistance (ICR ≈ 150 mΩ cm2) under the compression pressure of 150 N/cm2 is much lower
than that (ICR ≈ 350 mΩ cm2) of the bare SS316L. Lin et al. [36] investigated the nitrogen
and silver co-alloyed SS316L surface by active screen plasma nitriding technology, and the
results showed that the corrosion resistance (i.e., decreased corrosion current density from
0.114 to 0.097 mA/cm2 and increased corrosion potential from −460 to −417 mV in 0.5 M
H2SO4 + 2 ppm HF) and conductivity (the ICR is around 20 mΩ cm2 at 140 N/cm2) of the
modified surface were all improved remarkably. Huang et al. [37] developed the electroless
silver-coated SS304 bipolar plates, which exhibit corrosion potential as high as 186.38 mV
and corrosion current density as low as 5.668 nA/cm2 in 0.5 M H2SO4. In contrast, the
corrosion potential and corrosion current density of bare SS304 are −421.1 mV and 990.6
nA/cm2, respectively. Besides, the Ag plating can exhibit excellent superhydrophobicity
after being modified by low surface energy substances, e.g., n-dodecanoic acid (water
contact angle, WCA ≈ 157◦) [38] and stearic acid (WCA = 153 ± 3◦ or 152◦) [39,40]. As
known, superhydrophobization is an important strategy to improve the hydrophobicity
of solid surfaces, and superhydrophobic surfaces usually have micro/nanostructures
and low surface energy [41]. Ouyang et al. [42] fabricated an Ag plating with abundant
micro/nano-dendrite structures on the Ti substrate by the electrodeposition method, and it
could achieve excellent superhydrophobicity (WCA = 158 ± 2◦) with n-dodecyl mercaptan
(NDM) modification. In practice, the electrodeposition technology is one of the main
means to prepare Ag plating, and its thickness, morphology, and properties are easy to
control [43]. From this perspective, the preparation of superhydrophobic Ag plating with
micro/nanostructures by electrodeposition may be an effective method to improve the
performance of SS304 bipolar plates.

In this paper, we designed and prepared the Ag plating with micro/nano-dendritic
structures on the SS304 surface (Ag/SS304) via potentiostatic deposition, followed by
modifying the Ag plating with NDM (NDM@Ag/SS304). The obtained NDM@Ag/SS304
shows superior superhydrophobicity and high hot-water repellency. The infrared thermal
imager was employed to record the heat transfer behavior between the hot droplet and
NDM@Ag/SS304 surface, exploring the origin of hot-water repellency of the superhy-
drophobic Ag plating. The surface morphology and composition of NDM@Ag/SS304
were characterized via scanning electron microscope (SEM), X-ray spectrometer (EDS),
X-ray diffractometer (XRD), and X-ray photoelectron spectrometer (XPS), and the corrosion
behavior and surface properties of NDM@Ag/SS304 in the simulated PEMFC environment
were systematically studied.

2. Materials and Methods
2.1. Materials

The SS304 used in this experiment was commercially purchased, and its main chem-
ical components (wt.%) are Cr (18.43%), Ni (8.21%), Mn (1.12%), Si (0.44%), C (0.025%),
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and the balanced Fe. Reagents and solvents, including sulfuric acid (H2SO4, 98.0%), hy-
drofluoric acid (HF, 40.0%), ethanol (99.7%), acetone (99.5%), aqueous ammonia (28.0%),
n-dodecyl mercaptan (NDM, 98.0%), and silver nitrate (AgNO3, 99.8%), were purchased
from Sinopharm Chemical Reagent Co., Ltd. and can be used without further purification.
The information and content of possible impurities in reagents and solvents can be found
in Table S1 (Supplementary Materials). The ultrapure water used was prepared in the
laboratory. Before the experiment, SS304 substrates needed to be polished with sandpaper,
followed by ultrasonically cleaning with acetone, ethanol, and pure water, and then dried
at ambient temperature.

2.2. Preparation of Superhydrophobic NDM@Ag/SS304

A three-electrode system, including the counter electrode (SS304, 10 mm × 10 mm
× 10 mm), the working electrode (platinum niobium wire), and the reference electrode
(saturated calomel electrode, SCE), was used to fabricate the Ag plating on the SS304
(i.e., Ag/SS304) via the potentiostatic deposition (9 V, 2 min) at room temperature, and
the composition of electroplating solution (200 mL) was AgNO3 (0.1 mol/L) and aqueous
ammonia (0.6 mol/L) [42]. After the deposition, the sample was cleaned with pure water,
ethanol, and acetone in turn, and dried in a vacuum to obtain Ag/SS304. Then, the
Ag/SS304 was fixed in a sealed beaker containing 0.1 mL of NDM solution, and the sample
and NDM were not in contact with each other. After heating in an electric oven at 60 ◦C
for 2 h, the superhydrophobic NDM@Ag/SS304 sample was obtained. In this procedure,
the sealed beaker was be filled with NDM vapor, which can easily react with the bare Ag
plating. The purpose of keeping the NDM solution out of contact with the sample was
to prevent a large amount of NDM from being adsorbed or reacting on the surface of Ag,
which would seriously affect the conductivity of the solid surface. This is because NDM is
a non-conductive organic compound, and the surface conductivity is very important for
bipolar plates.

2.3. Morphology and Composition

The surface morphology of samples was observed by SEM (ULTRA 55, Oberkochen,
Germany). The surface roughness of samples was measured by a three-dimensional laser
confocal microscope (LEXT OLS4000, Tokyo, Japan), and the results were the average
values of three different positions on the three samples. XPS (250Xi, Waltham, MI, USA)
and EDS (X-Max, Abingdon, UK) were used to qualitatively and quantitatively analyze the
surface composition of the coating. XRD (D8 ADVANCE, Karlsruhe, Germany) with a Cu
Kα (λ = 0.15406 nm) source was used to conduct phase analysis.

2.4. Wettability, Infrared Thermography, and Interfacial Contact Resistance Tests

The WCA and sliding angle (SA) of the sample were measured by an automatic
surface/interfacial tension meter (Attention Theta, Helsinki, Finland). The composition of
the water droplet used in the measurement was the same as that of the simulated solution,
and the droplet volume was 3 µL. All WCA and SA values were the averages of three
samples, and at least three measurements were made at different positions of each sample.
The surface temperature was observed and recorded by an infrared thermal imager (225s,
Guangzhou, China). During the recording process, the sample was facing the lens at an
inclination of 45◦. The interfacial contact resistance (ICR) test referred to the method in the
literature [4,32,44,45].

2.5. Electrochemical Tests

PARSTAT 2273 electrochemical workstation (USA) was used for all electrochemical
tests, and the solution of 1 × 10−5 mol/L H2SO4 and 2 ppm HF was utilized to simulate
the PEMFC cathode environment. A three-electrode system, including a working elec-
trode (sample itself), a counter electrode (platinum plated niobium wire), and a reference
electrode (saturated calomel electrode, SCE), was applied to carry out the electrochemical
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test at 80◦. Before the electrochemical tests, the samples needed to be immersed in the
simulated solution for 2 h to ensure the stability of open circuit potential (OCP). For the
potentiodynamic polarization curve tests, the potential range of scanning was −0.3 (vs.
OCP) ~ 1.2 V (vs. SCE), and the scanning speed was 2 mV/s. In addition, the potentiostatic
polarization curves were obtained after running at the simulated working potential of 0.6 V
(vs. SCE) for 5 h.

3. Results and Discussion
3.1. Surface Morphology and Composition

As shown in Figure 1a,b, the bare SS304 at low and high magnification presents a clean
and flat micromorphology with slight scratches (caused by sandpaper grinding). After
electrodeposition, a large number of micro/nano-dendritic fractal structures are formed on
the modified SS304 (Ag/SS304), and all the dendrites are closely staggered, completely cov-
ering the whole substrate and forming abundant micro/nanopores, as shown in Figure 1c.
Under high magnification (Figure 1d), it is observed that these micro/nano-dendrites,
like pine branches, have a main stem with pine needle-shaped side branches. Figure 1e,f
displays the surface morphology (at low and high magnification) of electrodeposited
SS304 further treated with NDM (NDM@Ag/SS304), and the photos illustrate that the
micro/nano-dendritic structures demonstrate no obvious differences before and after NDM
modification. The EDS data of the bare SS304, Ag/SS304, and NDM@Ag/SS304 are listed
in Table 1, and the corresponding result indicates that the main element of the micro/nano-
dendrite structure deposited on the SS304 is Ag. Meanwhile, the composition of Ag on
the surface of Ag/SS304 treated with NDM has no significant change compared with that
before treatment. Nevertheless, there are sulfur atoms on the surface of NDM@Ag/SS304,
but not on the Ag/SS304 surface, which is mainly caused by the NDM modification, be-
cause NDM contain sulfhydryl group with sulfur element. In fact, NDM modification does
not change the surface morphology of Ag/SS304.
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Table 1. Elements and contents (wt.%) of SS304, Ag/SS304, and NDM@Ag/SS304 surfaces obtained
by EDS.

Samples Fe Cr Ni Mn Si Ag C S

SS304 71.77 18.43 8.21 1.12 0.44 - 0.03 -
Ag/SS304 - - - - - 99.87 0.13 -

NDM@Ag/SS304 - - - - - 99.18 0.39 0.43

Figure 2 describes the XRD patterns of the bare SS304 and NDM@Ag/SS304, and
it can be found that the bare SS304 only shows the characteristic diffraction peaks of
Fe (austenitic structure). For the NDM@Ag/SS304, some new characteristic peaks are
observed at 2θ = 38.0, 44.2, and 64.3◦ in the graphs, separately corresponding to the (111),
(200), and (220) planes of Ag crystal (ICDD-PDF: 97-018-0878). These results demonstrate
that Ag plating is successfully deposited on the bare SS304 surface. Moreover, the weak
diffraction peaks from the SS304 in the XRD pattern of the NDM@Ag/SS304 also imply that
the electrodeposited Ag plating formed on the SS304 has high crystallinity, compactness,
and thickness [42].
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Figure 2. XRD patterns of the bare SS304 and NDM@Ag/SS304.

XPS analysis was carried out to further confirm the changes of surface composition
and chemical state caused by NDM modification (Figure 3). As shown in the XPS spectrum
of Ag 3d orbit (Figure 3a), two strong characteristic peaks appear at 368.27 and 374.28 eV
due to the spin-orbit splitting. Meanwhile, the characteristic energy loss peaks of metallic
Ag can be observed on the left side of these two spin-orbital components, which indicates
that these characteristic peaks should be assigned to metallic Ag. However, it is generally
believed that the binding energy (BE) peak position of Ag0 3d5/2 is about 368.3 eV, and
the shift of BE peak to lower BE side is related to the chemical bonding of Ag and other
compounds [40,46–49]. The above inference can be verified by the analysis of the XPS
spectra of C 1s and S 2p orbits. As shown in Figure 3b, the characteristic peaks belonging
to C-C (284.80 eV) and C-S (286.01 eV) appear in the XPS spectrum of C 1s orbit, which
proves the existence of NDM [46]. Moreover, as seen in the XPS spectrum of the S 2p orbit,
there are two characteristic peaks at 162.24 and 163.58 eV, which are respectively consistent
with the characteristic BE peaks of the coordination bond between NDM and metal (Ag-S)
and the thiol group (R-SH) of NDM itself, and the Ag-S peak is much higher than the
R-SH peak. The result suggests that a large amount of NDM is combined with metallic
Ag by chemical bonding, mainly coordination bonding, while a small amount of NDM is
physically adsorbed on the Ag plating surface in its original form [42].
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3.2. Surface Wettability

The pristine SS304 deposited with Ag plating shows superhydrophilicity (i.e., Ag/SS304,
WCA < 10◦); after NDM modification, the NDM@Ag/SS304 can achieve superhydrophobicity
(WCA ≥ 150◦, SA ≤ 10◦). However, for bipolar plates, it is not enough to realize superhy-
drophobicity only of room temperature water. If the surface has high hot-water repellency,
it is more in line with the practical application requirements in the PEMFC environment
(~80 ◦C). Therefore, the surface wettability of the NDM@Ag/SS304 under water droplets at
different temperatures are systematically studied, as shown in Figure 4. Under water droplets
below 60 ◦C, WCAs and SAs of the NDM@Ag/SS304 surface can meet the definition of su-
perhydrophobicity. As for water droplets above 60 ◦C, the surface can maintain a high WCA
(>130◦) and low SA (<20◦), showing good hot-water repellency. Compared with the bare SS304
(the inset in Figure 4, the WCA under water droplet at room temperature is about 105◦), the
NDM@Ag/SS304 displays a great improvement in hot-water repellency, even in hot-water
super-repellency, which has not been realized by any other bipolar plate research up to now.
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3.3. Surface Heat Transfer Behavior

Hot-water super-repellency is difficult to achieve, and most superhydrophobic surfaces
cannot repel hot water. As is known, the superhydrophobic surface is usually related to
the formation of the Cassie-Baxter wetting state, in which much air is trapped between
the water and solid interface, forming a stable intermediate air layer. However, when hot
water is involved, its evaporation rate is very high and the condensation of hot steam on
the cold surface is particularly obvious. All these processes are spontaneous and inevitable,
which also increases the possibility that the air layer on the superhydrophobic surface
is filled with condensate, thus forming a large number of liquid bridges connecting the
solid-liquid interface. Therefore, the temperature difference is usually the most important
driving force affecting the wetting of the solid surface by hot water. For example, in 1756,
Leidenfrost [50] discovered that the water under normal atmospheric temperature did
not wet the hot surfaces. Yu et al. [51] also proved that when the heated solid surface
came into contact with hot-water droplets, the smaller the temperature difference between
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them, the larger the WCA and the smaller the SA of the hot surface, that is, the lower the
surface wettability. However, a solid surface can be heated by artificial heating, and it is
also possible to be heated by higher temperature objects through heat transfer, but the latter
process is usually not evident and easily neglected. If the temperature difference between
the hot water and the solid surface remains the constant during the contact, it is very
unreasonable to realize hot-water super-repellency, which is because during this process,
the hot water will not only evaporate strongly, but also the generated high-temperature
steam will condense quickly on the cold surface.

To verify our conjecture, the process of a hot-water droplet contacting the NDM@Ag/SS304
surface was recorded by an infrared thermal imager. As seen in Figure 5, when the hot-water
droplet (~80 ◦C) approaches the surface (room temperature), the weak heat exchange between
them has already started; meanwhile, the temperature at the bottom of the droplet decreases
slightly, while the temperature at the surface directly below increases slightly. When the droplet
leaves the pipette and touches the NDM@Ag/SS304 surface, the temperature of the contact
part between them rises rapidly (close to 45 ◦C). Until the droplet slides down the surface, the
temperature of the contacted area on the solid surface is still high (close to 35 ◦C). During this
process, the contact time between the hot-water droplet and the NDM@Ag/SS304 is not more
than 0.1 s, demonstrating that the heat transfer process between the hot-water droplet and the
NDM@Ag/SS304 is very rapid, which is closely related to the high thermal conductivity of the
metal surface. The above research reveals that the heat transfer process between the solid-liquid
interface is very significant, during which the thermal conductivity of the solid surface plays
a critical role. However, all these factors have not been given enough attention in the past.
Exploring the mechanism of hot-water super-repellency of solid surfaces is beneficial to the
design of bipolar plate coating, so as to achieve better hydrophobicity in the high-temperature
PEMFC environment. Moreover, the research of hot-water super-repellency can also promote
the application of related technologies, such as scald prevention, corrosion prevention, oil-water
separation, and seawater desalination, and provide a strong theoretical basis to develop more
advanced and effective solutions [32,52–54].
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3.4. Corrosion Behavior and Surface Properties of NDM@Ag/SS304 in Simulated PEMFC Cathode
Environment

Generally, the PEMFC environment can be divided into anode environment and cath-
ode environment. With the development of PEMFC technology, the anode environment is
gradually changing, showing high uncertainty. In addition, the corrosion of stainless-steel
bipolar plates in the PEMFC cathode environment is usually more serious. To understand
the corrosion behavior of the NDM@Ag/SS304 in the simulated PEMFC cathode environ-
ment, potentiodynamic and potentiostatic polarization tests were conducted (Figure 6). As
shown in Figure 6a, the cathodic polarization curves of the bare SS304 and NDM@Ag/SS304
show similar behaviors; however, the current density of the NDM@Ag/SS304 is slightly
higher than that of the bare SS304 at the same cathodic polarization potential, demonstrat-
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ing that the cathodic reaction on the bare SS304 is enhanced after modification, which
may be related to the reduction process of Ag-NDM complexes. However, the anodic
polarization behaviors of the bare SS304 and NDM@Ag/SS304 display much difference.
With regard to the bare SS304, no obvious active-passive transition process in the anode
polarization curve is observed, which indicates that it can be passivated spontaneously in a
simulated PEMFC cathode environment. Meanwhile, the current density of the bare SS304
slowly increases in proportion with the increase of polarization potential. In the potential
range of 0.0~0.4 V, the bare SS304 shows high polarizability, which is closely associated with
the dynamic equilibrium process of the dissolution and growth of the passive film. When
the potential exceeds the critical value (breakdown potential, Eb), the current density of the
bare SS304 increases rapidly, indicating that the passive film begins to break down. As for
the NDM@Ag/SS304, with the increase of anode polarization potential, the current density
also increases slowly and proportionally, but the polarization rate and current density are
both maintained at a high level all along. The polarization parameters of the potentiody-
namic polarization curves of the bare SS304 and NDM@Ag/SS304 are listed in Table 2. It
can be seen that the corrosion potential (Ecorr) of the NDM@Ag/SS304 is evidently higher
than that of the bare SS304, while the corrosion current density (icorr) of them is similar,
indicating that the Ag plating and NDM modification treatment (i.e., NDM@Ag/SS304)
can improve the corrosion resistance of the bare SS304.

Nanomaterials 2022, 12, x 9 of 13 
 

 

the NDM@Ag/SS304 is evidently higher than that of the bare SS304, while the corrosion 

current density (icorr) of them is similar, indicating that the Ag plating and NDM modifi-

cation treatment (i.e., NDM@Ag/SS304) can improve the corrosion resistance of the bare 

SS304. 

  

Figure 6. The polarization curves of SS304 and NDM@Ag/SS304 in simulated PEMFC cathode envi-

ronment: (a) potentiodynamic polarization curves, (b) potentiostatic polarization curves (0.6 V, 5 h). 

Table 2. Polarization parameters derived from potentiodynamic polarization curves of SS304 and 

NDM@Ag/SS304, where Ecorr refers to the corrosion potential, Eb is the breakdown potential, icorr 

denotes the corrosion current density, and i0.6 V vs. SCE represent the current density of samples at 

0.6 V vs. SCE. 

Samples 
Ecorr 

(V vs. SCE) 

Eb 

(V vs. SCE) 

icorr 

(μA/cm2) 

i0.6 V vs. SCE 

(μA/cm2) 

SS304 −0.1130 0.5145 3.718 30.77 

NDM@Ag/SS304 0.2531 - 4.044 57.16 

At the typical cathode working potential of PEMFC (0.6 V, vs. SCE), the bare SS304 

and NDM@Ag/SS304 are both in a corrosive state. In addition, the current density (i0.6 V vs. 

SCE) of the NDM@Ag/SS304 is slightly higher than that of the SS304 substrate at this polar-

ization potential, which suggests that the corrosion rate of the NDM@Ag/SS304 is margin-

ally faster than that of the SS304 substrate. Nevertheless, at a higher working potential, 

the NDM@Ag/SS304 demonstrates higher corrosion resistance than the bare SS304. To 

simulate the long-term operation of NDM@Ag/SS304 in a PEMFC environment, potenti-

ostatic polarization (0.6 V vs. SCE, 5 h) was conducted. As shown in Figure 6b, the current 

densities of the NDM@Ag/SS304 and the bare SS304 show a trend of continuous decrease, 

and the eventual stable current density of NDM@Ag/SS304 is about 43.0 μA/cm2, which is 

higher than that of the bare substrate (0.260 μA/cm2). Despite that, the polarized surface 

is still superhydrophobic (as shown in the inset in Figure 7) and also maintains high hot-

water repellency (Figure 7). In summary, the NDM@Ag/SS304 shows excellent hydropho-

bicity in PEMFC working condition, which is greatly improved compared with the bare 

SS304 in terms of hot-water repellency and stability. 

10-8 10-7 10-6 10-5 10-4

-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5

P
o
te

n
ti
a

l 
(V

)

Current density (A cm-2)

PEMFC cathode potential

SS304

NDM@Ag/SS304

(a)

Figure 6. The polarization curves of SS304 and NDM@Ag/SS304 in simulated PEMFC cathode envi-
ronment: (a) potentiodynamic polarization curves, (b) potentiostatic polarization curves (0.6 V, 5 h).

Table 2. Polarization parameters derived from potentiodynamic polarization curves of SS304 and
NDM@Ag/SS304, where Ecorr refers to the corrosion potential, Eb is the breakdown potential, icorr

denotes the corrosion current density, and i0.6 V vs. SCE represent the current density of samples at
0.6 V vs. SCE.

Samples Ecorr
(V vs. SCE)

Eb
(V vs. SCE)

icorr
(µA/cm2)

i0.6 V vs. SCE
(µA/cm2)

SS304 −0.1130 0.5145 3.718 30.77
NDM@Ag/SS304 0.2531 - 4.044 57.16

At the typical cathode working potential of PEMFC (0.6 V, vs. SCE), the bare SS304
and NDM@Ag/SS304 are both in a corrosive state. In addition, the current density (i0.6 V
vs. SCE) of the NDM@Ag/SS304 is slightly higher than that of the SS304 substrate at this
polarization potential, which suggests that the corrosion rate of the NDM@Ag/SS304
is marginally faster than that of the SS304 substrate. Nevertheless, at a higher working
potential, the NDM@Ag/SS304 demonstrates higher corrosion resistance than the bare
SS304. To simulate the long-term operation of NDM@Ag/SS304 in a PEMFC environment,
potentiostatic polarization (0.6 V vs. SCE, 5 h) was conducted. As shown in Figure 6b, the
current densities of the NDM@Ag/SS304 and the bare SS304 show a trend of continuous
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decrease, and the eventual stable current density of NDM@Ag/SS304 is about 43.0 µA/cm2,
which is higher than that of the bare substrate (0.260 µA/cm2). Despite that, the polarized
surface is still superhydrophobic (as shown in the inset in Figure 7) and also maintains
high hot-water repellency (Figure 7). In summary, the NDM@Ag/SS304 shows excellent
hydrophobicity in PEMFC working condition, which is greatly improved compared with
the bare SS304 in terms of hot-water repellency and stability.
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Figure 7. The wettability of NDM@Ag/SS304 after potentiostatic polarization under water droplets
at different temperatures in the simulated PEMFC cathode environment.

Figure 8 shows the ICR of bare SS304, Ag/SS304, and NDM@Ag/SS304, before and
after the potentiostatic polarization (0.6 V, 5 h). The ICR values of all samples gradually
decrease with the increase of the compression forces (Figure 8a). Under the typical PEMFC
stacking compression pressure (i.e., 150 N/cm2) of bipolar plates (Figure 8b), the ICR
of samples after polarization is greater than that before polarization; however, whether
polarized or not, the ICR of Ag/SS304 and NDM@Ag/SS304 is markedly lower than that
of the bare SS304. Moreover, the ICR of the NDM@Ag/SS304 surface before and after
polarization is marginally higher than that of the corresponding Ag/SS304 surface, which
indicates that the modification of NDM with low surface energy has a certain influence on
the conductivity of the surface, but the degree of influence is not significant. In brief, the
electrodeposited Ag plating can improve the surface conductivity of the bare SS304. At
the same time, the modification of micro/nano-dendrite Ag plating with NDM can obtain
excellent and stable superhydrophobicity and hot-water repellency, and has little effect on
the surface conductivity.
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Figure 8. The interfacial contact resistance of SS304, Ag/SS304, and NDM@Ag/SS304 before (un-
treated) and after potentiostatic polarization (0.6 V, 5 h) in simulated PEMFC cathode environment:
(a) ICR at various compression forces; (b) ICR at 150 N/cm2.
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4. Conclusions

In conclusion, to enhance the performance of SS304 bipolar plates, this work develops
an Ag plating with micro/nano-dendrite structures and outstanding superhydrophobicity
(WCA ≥ 150◦ and SA ≤ 10◦) on SS304 by potentiostatic deposition and NDM modification.
SEM and EDS results illustrate that the micro/nano-dendrites demonstrate the fractal struc-
ture like pine branches, and the NDM modification does not change the morphology of
Ag dendrites, but sulfur atoms appear on the treated surface. XPS analysis further reveals
that NDM is mainly coordinated on the surface of Ag plating. Moreover, the fabricated
NDM@Ag/SS304 has excellent hot-water repellency. The results show that the hot-water
super-repellency of NDM@Ag/SS304 is closely related to the high thermal conductivity
of the Ag plating, which can reduce the temperature difference between the solid and
liquid interface. In the simulated PEMFC cathode environment, NDM@Ag/SS304 displays
a high corrosion potential (~0.25 V) and low corrosion current density (~4.04 µA/cm2).
After potentiostatic polarization (0.6 V, 5 h), the NDM@Ag/SS304 also shows high hy-
drophobic stability, which is substantially ameliorated compared with the bare SS304
substrate. Moreover, under the compression pressure of 150 N/cm2, the ICR of the po-
larized NDM@Ag/SS304 is much lower than that of the bare SS304. On balance, the
superhydrophobic NDM@Ag/SS304 with micro/nano-dendrite structures shows excel-
lent hot-water repellency, remarkable corrosion resistance, and surface conductivity. The
developed micro/nano-coating system shows a great performance advantage and latent
capacity in the application of bipolar plates for PEMFC.
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