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Abstract: In this study, magnetite nanoparticles were prepared and coated with poly(ethylene glycol)
terminated by alendronate to ensure firm binding to the iron oxide surface. Magnetic nanoparticles,
designated as magnetite coated with poly(ethylene glycol)-alendronate (Fe3O4@PEG-Ale), were
characterized in terms of number-average (Dn) and hydrodynamic (Dh) size, ζ-potential, saturation
magnetization, and composition. The effect of particles on blood pressure, vascular functions, nitric
oxide (NO), and superoxide production in the tissues of spontaneously hypertensive rats, as well
as the effect on red blood cell (RBC) parameters, was investigated after intravenous administration
(1 mg Fe3O4/kg of body weight). Results showed that Fe3O4@PEG-Ale particles did negatively affect
blood pressure, heart rate and RBC deformability, osmotic resistance and NO production. In addition,
Fe3O4@PEG-Ale did not alter functions of the femoral arteries. Fe3O4@PEG-Ale induced increase
in superoxide production in the kidney and spleen, but not in the left heart ventricle, aorta and
liver. NO production was reduced only in the kidney. In conclusion, the results suggest that acute
intravenous administration of Fe3O4@PEG-Ale did not produce negative effects on blood pressure
regulation, vascular function, and RBCs in hypertensive rats.

Keywords: magnetic; alendronate; nanoparticles; cardiovascular; red blood cells

1. Introduction

Iron oxide-based magnetic nanoparticles (NPs) exhibiting superparamagnetic prop-
erties due to their nanoscale size are promising in a variety of bioapplications [1,2]. Such
particles were already approved by the Food and Drug Administration (FDA) for magnetic
resonance imaging (MRI) of sentinel lymph nodes, liver, spleen, and bowel [3] or treatment
of iron deficiency [4]. Examples of commercial polysaccharide-coated magnetic nanoparti-
cles involve Lumirem®, Feridex®, EndoremTM, Feraheme®, and GastroMARK® [5]. How-
ever, some of them were later withdrawn from the market due to the lack of interest in
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the medical community, rentability of production, and potential health risks. A major
concern relates to their toxic effects on the cells, as well as on the living organism, mainly
due to possible interference with iron metabolism. Behavior of iron oxide nanoparticles
administered intravenously in the organism depends on their physicochemical properties,
such as composition, size, ζ-potential, coating, colloidal stability, concentration, etc. They
are excluded mostly by kidneys, if size is <6–15 nm [6]; larger particles are excreted via
hepatobiliary clearance and some are internalized in the spleen. Elevated amounts of
iron were observed also in the lungs, brain, heart, aorta, and other tissues [7]. A recent
study showed superparamagnetic poly(ethylene glycol) (PEG)-coated magnetite NPs did
not alter blood pressure and plasma corticosterone levels, but produced tissue-dependent
changes in nitric oxide (NO) production in normotensive rats [8]. Importantly, iron ox-
ide NPs altered vascular function in terms of enhanced NO-dependent components of
acetylcholine-induced endothelium-dependent relaxation. Circulating nanoparticles may
potentially influence red blood cells (RBCs) and damage their membranes. As NPs can
pass into RBC cytoplasm, NPs can affect the intracellular environment of RBCs.

The two main forms of iron oxide are magnetite (Fe3O4) and its oxidized analogue
maghemite (γ-Fe2O3). Their selection depends on the purpose of the application. While
some authors prefer higher magnetization of magnetite [9,10], others emphasize oxidation
stability of maghemite [11]. NPs were frequently modified to achieve stealth behavior
against adaptive immune systems and prolonged circulation in the blood stream, and
vice versa, to increase attractivity for some specific cells, e.g., the cancer ones [12,13].
Suitable coating also reduces toxicity of NPs associated mainly with oxidative stress, DNA
damage or hemolysis [14,15]. Coatings include low-molecular weight, as well as polymer
molecules, and various cell lysates to mask nanoparticles in the blood stream. To anchor
polymer coatings on particle surface, various ligands were used, including phosphate [16],
(bis)phosphonate [17], sulfo [18], and carboxyl groups [19], or polymer was covalently
crosslinked on magnetic nanoparticles [20]. Examples of polymers suitable as particle
coatings include dextran, carboxydextran [21], PEG [22], and polyvinylpyrrolidone [23],
which are FDA-approved and biocompatible.

Bisphosphonate-containing molecules belong to drugs for treatment of bone illnesses.
Alendronate (Ale) is a bisphosphonate medication used for treatment of osteoporosis in
women who have undergone menopause, as well as in men, in whom hypertension is
frequent comorbidity, as they form complexes with calcium [24]. In addition, endothe-
lial dysfunction is a hallmark of arterial hypertension and any further damage of the
endothelium (inner monolayer of the arteries) would worsen the already existing dis-
ease state. That is why any NPs used in medical applications, especially when they are
administered intravenously, should not damage the endothelium and/or decrease the
release of the endothelium-derived relaxing factors (mainly release of NO) or increase the
endothelium-derived contracting factors [25].

In this study, Ale was used as a ligand for anchoring PEG on the surface of the iron
oxide nanoparticles. The advantage of Ale consists in that it is used in human medicine,
and it was used previously as an additive to coating of metals due to its generally good
chelating properties [26]. We investigated the influence of magnetite NPs coated with
PEG-alendronate (Fe3O4@PEG-Ale) on certain biological parameters, such as blood pres-
sure, heart rate, vascular function and nitric oxide and superoxide production in the
organs and tissues of spontaneously hypertensive rats. In addition, we determined red
blood cell fundamental physiological parameters—deformability, osmotic resistance and
NO production.

2. Materials and Methods
2.1. Materials

Sodium salt of (4-amino-1-hydroxy-1-phosphonobutyl)phosphonic acid trihydrate
(alendronate; Ale) was purchased from TCI (Tokyo, Japan). α-Methoxy poly(ethylene gly-
col) succinimidyl ester (PEG-NHS; molar mass = 5000 g/mol) was purchased from Rapp
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Polymere (Tuebingen, Germany). Ferric chloride hexahydrate was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Ammonium hydroxide and Na2HPO4·12·H2O and KH2PO4
used for the preparation of 0.5 M phosphate buffer (PB) were obtained from Lach-Ner
(Neratovice, Czech Republic). Ultrapure Q-water that was ultrafiltered using a Milli-Q
Gradient A10 system (Millipore, Molsheim, France) was used in all experiments.

2.2. Synthesis of PEG-Alendronate

Ale (0.14 g) was dissolved in 0.5 M PB (2 mL; pH 7.4) at 0 ◦C and pH of the solution
was adjusted to 7.4 by addition of 4 M aqueous NaOH. PEG-NHS (0.5 g) was then added
and the reaction mixture was stirred at 0 ◦C for 6 h and at room temperature for 16 h. The
mixture was acidified with 4 M HCl to pH 2, PEG-alendronate (PEG-Ale) was extracted
with CH2Cl2 (3 × 8 mL) and then combined organic layers were filtered through a 0.45 µm
polytetrafluoroethylene filter (Millet, Milwaukee, WI, USA). CH2Cl2 was removed on a
rotary evaporator at 30 ◦C and the resulting product was vacuum-dried at 60 ◦C over
phosphorus pentoxide. Chemical structure of PEG-Ale in D2O was analyzed at 23 ◦C by
1H NMR spectrum (Figure 1a).
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Figure 1. (a) 1H NMR spectrum of PEG-Ale and (b) scheme of Fe3O4@PEG-Ale nanoparticles.
PEG-Ale, poly(ethylene glycol)-alendronate.

2.3. Preparation of Fe3O4 Nanoparticles and Their Modification with PEG-Ale

Aqueous FeCl3·6H2O (10 mmol) solution (50 mL) was added with vigorous stirring to
an iron(II) hydroxide dispersion prepared from aqueous solution (25 mL) of FeCl2·4H2O
(5 mmol) and ammonium hydroxide (40 mmol; 3.7 mL). Resulting black precipitate was
magnetically separated and washed with water ten times (100 mL each). Ammonium
hydroxide (100 µL) was then added, the product was washed with water three times
(50 mL each), and sonicated with a UP400S ultrasonic processor (Hielscher Ultrasonics,
Teltow, Germany) for 5 min. To determine magnetic properties and iron oxide concentration,
a small part of the colloid was lyophilized. PEG-Ale (22 mg) was then added to an aqueous
dispersion of Fe3O4 nanoparticles (10 mL; 4.4 mg of Fe3O4/mL) that was then sonicated
for 2 min (10% power; Bandeline Sonoplus, Berlin, Germany) and filtered through a sterile
0.45 µm filter to reach a concentration of 4.4 mg of Fe3O4@PEG-Ale per mL.
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2.4. Characterization of Nanoparticles

The particles were visualized on a Tecnai Spirit G2 transmission electron microscope
(TEM; FEI, Brno, Czech Republic). The number-average (Dn), weight-average diameter
(Dw), and dispersity (Ð) were calculated from TEM micrographs, counting at least 500 indi-
vidual particles: Dn = ∑Di/N, Dw = ∑Di

4/∑Di
3, Ð = Dw/Dn, where Di is the diameter of

particle i and N is the total number of counted particles. Dynamic light scattering (DLS)
was measured on a ZEN 3600 Zetasizer Nano Instrument (Malvern Instruments, Malvern,
UK) providing hydrodynamic diameter Dh, polydispersity (PD), and ζ-potential. Supercon-
ducting quantum interference device magnetometry was performed on a Quantum Design
MPMS XL device (San Diego, CA, USA). The magnetization curves were measured up to
the fields of 3183 kA/m at 5 and 300 K. The zero-field-cooled and field-cooled (ZFC-FC)
measurements were carried out in a magnetic field of H = 1.59 kA/m. Weight (Mw)- and
number-average molar mass (Mn), and polydispersities of the polymers were determined
on a Shimadzu high-performance size-exclusion liquid chromatograph (SEC, Tokyo, Japan)
equipped with a UV-Vis diode array, OptilabrEX refractive index and DAWN EOS multian-
gle light scattering detectors (Wyatt, Santa Barbara, CA, USA), and a TSK SuperAW3000
column with methanol/sodium acetate buffer (80/20 v/v) eluent (Ph 6.5) at a flow rate of
0.6 mL/min. The 1H NMR spectrum was measured by a Bruker AscendTM 400 spectrome-
ter operating at 400 MHz. Fourier-transform infrared (FTIR) spectrometer (PerkinElmer,
Waltham, MA, USA) was equipped with a Specac MKII Golden Gate single attenuated total
reflection. Amount of coating was evaluated by a PerkinElmer thermogravimetric analyzer
(TGA). The grafting density (σ) of PEG on the particle surface was calculated according to
Equation (1):

σ =
(mPEG/mFe3O4)ρ V NA

Mn S
(1)

where mPEG and mFe3O4 are weight percentages of PEG and magnetite in the particles
according to TGA, respectively, ρ is magnetite density (5.18 kg/m3), V is volume of
a particle (approximated by the volume of sphere), NA is Avogadro’s number, Mn is
number-average molar mass of PEG-Ale (5249 g/mol), and S is surface area of a particle
(approximated by the surface area of sphere).

2.5. Animal Experiments

Male, spontaneously hypertensive rats (SHR) were obtained from the certified animal
facility of the Department of Toxicology and Laboratory Animal Breeding, Centre of
Experimental Medicine, Dobrá Voda, Slovakia. Rats, 13–16 weeks old, were housed under
standard conditions at 22–24 ◦C and 12-h light/dark cycle and fed with pelleted diet
Altromin formula 1320, variant P (Altromin Spezialfutter, Lage, Germany) and tap water
ad libitum. All the procedures used in this study were approved by the State Veterinary
and Food Administration of the Slovak Republic in accordance with the European Union
Directive 2010/63/EU.

Animals were organized into two groups. The control (Cont) group (n = 6–7) obtained
saline infusion, while the nanoparticle group received Fe3O4@PEG-Ale nanoparticles
(n = 5–6). The nanoparticles (1 mg Fe3O4/kg body weight) dispersed in saline were
administered intravenously (IV) for 10 min into the jugular vein. Experimental protocol is
shown in the Figure 2. After the experiment, rats were exposed to brief CO2 anesthesia
and decapitated within 5 min of the final mean arterial pressure (MAP) recording.
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2.6. Measurement of Blood Pressure and Heart Rate

One day before the experiment, two fine bore polyethylene catheters (Smiths Medical
International, Kent, UK) were implanted under 2.5–3% isoflurane anesthesia. One catheter
was inserted into the left carotid artery for determination of arterial blood pressure (BP) and
heart rate (HR) and the second one was inserted into the jugular vein for IV infusion of NPs
or saline as described previously [8]. The experiments were performed in the quiet room to
avoid any non-specific stimuli affecting BP and HR, with sampling rate 1 kHz. During the
experiments, the conscious rats were placed into a dark plastic box, which allowed their
free movement. Arterial catheter was attached to BP recording PowerLab data acquisition
system (ADInstruments, Bella Vista, Australia). MAP and HR were recorded during the
entire experiment and both parameters were evaluated during 120-s time periods between
10 and 14 min before nanoparticle administration (Bas), during the entire 10 min of NPs
infusion, as well as during 120-s time periods ~100 min after the NPs administration (end
of the experiment). Results were calculated using LabChart Pro version 8 (ADInstruments,
Bella Vista, Australia).

2.7. Determination of Activity of Nitric Oxide Synthase

Activity of nitric oxide synthase (NOS) (expressed as pkat/g of protein) was assessed
in 20% tissue homogenates by determining [3H]-L-citrulline formation from [3H]-L-arginine
(ARC, St. Louis, MO, USA) as described in detail earlier [8]. Protein concentration was
determined using the Lowry method [27].

2.8. Production of Superoxide

Tissues (10–25 mg) were placed into ice-cold modified Krebs–Henseleit solution (physi-
ological saline solution, PSS; in mmol/L: 119 NaCl, 4.7 KCl, 1.17 MgSO4·7H2O, 25 NaHCO3,
1.18 KH2PO4, 0.03 Na2EDTA, 2.5 CaCl2·2H2O, 5.5 glucose). Lucigenin (50 µmol/L), as
well as tissue samples alone, were added to PSS bubbled with pneumoxide (5% CO2 and
95% O2) at 37 ◦C and pH 7.4 and preincubated in the dark for 20 min. After the preincu-
bation, either background lucigenin-enhanced chemiluminescence or lucigenin-enhanced
chemiluminescence produced by tissue samples were measured for 6 min using a TriCarb
2910TR liquid scintillation analyzer (TriCarb, Perkin Elmer, Waltham, MA, USA) [28].
Background counts were subtracted from those of tissue samples and expressed as counts
per min per mg of tissue (cpm/mg).

2.9. Determination of Vascular Functions

Isolated and cleaned femoral arteries with intact endothelium were cut into segments
(two segments of each rat) and placed in Mulvany-Halpern isometric myograph (Dual Wire
Myograph system 410A; Danish Myo Technology, Aarhus, Denmark) to investigate vascular
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function as described in detail previously [8]. Contractions induced by 125 mmol/L K+

and serotonin (5-HT; 10−6 mol/L) were investigated in the absence and presence of NO
synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME, 3 × 10−4 mol/L, 30 min
pre-incubation). After 20 min of stabilization of 5-HT-induced contraction, endothelium-
dependent relaxations were induced by administration of cumulative concentrations of
acetylcholine (ACh, 10−9 to 10−5 mol/L) into the organ chamber. After washing and
stabilization of the arteries, NOS inhibitor L-NAME (3 × 10−4 mol/L, 30 min incubation
time) was added into the organ chamber and ACh-induced relaxations were repeatedly
evaluated. Endothelium-independent relaxations produced by vascular smooth muscle
cells were investigated using exogenous NO donor sodium nitroprusside (SNP, 10−9 to
10−5 mol/L).

2.10. Determination of Red Blood Cell Parameters

Red blood cell parameters were determined as described in detail previously [29].
Briefly, RBC deformability assessed by filtration method was expressed as a percentage
of RBCs that were able to pass through the filters with pores 5 µm in diameter (Ultrafree-
MC SV Centrifugal Filter, Merck Millipore, Ireland). For osmotic resistance, hemolytic
assay was applied. RBCs were suspended in solutions with varying concentrations of
NaCl (0.1–0.9%), incubated for 30 min and centrifuged. Intensity of hemolysis was deter-
mined spectrophotometrically and NaCl concentration in which 50% hemolysis occurred
(IC50) was calculated from obtained data. NO production by RBCs was determined using
4,5-diaminofluorescein diacetate (Abcam, Cambridge, UK). NO dependent fluorescence
was observed using a Nikon Eclipse Ti fluorescence microscope (Tokyo, Japan) and quanti-
fied using ImageJ software.

2.11. Statistical Analyses

Statistical analysis was performed by unpaired or paired Student’s t-test, where
appropriate. MAP, HR, and vascular functions were analyzed by analysis of variance
(ANOVA) for repeated measures. ANOVA analyses were followed by the Bonferroni post
hoc test. To assess the difference in RBC parameters before and after the NP administration
paired Student’s t-test or Wilcoxon test (depending on data normality) were used. The
values were found to significantly differ when p < 0.05. The data were presented as
mean ± standard error of mean (SEM). GraphPad Prism 5.0 (GraphPad Software, San
Diego, CA, USA) and Statistica 13.5 (StatSoft, Hamburg, Germany) were used for the
statistical analyses.

3. Results
3.1. Fe3O4 Nanoparticles Preparation

Magnetic Fe3O4 nanoparticles were synthetized by a coprecipitation method with
a base. The technique is advantageous due to its simplicity, possibility of large-scale
production, and high reaction yield. Resulting Fe3O4 nanoparticles had number-average
diameter Dn = 11 nm and moderately high dispersity Ð = 1.24 according to TEM micrograph
(Figure 3a), while hydrodynamic size (Dh = 100 nm) and polydispersity (PD = 0.11) were
determined by DLS.

Fe3O4@PEG-Ale nanoparticles (Figure 1b) exhibited the same Dn and size distribu-
tion (Figure 3b) as original Fe3O4 particles and slightly increased Dh 110 nm. However,
Fe3O4 and Fe3O4@PEG-Ale particles differed in the ζ-potential, amounting to −46 and
−28 mV, respectively. Superparamagnetic properties of the pure Fe3O4 nanoparticles
were confirmed by measuring of hysteresis loops at 300 and 5 K (Figure 4a). Saturation
magnetization at these temperatures was 71 and 81 Am2/kg, respectively, which is close
to that of the bulk state [30], and coercivity of the Fe3O4 was 30 kA/m at 5 K and it was
negligible at room temperature.
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Figure 3. Transmission electron microscope micrographs of (a) Fe3O4 and (b) Fe3O4@PEG-Ale
nanoparticles.
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Thermogravimetric analysis of Fe3O4@PEG-Ale nanoparticles confirmed the presence
of polymer coatings on the iron oxide surface, reaching 33 wt.% (Figure 4b). Moreover, the
distance between the attachment points of the PEG-Ale on the particle surface (d) and Flory
radius (rf), respectively, were calculated [31,32] from the grafting density of the polymer
(0.54 chains/nm2) and Mn of PEG. The rf/d ratio characterized the PEG conformation
on particle surface that can be brush-like (rf/d > 1) or mushroom-like (rf/d < 1). As the
rf/d ratio of Fe3O4@PEG-Ale particles was 4.45, brush-like conformation of PEG was
confirmed. The presence of polymer on surface of nanoparticles was also supported by
FTIR (Figure 4c). The spectrum of pure Fe3O4 showed broad band at 3440 and 1625 cm−1

belonging to O–H stretching vibration and O–H deformed vibration, respectively, proving
the presence of coordinated OH groups or water on the particle surface [33]. Peaks at 1540
and 1340 cm−1 were probably associated with the presence of ammonium carbonate [34]
due to the reaction of air CO2 with ammonia during precipitation of magnetite. The
spectrum of PEG-coated nanoparticles showed C–O and C–C stretching and CH2 rocking
at 840 cm−1, CH2 rocking and twisting at 960 cm−1, C–O and C–C stretching at 1097 cm−1,
C–O stretching and CH2 rocking at 1140 cm−1, CH2 twisting at 1241 and 1278 cm−1, CH2
wagging at 1341 cm−1, and CH2 scissoring at 1466 cm−1.

3.2. Blood Pressure, Heart Rate and Red Blood Cell Parameters

MAP and HR of all rats at the beginning of the experiment were 184 ± 3 mmHg and
361 ± 10 bpm (n = 6–7 per group) and no significant differences between the groups were
observed. Administration of Fe3O4@PEG-Ale did not alter BP and HR, neither during the
infusion nor at the end of the experiment compared to the corresponding time-point in
the control group (Figure 5a,b). There were no differences in RBC deformability (n = 3),
osmotic resistance (n = 3) and NO production (n = 5) by RBCs in rats determined 100 min
after administration of Fe3O4@PEG-Ale nanoparticles, compared to basal levels of these
rats (Figure 6).
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3.3. Determination of Nitric Oxide Synthase Activity

To determine the effect of Fe3O4@PEG-Ale nanoparticles on NO production, activity
of NOS was determined in the rat aorta, left heart ventricle, liver, hypothalamus and kidney
(n = 6–7 per group). Nanoparticles had no significant effect on NOS activity in the aorta,
left heart ventricle, liver, and hypothalamus (Figure 7a–d). Significant reduction of NOS
activity was observed in the kidneys by ~26%, (p < 0.05) vs. the control group (Figure 7e).
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3.4. Production of Superoxide

NPs did not elevate superoxide production in the aorta, left heart ventricle and liver,
(Figure 8a–c). The highest levels of superoxide in control conditions were found in the
spleen, in which NPs elevated the superoxide level approximately by 86% (p < 0.05) vs.
control (Figure 8d). Superoxide production was also significantly elevated in the kidney by
~96% (p < 0.05) vs. the control group (Figure 8e).

3.5. Examination of Contractions of the Femoral Artery

The mean internal diameters of all arterial segments of control and Fe3O4@PEG-Ale-
treated rats were 682 ± 4 and 680 ± 8 µm, respectively, and they did not differ significantly.
The maximal depolarization-induced contractions produced by high concentration of
potassium (125 mmol/L K+) in the control and Fe3O4@PEG-Ale groups did not differ
significantly (Figure 9a). 5-HT-induced contractions in the absence of L-NAME were
similar in the control and Fe3O4@PEG-Ale groups (Figure 9b). Pre-incubation of the
arteries with L-NAME significantly enhanced the 5-HT-induced contraction of the femoral
arteries in both groups investigated (p < 0.05 for both groups) and Fe3O4@PEG-Ale did not
alter this parameter (Figure 9b).
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Figure 9. Maximal depolarization-induced contractions produced by (a) KPSS and (b) serotonin (5-hydroxytryptamine)-
induced contractions in the absence and presence of NO synthase inhibitor L-NAME. The values represent mean ± SEM.
* p < 0.05 vs. 5-HT, n = 12 per group. Cont, control; Fe3O4@PEG-Ale, Fe3O4@PEG-alendronate nanoparticles; KPSS, high
concentration of potassium (125 mmol/L)-containing physiological saline solution; 5-HT, serotonin; L-NAME, N(ω)-nitro-L-
arginine methyl ester.

3.6. Examination of Relaxations of the Femoral Artery

Sodium nitroprusside-induced and acetylcholine-induced concentration-response
curves of 5-HT-precontracted femoral arteries are shown in Figure 10. SNP-induced
relaxations were similar in the control and Fe3O4@PEG-Ale groups (Figure 10a). ACh-
induced relaxations in the absence (Figure 10b) and presence (Figure 10c) of L-NAME
were not altered by Fe3O4@PEG-Ale. Pre-treatment of the arteries with L-NAME led
to significant reduction of relaxations at the highest Ach concentration in both groups
investigated vs. the maximal relaxation in the given curve, suggesting no differences in the
release of endothelium-derived contracting factors between control and NP-treated rats.
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4. Discussion

In this study, superparamagnetic PEG-Ale-covered magnetite nanoparticles were
synthetized. Magnetite was preferred to maghemite not only due to a one-step synthesis,
but also because Fe(III) is metabolized to Fe(II) in the living organism. We also hypothe-
sized that difference in cytotoxicity between both iron oxides is negligible. The prepared
magnetite nanoparticles were coated with PEG-based polymer, that is considered to be
biocompatible and bioinert and able to temporarily mask the nanoparticles against im-
mune system and prolong their circulation in the blood stream [35]. The polymer was
designed to be terminated by functional end-groups to allow a solid attachment to the
iron oxide surface. In this respect, Ale appeared to be especially convenient, as its bisphos-
phonate groups readily conjugate to the iron oxide surface forming stable complexes [35].
Moreover, both iron oxides and Ale, as well as PEG, are FDA-approved for using in human
medicine [21,22,36]. This is the advantage of Ale compared to previously used neridronate
that is still waiting for final approval. Besides, Ale is easily commercially available and
reasonably priced.

The increase in Dn of neat Fe3O4 and Fe3O4@PEG-Ale nanoparticles was not detected
by TEM, and Dh was only slightly raised, probably due to the presence of poly(ethylene gly-
col) shell. Difference between the hydrodynamic diameter Dh and Dn, was observed, with
Dh being naturally higher than the number-average diameter Dn due to several reasons.
First, hydrodynamic diameter can be approximated as Dh = ∑Di

6/∑Di
5, which provides

larger numbers than Dn = ∑Di/N [37]. Second, DLS method is very sensitive to the pres-
ence of large particles, which also exponentially increases intensity of scattered light [38].
As a result, even a small fraction of large particles can dramatically increase the hydro-
dynamic diameter. The third reason is that DLS measures objects in solution, where they
can aggregate and scatter light more intensively than the individual particles, while TEM
determines individual particles.

Absolute value of ζ-potential decreased after PEG coating, which suggests that elec-
troneutral PEG coating was bound to the iron oxide surface. The presence of polymer
was also quantified by thermogravimetric analysis and confirmed by FTIR spectroscopy.
The rf/d ratio > 1 confirmed that PEG-Ale was densely packed on the particle surface in
a brush-like conformation. Magnetic measurement exhibited typical behavior for super-
paramagnetic materials; that means the nanoparticles are magnetic in an external magnetic
field, but in its absence, they do not exhibit magnetism and do not aggregate as, e.g.,
ferromagnetic nanoparticles.

We also investigated biological effect of these NPs in hypertensive rats. The main
findings are that Fe3O4@PEG-Ale (i) did not alter BP and HR, (ii) had no negative effects
on fundamental RBC properties, and (iii) did not affect vascular function after acute
intravenous administration. In addition, Fe3O4@PEG-Ale did not induce increase of
superoxide and reduction in NO production in the tissue of the aorta, left heart ventricle,
and liver.
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As already mentioned in the introduction, the use of various types of NP in biomedical
and medical applications depends on their biocompatibility, as well as stability. In human
studies, vasodilatation associated with hypotension has been observed, when certain iron
oxide NPs were administered as contrast agents to improve magnetic resonance imag-
ing [21]. Similarly, a transient decrease of BP was observed after application of poly(acrylic
acid)-coated γ-Fe2O3 nanoparticles in mice [39]. No effect of PEG-coated iron oxide NPs
on BP and HR was found on normotensive rats using the same experimental protocol,
which is in agreement with our current finding using different NPs in SHR [8]. However,
PEG-coated iron oxide NPs altered vascular function of normotensive Wistar–Kyoto (WKY)
rats in terms of elevation of endothelium-dependent NO-mediated components of vasore-
laxation, and partially reduced 5-HT-induced contraction. In addition, PEG-coated NPs
reduced the sensitivity of VSMCs to NO in WKY rats [8]. Similar vascular changes were
not present in SHR rats after application of Fe3O4@PEG-Ale in this study. Researchers
also showed that iron oxide NP accumulation in endothelial cells can modify vascular
function, NO bioavailability, and/or induce oxidative stress [40–42]. In this study, NO
synthase activity and superoxide production were not changed significantly in the aorta
of SHR. These findings, together with no changes in vascular functions, suggested that
Fe3O4@PEG-Ale do not affect negatively the endothelium and vascular smooth muscle
cells of the femoral artery in rats with high BP. Similarly, Fe3O4@PEG-Ale had no negative
effects in the human umbilical vein endothelial cell cultures [43].

Another important finding suggesting good biocompatibility of Fe3O4@PEG-Ale is
the fact that these NPs did not modify RBC deformability, which represents the crucial
characteristic allowing RBC passage through the narrow capillaries in the microcirculation
and is also a determinant of whole blood viscosity. RBC deformability is maintained by
various regulatory mechanisms, among which NO production by RBCs plays an important
role. In this study, NO production by RBCs was not affected by infusion of Fe3O4@PEG-
Ale. In addition, Fe3O4@PEG-Ale did not modify the RBC properties to challenge the
changes in osmotic pressure. Thus, the Fe3O4@PEG-Ale NPs seem to be RBC-biocompatible
during in vivo conditions in SHR. In addition to the aorta, Fe3O4@PEG-Ale did not induce
elevation in superoxide production in the tissues of the left heart ventricle and liver. On
the other hand, Fe3O4@PEG-Ale elevated superoxide production in the kidney and spleen.
This may be related to the fact that NPs are excreted by the kidneys and/or internalized
in the spleen. Our findings are in contrast to elevated superoxide production in the liver,
aorta and left heart ventricle found in normotensive rats using PEG-coated NPs [44]. We
assume that the differences can result mainly from different hemodynamic situation in
SHR, as well as from size and different physicochemical properties of NPs.

NO is the main vasorelaxant molecule in the cardiovascular system, but serves as a
neurotransmitter and neuromodulator in organisms. In this study, reduced NO production
was found only in the kidneys, together with elevated superoxide production. This finding
is similar to findings in the kidney of WKY rats using PEG-coated NPs without Ale [8,44].
On the other hand, our findings suggested that Fe3O4@PEG-Ale NPs produced less changes
in the cardiovascular tissue, liver and hypothalamus than previously used PEGylated NPs,
which may result from different physicochemical properties, size and/or modified coating.
In hypertensive rats, an important role may be played by altered hemodynamic state (blood
pressure and blood flow), which may accelerate NPs clearance from circulation. However,
independently of differences in above mentioned factors (hemodynamic situation, physico-
chemical properties, and coating of NPs), reduction of NO and elevated superoxide in the
kidneys, might suggest at least partial NOS uncoupling resulting in oxidative stress. As
oxidative damage might later be followed by functional and/or structural changes in the
tissues, attention should be paid to the possible harmful effect of NPs to kidneys.

In conclusion, we prepared superparamagnetic magnetite NPs with Dn = 11 nm
covered with PEG-Ale coating, and moderately narrow size distribution, for possible use
as an agent increasing MRI contrast. Determination of biological influences of Fe3O4@PEG-
Ale NPs did not show negative effects on the cardiovascular system and fundamental RBC
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parameters after acute intravenous administration in SHR. Fe3O4@PEG-Ale NPs induced
increase in superoxide and reduction in NO production in the kidney. Thus, despite that
there were no significant effects of Fe3O4@PEG-Ale on the cardiovascular system and RBCs,
further studies are needed to evaluate their effect in the kidneys. These findings contribute
to complex knowledge about behavior of magnetic nanoparticles in in vivo animal models,
considering also the influence of high BP, which makes this paper valuable in terms of
nanotoxicology research.
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Abbreviations

5-HT 5-hydroxytryptamine (serotonin)
ACh acetylcholine
Ale alendronate
ANOVA analysis of variance
Bas baseline
BP arterial blood pressure
bpm beats per minute
Cont control
Ð dispersity
Dh hydrodynamic diameter
DLS dynamic light scattering
Dn number-average diameter
Dw weight-average diameter
FDA Food and Drug Administration
Fe3O4@PEG-Ale magnetite coated with poly(ethylene glycol)-alendronate
FTIR Fourier-transform infrared
HR heart rate
i.v. intravenous

KPSS
high concentration of potassium (125 mmol/l)-containing physiological
saline solution

L-NAME N(ω)-nitro-L-arginine methyl ester
MAP mean arterial pressure
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Mn number-average molar mass
Mw weight-average molar mass
MRI magnetic resonance imaging
NMR nuclear magnetic resonance
NO nitric oxide
NOS nitric oxide synthase
NPs nanoparticles
PB phosphate buffer
PD polydispersity
PEG poly(ethylene glycol)
PEG-NHS α-methoxy poly(ethylene glycol) succinimidyl ester
PSS physiological saline solution
RBC red blood cell
SEM standard error of mean
SHR spontaneously hypertensive rat
SNP sodium nitroprusside
TEM transmission electron microscope
TGA thermogravimetric analysis
WKY Wistar-Kyoto rat
ZFC-FC zero-field-cooled and field-cooled
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