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Abstract: Penicillin G is an old and widely used antibiotic. Its persistence in the environment started
to appear in many environmental samples and food chains. The removal of these emerging pollutants
has been a challenging task for scientists in the last decades. The photocatalytic properties of Cd2+

doped Manganese- Zinc NSFs with chemical formula (Mn0.5Zn0.5)[CdxFe2−x]O4 (0.0 ≤ x ≤ 0.05)
NSFs are herein evaluated. The Manganese- Zinc N.S.F.s nanomaterials were deeply characterized,
utilizing UV-Vis (reflectance) spectroscopy, X-ray diffraction, N2 adsorption isotherm measurements,
and S.E.M., SEM-EDX mapping, and T.E.M. The Kinetic model for the photodegradation of penicillin
G (as a model molecule) is investigated using visible light as a source of energy. The kinetic study
shows that our results fit well with the modified pseudo-first-order model. The Pen G degradation
are 88.73%, 66.65%, 44.70%, 37.62% and 24.68% for x = 0.5, 0.4, 0.3, 0.2 and 0.1, respectively, against
14.68% for the free Cd spinel sample. The pseudo-rate constant is bandgap dependent. From the
intra-diffusion rate constant (Kd), we developed an intra-diffusion time (τ) model, which decreases
exponentially as a function of (x) and mainly shows the existence of three different domains versus
cadmium coordination in spinel ferrite samples. Hence, Cadmium’s presence generates spontaneous
polarization with a strong opportunity to monitor the charge separation and then open the route to a
new generation of “assisted” photocatalysts under visible light.

Keywords: nanoparticles; photodegradation; penicillin; kinetic modeling; mixed spinel ferrites;
wastewater; emerging pollutants

1. Introduction

Nowadays, the contamination of water bodies due to the presence of pharmaceutical
drugs cause a devastating effect on the environment and is considered to be a serious
concern worldwide. Among them, antibiotics are widely used medicines to treat human
and veterinary infections [1]. A human generally consumes antibiotics for the treatment
of bacterial diseases, and their primary usage in animal and agriculture farming is for
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the prevention of disease growth. For instance, the annual use of antibiotics was nearly
1.62 million, 13 and 10 thousand tons in China, the U.S.A., and Europe, respectively. The
active antibiotic is detected in the water bodies (surface, ground, and industrial) and
soil due to the discharge released from pharmaceutical effluents as well as domestic and
agricultural waste. The commonly used antibiotics remain approximately 90% active after
usa [2]. Therefore, their presence in the environment can adversely impact the water quality
and eco-system [3–7].

Penicillin G is a commonly used antibiotic with diverse applications in treating in-
fections associated with susceptible bacteria or other related diseases [8]. Penicillin G
is a water-soluble antibiotic, and its general mechanism is to degrade the structure of
the bacteria cell, which prevents the formation of peptidoglycan [9]. Conventional treat-
ment methods for removing antibiotics such as filtration, reverse osmosis, adsorption,
and bioremediation are found to be ineffective. The advanced oxidation process (AOP)
is considered to be an environmentally friendly and highly efficient technique for the
degradation of antibiotic pollutants. The AOP accelerates the degradation of a wide range
of pharmaceutical pollutants that are difficult to treat by conventional methods [10–12]. In
AOP, the contaminants are degraded or converted into low molecular weight molecules,
improving biodegradability and removal efficiency. This is due to the generation of highly
reactive oxygen species such as hydroxyl radical (OH◦), ozone (O3), and super oxide radical
(O2

-◦), which facilitate the oxidation of antibiotics and transform them into harmless by-
products [13]. Photocatalytic degradation has been widely studied for the decomposition
of pharmaceutical contaminants. The most commonly studied photocatalyst are TiO2, ZnS,
SnO2 and WO3. These are semi-conductor materials that excite due to the absorption of
energy. This generates superoxide radical (◦O2

-) and hydroxyl radical (◦OH-) due to the
oxidation and reduction reaction and could degrade antibiotics.

In the last decade, the application of nanoparticles in water purification technologies
has gained enormous attention. The large surface area, chemical and thermal stability,
abundant functionalities, and high light activity confirm them as potential photocatalyst
for the treatment of various antibiotics from water streams. For example, Au/Pt interacted
g-C3N4 showed excellent photocatalytic degradation of antibiotic tetracycline hydrochlo-
ride, which is 3.4 times more than that of g-C3N4 [14]. Besides, magnetic nanoparticles
and their derivatives are attractive as an ideal nanomaterial as photocatalyst in wastewater
treatment, reducing the effort and cost of catalyst separation and better reusability after
several treatment processes [15]. For example, magnetic recoverable MnFe2O4 decorated
graphitic carbon sand catalyst exhibited a robust degradation of ampicillin and oxyte-
tracycline antibiotics. The catalyst’s performance was effective for up to 10 reusability
cycles [16]. Recently, Hangdao Qin et al. reported in their study the highest catalytic
activity of MnFe2O4@carbon-NH2 towards tetracycline, amoxicillin, and ofloxacin [17].
Previous studies revealed that trimetallic nanoparticles exhibited substantially improved
electrocatalytic performance than Pt-based trimetallic nanoparticles supported with car-
bon [18]. Microwave prepared Trimetallic nanoparticles La/Cu/Zr, was investigated for
the degradation of ampicillin and showed up to 86% decomposition of antibiotic [19].
Therefore, it was expected that metallic ions into trimetallic nanoparticles might lead to
significant enhancement in the nanoparticle’s catalytic performance. Based on a detailed
literature review, no work has been reported as investigating the doping of different mole
ratios of Cd onto MnZnFe trimetallic nanoparticles.

The main objective of this work is to evaluate the photocatalytic properties of Cd2+

doped Manganese- Zinc N.S.F.s with empirical formula (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05)
NSFs onto penicillin G antibiotic utilizing visible light as an energy source.

2. Materials and Methods
2.1. Elaboration of (Mn0.5Zn0.5)[CdxFe2−x]O4 NSFs

Cd2+ doped Manganese- Zinc NSFs with empirical formula (Mn0.5Zn0.5)[CdxFe2−x]O4
(x≤ 0.05) NSFs were produced by the UV irradiation method. A proper ratio of Fe[NO3]3.9H2O
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(Iron Nitride), Zn[NO3]2 (Zin Nitride), Cd[NO3]2.4H2O (Cadmium Nitride), and MnCl2.4H2O
(Manganese Chloride) were dissolved in 100 mL of Deionized water. After stirring the solution
continuously for one h, the pH was amended at 11 by drop wisely of NaOH. Subsequently, the
final solution was exposed to the U.W. irradiation for 40 min via 70 W and 20 kHz Ultrasonic
Homogenizer from UZ SONOPULS HD 2070. The resulting mixture was washed 3 to 5 times
with Deionized hot water and then dried overnight at 60 ◦C.

2.2. Photocatalytic Test

Photocatalytic tests were performed using an aqueous solution (30 cm3) containing
Penicillin G (PenG, 100 mg/L) as a model contaminant. The reaction was carried out in a
double-walled thermostat Pyrex photoreactor (100 cm3) with an optical window area of
12.5 cm2. The concentration of photocatalyst was set at 1.0 g.L−1. The pH of the different
solutions was close to 6.0 ± 0.2 and the temperature was set as constant with chiller at
20.0 ± 0.2 ◦C for all the experiments. HQI-E 400 W/n plus visible lamp coated with UV
filter was used for visible irradiation. The rated lamp efficacy in the standard condition is
91 lm/W; the filter coats the lamp for UV radiation removal Typically, in a photocatalytic
experiment, 30 mg of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05) NSFs ultrasonically suspended
in 30 mL of 100 ppm aqueous solution of contaminant (PenG). Stirring the mixture for
60 min to reach the adsorption equilibrium in the dark; then, while the mixture was air
bubbled and stirred, it was photo-irradiated at 20.0 ± 0.2 ◦C, utilizing a solar lamp (HQI-E
400 W/n plus visible lamp). After reaching equilibrium, the substrate concentration was
measured, and considered the initial concentration (C0) to deduct the dark adsorption.
PenG samples were taken at different intervals (Ct) from the reactor’s solution upper part,
and then filtered using 0.45 µm nylon syringe filters. Consequently, the samples were
analyzed utilizing a Shimadzu High-Performance Liquid Chromatography (HPLC) and
(300 mm × 7.8 mm) Hypersil Gold column and a U.V.–Vis detector (λ = 210 nm). A mobile
phase of H2SO4 (510−3 mol/L) was used, flowing at 1 mL/min. During all the experiments,
three runs for all the photocatalytic tests have been achieved with good reproducibility.

In this work, the problem of diffusion-controlled kinetics is studied by using a mod-
ified diffusion model for Pen G photodegradation in the batch reactor. Here, the vari-
ation of PenG concentration vs. time was used for this model. We demonstrated that
ln
(

C
C0

)
= −

√
t
τ is defined as the diffusion time. This model fits well with the pho-

todegradation of PenG. We demonstrated that a high degradation rate is obtained at a
low value. In addition, this diffusion factor decreases exponentially versus Cd (x) in the
Mn0.5Cd1.5xFe2−xO4 catalysts. Finally, this model can be used to predict the catalytic
behavior versus Cd loading.

2.3. Catalysts Characterization

Phase identification was implemented by the (Rigaku D/Max-IIIC, Tokyo, Japan)
XRD system with Cu Kα radiation. The microstructure was analyzed via (JEOL JSM-
6490, Pleasanton, USA) scanning electron microscopy (S.E.M.) coupled with E.D.X. T.E.M.,
SAED patterns, and high-resolution T.E.M. (HR-TEM) analyses were performed using
an F.E.I. Titan S.T. microscope (300 keV). Pore structure and surface area measurements
were performed using a Micrometrics ASAP 2020 instrument, Norcross, USA. Before
the adsorption measurement, 0.05 g of the calcined catalyst was degassed by flowing
nitrogen for 3 h at 240 ◦C. The adsorption isotherms were plotted at 196 ◦C (liquid nitrogen
temperature). Relying on the B.J.H. adsorption calculation method, pore diameter, pore-
volume, and pore surface area were measured.

3. Results and Discussion
3.1. Analysis of Phase and Morphology

Figure 1 exhibitions of the X-ray powder of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05) NSFs.
The characteristic peaks of Manganese- Zinc spinel ferrite structure with space group
Fd3m appeared in all samples. There is a miner phase of CCdO3 at x = 0.3 to 0.5. The
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lattice constant ‘a’ was increased by raising the Cd ratio in the range of 8.312(5)–8.508(0).
Further, the average crystal size was evaluated using the Debye-Scherrer formula and was
found to be in the range of 6–9 nm. Figure 2 demonstrates the TEM and FE-Scanning
Electron Microscope images of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x = 0.1, 0.3 and 0.5) NSFs. The
intermediate magnification images indicated a cluster of small, homogeneously distributed
semi-cubic particles. The efficiency of the preparation method was approved through
elemental mapping and EDX spectra of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x = 0.2) NSFs, as seen
in Figure 3. It showed the weight percentage of consistent elements like Mn, Zn, Cd, Fe,
and O.
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Figure 1. XRD powder patterns of (Mn0.5Zn0.5)[CdxFe2−x]O4 (x ≤ 0.05) NSFs. 
Figure 1. XRD powder patterns of (Mn0.5Zn0.5)[CdxFe2−x]O4 (x ≤ 0.05) NSFs.

3.2. Nitrogen Physisorption

In order to gain more insights into the textural properties of the prepared materials,
the surface area analysis was carried out using the TriStar II PLUS surface area analyzer
from Micromeritics, Norcross, USA, which was used to obtain measurements of pore size
distribution, pore-volume, and surface area of the samples. The materials were degassed
at 190 ◦C for three hours under a vacuum in order to eliminate impurities prior to N2
physisorption measurements.
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Table 1 lists the surface area, pore volumes, and pore size distribution of the samples,
including the isotherm multipoint B.E.T. surface area and Langmuir surface area. Figure 4
depicts the sorption isotherm curves and reflects the relationship between gas sorption and
porosity. The shape of isotherm can be considered under types II and III. The pore size is
commonly defined as the distance between two opposite walls or as the pore width. Precise
pore size indicates that the geometrical shape is evident. The porosity of any material is
defined as the ratio of the volume of voids and pores to the volume the solid occupies.
Adsorption properties of the material also determine its porosity. As listed in Table 1,
the pore size ranges between 2 and 50 nm, indicating a mesoporous nature. It should be
noticed that the size decreases from sample 1 to sample 5, indicating possible mesoporous
type materials.

Table 1. Textural properties of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05) NSFs.

(Mn0.5Zn0.5)[CdxFe2-x]O4
x

0 0.1 0.2 0.3 0.4 0.5

Surface Area (m2/g) 138 101.5 108 101 69 43
Pore Volume (cc/g) 0.180 0.190 0.210 0.196 0.150 0.086
Pore diameter (Å) 58 72 84 72 82 82
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The more complex pore structures resulted in the materials x = 0 and x = 0.1 being
close to type H2 where the network effects are significant. According to IUPAC, the other
materials show the adsorption hysteresis H3, indicating that the materials’ pores are slit-
shaped (the isotherms exhibiting type H3 do not limit adsorption high P/Po ratio, which
is detected in flexible aggregates of platelike particles). H3 hysteresis desorption curves
contain slopes associated with a force on the loop of the hysteresis, owing to what is called
the tensile strength effect [20–22].

3.3. Optical Properties

The optical properties of (Mn0.5Zn0.5)[CdxFe2-x]O4 (0.0 ≤ x ≤ 0.05) NSFs were investi-
gated using a diffuse reflectance UV-vis spectrometer. Figure S1 (Supplementary Information)
shows the percent diffuse reflectance (D.R. %) data recorded in the 200 nm–800 nm in the
UV-Vis range. Energies range from 1.55 eV to 6.2 eV corresponds to the entire sweep spectral
region. The range of the spectra reflectance intensities starts from a narrow band between
13% to 15% for the first part of the entire sweep spectral region (200 nm to 500 nm). At all
reflectance intensities, sharp increases were observed up until a maximum at 45% for the
rest of the sweep range. To evaluate the diffuse reflectance spectra, the Kubelka-Munk (K-M)
function F(R∞) is frequently used

F(R∞) =
(1− R∞)2

2R∞
=

K
S

(1)

This function connects the abstract absorption quantity K to diffuse reflectance R∞ and
scattering quantity S. The F(R∞) is designed to calculate the K/S ratio; extra information
about the absorption characteristics can also be obtained. The K-M function becomes
dependent on K alone, assuming an unremarkable change of S falls in the wavelength
range of electronic absorption. In this way, the absorption α, which is related to K, can be
extracted via a functional relation covering the energy of the incident photon E = hυ and
the electronic transition-dependent exponent n [23]:

(F(R∞) • hυ)n ∼ (α.hυ)n (2)

Linear correlation between optical absorption and optical energy band gap (Eg) of
samples are given by the expression:

α • hυ = A1
(
hυ− Eg

)n (3)

where A1 is an arbitrary proportionality constant, a combination of Equations (2) and (3)
relates the Eg and F(R∞) and is also known as the Tauc Equation [24]:

(F(R∞) • hυ)1/n = A2
(
hυ− Eg

)
(4)

where A2 is the proportionality constant, and (n = 1/2) directly symbolizes the allowed
electronic transition. By plotting (F(R∞)hυ)2 versus photon energy (hυ) graphs, Eg values
can be estimated. A straight line fit to the linear section of the graph intercepts with the
energy (y) axis at (F(R∞)hυ)2 = 0. After that, the corresponding value on the energy (y)
axis is assigned as Eg in eV units. Figure 5 presents all Tauc fits and estimated band gaps
belonging to our samples. Mixed spinel Mn0.5Zn0.5Fe2O4 has a 1.62 eV Eg value. Cd3+ ion
coordinated samples have band gaps 1.67, 1.68, 1.74, 1.84 and 1.87 eV of magnitude, corre-
sponding to increasing Cd3+ ion proportion from x = 0.1 to x = 0.5. Hence, it is observed
that the coordination of Cd3+ ion causes significant increments at direct Eg of mixed spinel
ferrite sample. However, all estimated Eg data are in the bandgap range of semiconduc-
tors. Ashok and Nam’s groups report the direct Eg values of 1.98 and 1.99 eV for mixed
Mn0.5Zn0.5Fe2O4 NPs, which were prepared via hydrothermal and sonication assisted
microwave irradiation methods, respectively [25,26]. Our group reported the bandgap
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data of Mn0.5Zn0.5Fe2O4 and Mn0.5Zn0.5DyxFe2-xO4 (x = 0.01–0.03) NPs were produced
using ultrasonic irradiation in a narrow range from 1.61 to 1.67 eV [27]. However, there
have not been any reported Eg data for (Mn0.5Zn0.5)[CdxFe2-x]O4 NSFs in the literature.
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3.4. Kinetic Study

The photodegradation of Pen G onto (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05) NSFs are
herein evaluated under visible light radiation. Table 2 and Figure 6 summarize these results.
The photolysis test of PenG under visible light shows low conversion (<4.4 %) within the 3 h
test. Thus, the photodegradation of PenG without the catalyst can be neglected since higher
conversions are obtained with Mn0.5Cd1.5xFe2-xO4 14.88% (x0), 24.68 %(x0.1), 37.62%(x0.2),
44.70%(x0.3), 66.65%(x0.4) and 88.73% (x0.5).

Table 2 and Figure 6 present the variation of C0/C as a function of cadmium coor-
dination (x). The first overview of the curvatures’ trend indicates that the degradation
is enhanced by increasing Cd coordination in mixed spinel Mn0.5Zn0.5Fe2O4 catalysts
(Figure 6). The Pen G degradation are 88.73%, 66.65%, 44.70%, 37.62% and 24.68% for
x = 0.5, 0.4, 0.3, 0.2 and 0.1, respectively, against 14.68% for free Cd spinel sample. Herein,
we might have a Cadmium “assisted” Pen G photodegradation due to decreasing the
photogenerated (electron-hole) pairs recombination.
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Table 2. C/C0 and Pen G degradation onto (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05) NSFs.

x 0.0 0.1 0.2 0.3 0.4 0.5

t/min C/C0

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0.95262 0.93157 0.91825 0.87202 0.76098 0.63343

20 0.94483 0.90611 0.86885 0.82652 0.66659 0.48658

30 0.93155 0.88672 0.84257 0.81391 0.62154 0.45549

60 0.90482 0.84761 0.77303 0.71679 0.49868 0.35593

90 0.89377 0.82376 0.70142 0.67588 0.48610 0.29267

120 0.87756 0.79047 0.67476 0.61014 0.45405 0.16191

180 0.85318 0.75315 0.62379 0.55294 0.33335 0.11268

Degradation (%) 14.68 24.68 37.62 44.70 66.65 88.73
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The photodegradation rate of Pen G can be expressed as

Rate = −d [Pen G]

dt
= ki [Pen G]a (at constant temperature) (5)

If we consider that the reaction follows pseudo first order kinetics, then a = 1, and
thus the equation (Equation (5)) becomes:

Rate = −d [Pen G]

dt
= ki [Pen G] (6)

By rearranging equation (Equation (6)) we obtain:

Rate =
d [Pen G]

[Pen G]
= −k1 dt (7)

By integrating the expression (Equation (7)) from the t = 0 at initial concentration to
t > 0 at final concentration, the Equation (7) becomes:

∫ ct

c0

d Pen G
[Pen G]

= −
t∫

0

k1 dt (8)
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where [Pen G]0 is Penicillin G concentration at time zero = C0, and [Pen G]t is the concen-
tration at time (t > 0) C t.

Ln
(
[c]t
[c]0

)
= −k1 t (9)

Therefore, we can get the rate constant by plotting Ln
(
[c]t
[c]0

)
vs. time; the slope gives

the value of pseudo first-order rate constant. Table 3 and Figure 7 summarize these results.

Table 3. Photocatalytic properties of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05) NSFs.

x 0.0 0.1 0.2 0.3 0.4 0.5

t/min t0.5/min0.5 ln(C/C0)

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 3.1623 −0.04854 −0.07088 −0.085286 −0.13694 −0.273 −0.4566

20 4.4721 −0.05675 −0.0985 −0.14059 −0.19053 −0.406 −0.7203

30 5.4772 −0.07091 −0.12023 −0.17130 −0.20591 −0.476 −0.7863

60 7.7460 −0.10002 −0.1653 −0.25744 −0.33297 −0.695 −1.0330

90 9.4868 −0.11231 −0.1938 −0.35465 −0.39174 −0.721 −1.2287

120 10.954 −0.13061 −0.23513 −0.39340 −0.49407 −0.789 −1.8207

180 13.416 −0.15879 −0.28349 −0.47195 −0.59251 −1.098 −2.1832

k1 × 103 (min−1) 0.92346 1.6555 2.8425 3.4763 6.1409 12.4751

R 0.93616 0.94957 0.96295 0.96232 0.93675 0.96706
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From Table 3, we can undertake the kinetic model for Pen G photodegradation us-
ing Cd modified Mn0.5Zn0.5Fe2O4 spinel catalysts assigned to pseudo first-order. From
Table 2, it seems that the pseudo first-order rate constant k1 (min−1) increases versus Cd
loading. Nevertheless, from N2 adsorption-desorption results, the specific surface areas
of Mn0.5Zn0.5Fe2O4 spinel catalysts decreased tremendously vs. Cd loading (the SBET
is 138 m2·g−1 for Mn0.5Zn0.5Fe2O4 against 43 m2·g−1 for Cd (x = 0.5) Mn0.5Zn0.5Fe2O4).
The amount of catalyst was kept constant for all the experiments, and to elucidate the
effect of the variation of surface area, the pseudo rate constants can be expressed per m2

(the equivalent to the intrinsic activity k1’). The natural logarithm ln(k1) and ln(k’1) were
plotted vs. Cd loading for the different spinel catalysts (Figure 8).
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From Figure 8, similar trends are obtained for simultaneously the pseudo rate constant
(lnk1) and intrinsic rate (lnk’1), showing no significant effect on the surface area. Moreover,
the kinetic process seems to be more affected by cadmium loading (x). Three domains
are mainly obtained, namely: (I) for x < 0.2, ki increases linearly; (II) for 0.20 < x < 0.30, ki
increases slowly and (III) for x > 0.30, ki increases linearly.

Figure 7 shows that the small deviation to the linearity; this feeble deviation to the first
pseudo order leads us to think about a process with a probable optimal pseudo average
order kn (n > 1 and n 6= 1) for correlating the present degradation (Equation (10)).

C
C0

= [(n− 1)knt + 1]−
1

n−1 (10)

where the intermediate pseudo order is determined by nonlinear regression, and it is
approximately (n = 1.65). Nevertheless, the few values of (C/C0) and the lack of smoothness
in Figure 7 can significantly affect the precedent n-value. For this constraint, and to reduce
the discrepancy between experimental and estimated values, we thought it better to extend
the model of the first pseudo order (Equation (9)) by a small modification in the second
number, which becomes a second-degree polynomial by adding a t2-term, and this was
expressed as follows:

ln
(

C
C0

)
= −a1t + a2t2 (11)

In order to compare the first pseudo-order (Equation (9)) with the proposed modified
one (Equation (11)), parameter (a1) has been put in the common factor (Equation (12)),
which becomes equivalent to a kinetic rate constant where the new derived parameter (α)
represents an increment and its amount shows how much the kinetic process deviates from
the true pseudo first-order.

ln
(

C
C0

)
= −a1t(1− αt) (12)

Table S1 (Supplementary Information) presents values of the new adjustable parame-
ters and the corresponding correlation coefficient (R), which exhibit a clear improvement.
In addition, the values of (α) decrease with the increase of (x), showing that the nature of
the kinetic process approaches the true first pseudo order for high values of x. We note
that this ascertainment is also confirmed by the R-values increase in Table 3 related to the
kinetic rate constant (k1).

Figure 9 shows the variation of the adjustable parameters a1 (Figure 9a) and a2
(Figure 9b) vs. Cd coordination (x). We noticed the presence of three domains with distinct
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behaviors, which confirms the earlier observation in Figure 8. However, the corrected rate
constant (a1) shows a clear jump for x higher than 0.3.
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Zhou et al. [28] investigated the kinetic simulation for U.V./peroxydisulfate penicillin
removal and the degradation mechanism. The direct photolysis of Pen G in the UV 254 nm
line was substantial and followed the kinetics of the pseudo first-order rate constant of
1.2710−3 s−1 (0.02 10−3 min−1). The same authors found that the U.V./peroxodisulfate
(P.D.S.) process enhanced the photodegradation rate of Pen G; a pseudo rate constant of
0.5 × 10−3 min−1 is achieved in the presence of 5 mM P.D.S. In the present work, mixed
spinel ferrite (x = 0.5) shows a pseudo-rate constant of 12.47 × 10−3 min−1 (~25 times
higher) under visible light. Moreover, the drawback of the U.V./peroxodisulfate (P.D.S.)
process is sulfate ions formation.

Navarra et al. [29] demonstrated that the U.V./Zn2+ system is effective in the pho-
todegradation of four classical penicillins: ampicillin, amoxicillin, and both G&V penicillins.
The pseudo-rate constant for penicillin G is 0.349 × 10−3 min−1. Using the Cd2+/UV sys-
tem, the pseudo-rate constant for penicillin G reached 0.79 × 10−3 min−1 [30]. Using
transition metals U.V. system, it has been proposed that catalysis occurs via an interme-
diate 1:1 complex. This mechanism is formed between the metal ion and the antibiotic,
where the role of the metal ion in aminolysis or hydrolysis is to establish the tetrahedral
intermediate, which is formed when the nucleophilic group is added to the b-lactam car-
bonyl group [31,32]. Mohammad Kamranifar et al. [33] evaluated CoFe2O4@CuS magnetic
nanocomposite’s efficiency in photocatalytic degradation of Pen G in aqueous solutions,
a pseudo first-order of 0.6 × 10−3 min−1 is reached. Based on the cited examples, mixed
spinel ferrite catalysts (x = 0.1, 0.2, 0.3, 0.4, and 0.5) show the highest photodegradation
rates for penicillin G under visible light.

3.5. Intra-Diffusion Study

Figure 10a represents the natural logarithm ln(C/C0) for different values of x as a
function of the square root of time (t1/2). We can observe a clear quasi-linearity (Equation
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(13)) confirmed by the high values of the correlation coefficient (R) in Table S2 (Supplemen-
tary Information).

ln
(

C
C0

)
= −Kd ×

√
t (13)
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Figure 10b shows a global increase of the intra-diffusion rate constant (Kd) with Cd
loading (x) and confirms the previous ascertainments by the kinetic order mentioned above.
Besides, we see that the two first domains have similar behavior, while for the third domain
(x > 0.30) we observe an accentuation of the phenomenon.

To provide the possible physical meaning on the intra-diffusion rate constant (Kd),
Equation (13) was rewritten into a new expression (Equation (14)) where the new parameter
(τ) designates the characteristic time of the intra-diffusion.

ln
(

C
C0

)
= −

√
t
τ

(14)

where
τ =

1
Kd

2 (15)

and
Kd =

1√
τ

(16)

At low τ-values, a higher intra-diffusion rate is reached (Table S2 and Figure 11). Parameter
(τ) can be attributed as characteristic or specific time for the intra-diffusion rate phenomenon,
which has a strong causal correlation with the examined kinetic study’s specificity.

In order to suggest an adequate empirical expression for the intra-diffusion rate
constant (Kd) with (x), we supposed that the intra-diffusion characteristic time (τ) de-
creases exponentially as a function of (x) and starting from an initial maximum value
(τ0 = 7035.6 min).

τ = τ0e−θ(x−x0) (17)

where θ and x0 are two adjustable parameters.
Moreover, to give an implicit dependence with (x), we have plotted, in Figure 12, the

natural logarithm of the ratio (τ/τ0) as a function of (x) for which we clearly reveal the exis-
tence of the three domains with different behaviors. The quasi-perfect linearity justifies the
suggested expression (Equation (17)) and permits us to delimit well the boundaries of the
three fields characterized by a specific couple (θ,x0) (Table S3, Supplementary Information).
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Finally, considering Equations (16) and (17), we can suggest an intersecting implicit
model for the intra-diffusion rate constant (Kd) expressed as follows:

Kd = Kd0e−
θ
2 (x−x0) (18)

where
Kd0 =

1√
τ0

(19)

where the Kd. Is the initial value given in Table S2 such as (Kd = 0.011922 min−0.5) and
(τ0 = 7035.6 min).

Finally, we considered that the kinetic degradation process obeys the Arrhenius law
with temperature (Equation (20)) for the first pseudo-order. We can predict the relative
variation of the two Arrhenius parameters lnA(x) and Ea(x).

lnk1(x) = lnA(x)− Ea(x)
RT

(20)

In fact, if we have preliminary data on the Arrhenius parameters (lnA0 and Ea0) at
(x = 0), such as for the Mn0.5Zn0.5Fe2O4 ferrite nanoparticles, and we assume the global
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variation in Figure 8 as approximately linear versus (x) with a slope (ε = 4.9), we can
differentiate Equation (20) as follows:

∂lnA(x)
∂x

− ∂Ea(x)
RT∂x

= ε (21)

and the integration of the Equation (21) gives Equation (22):

Ea(x) = Ea0 + RT
[

ln
A(x)
A0
− εx

]
(22)

We can then estimate the variation of the two Arrhenius parameters lnA(x) and Ea(x)
for different values of (x), which can be considered as an exciting criterion of discussion
and interpretation for the temperature effect.

3.6. Correlation between Kinetic and Optical Data

We demonstrated, in paragraph 3.3. (Optical properties) that coordination of Cd3+

ion causes significant increments at direct Eg of mixed spinel ferrite samples. Cd3+ ion
coordinated samples have band gaps 1.67, 1.68, 1.74, 1.84 and 1.87 eV of magnitude, which
coincides with increasing Cd3+ ion ratios from x = 0.1 to 0.5; against 1.62 eV for Cd free
spinel sample (x = 0).

However, the present kinetic study clearly shows that the pseudo first-order degrada-
tion rate (k1) increases vs. Cd coordination (x), and it is slightly affected by the textural
properties (B.E.T. surface area) of mixed spinel ferrite samples. All the surface works
in the photocatalysis process. The limiting step remains the recombination rate of the
photogenerated (electron-hole) pairs rather than the adsorption of penicillin G onto the
surface of the spinel ferrite samples.

To find-out a possible explanation of our results, we plotted the pseudo-first-order
rates k1 and a1 (obtained from the modified model) vs. the direct bandgap energy (Eg)
(Figure 13).
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bandgap energy.

From Figure 13, it seems clear that the pseudo rate constant (k1) is bandgap dependent.
The k1 increases slightly between 1.62 (x = 0) and 1.68 (x = 0.2). Then increases very slowly
between 1.68 and 1.74 eV (x = 0.3). Finally, we noticed a rate jump for band gap energy
higher than 1.74 eV. This finding highlights the beneficial effect of high cadmium coordina-
tion in spinel catalysts. This result could be attributed to the decrease in the recombination
rate of photogenerated electron-hole pairs. Similarly, the intra-diffusion constant also shows
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bandgap dependence (Figure S2, Supplementary Information). (Mn0.5Zn0.5)[CdxFe2-x]O4
(x ≤ 0.05) NSFs.

4. Conclusions

The effect of Cadmium metal coordination on the structural, textural, and morpho-
logical properties of spinel ferrite (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05) NSFs on the pho-
todegradation of penicillin G (Pen G) was herein studied. The physical characterization
was achieved using X-ray diffraction, Raman, UV-vis (reflectance) spectroscopies, N2 ad-
sorption isotherm measurements, and S.E.M., SEM-EDX mapping, and T.E.M. allow for
determining the influence of cadmium coordination on the photocatalytic response of
Manganese-ZincNSFs nanostructured materials. Several catalysts were tested with dif-
ferent Cd coordinations (0.1, 0.2, 0.3, 0.4, and 0.5) for the photodegradation of penicillin
G (Pen G) as a model molecule. The kinetic study shows that our results fit well with
the pseudo-first-order model. The rate constant k1 increases versus Cd coordination and
clearly highlights bandgap (Eg) dependence. For x = 0.5, the rate constant is enhanced by
a factor of 13.5 with respect to the Cd-free spinel ferrite catalyst (x = 0). On the contrary,
the rate constant increases slightly between x = 0.2 and x = 0.3 and rapidly above x = 0.3.
Hence, Cadmium’s presence probably induces the electric field’s formation, which de-
creases the recombination rate of electron-hole (e−, h +) pairs. This finding highlights a new
generation of photocatalysts with a “tuned bandgap.” Further experiments are ongoing for
the treatment of industrial effluents containing penicillin G antibiotic.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11040970/s1, Figure S1. Diffuse reflectance spectra of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05)
NSFs, Table S1. Kinetic parameters obtained from the modified model, Table S2. Intra-diffusion
rate and corrected d factor vs. Cd coordination (x), Table S3. The boundaries of the three domains
characterized by a specific couple (θ,x0), Figure S2: variation of Kd and Ln Kd vs. bandgap energy of
mixed spinel ferrite catalysts.
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21. Amir, M.; Baykal, A.; Guner, S.; Güngüneş, H.; Sözeri, H. Magneto-optical investigation and hyperfine interactions of copper
substituted Fe3O4 nanoparticles. Ceram. Int. 2016, 42, 5650–5658. [CrossRef]

22. Baykal, A.; Esir, S.; Demir, A.; Güner, S. Magnetic and optical properties of Cu1−xZnxFe2O4 nanoparticles dispersed in a silica
matrix by a sol–gel auto-combustion method. Ceram. Int. 2015, 41, 231–239. [CrossRef]

23. Bock, S.; Kijatkin, C.; Berben, D.; Imlau, M. Absorption and remission characterization of pure, dielectric (nano-)powders using
diffuse reflectance spectroscopy: An end-to-end instruction. Appl. Sci. 2019, 9, 4933. [CrossRef]

24. Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966,
15, 627–637. [CrossRef]

25. Nam, P.; Phuc, N.; Linh, P.; Lu, L.; Manh, D.; Phong, P.; Lee, I.-J. Effect of zinc on structure, optical and magnetic properties and
magnetic heating efficiency of Mn1-Zn Fe2O4 nanoparticles. Phys. B Condens. Matter 2018, 550, 428–435. [CrossRef]

26. Ashok, A.; Kennedy, L.J.; Vijaya, J.J. Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0 ≤ x ≤ 0.5) spinel nano
particles for transesterification of used cooking oil. J. Alloys Compd. 2019, 780, 816–828. [CrossRef]

27. Almessiere, M.; Slimani, Y.; Korkmaz, A.D.; Güner, S.; Baykal, A.; Shirsath, S.; Ercan, I.; Kögerler, P. Sonochemical synthesis of
Dy3+ substituted Mn0.5Zn0.5Fe2−xO4 nanoparticles: Structural, magnetic and optical characterizations. Ultrason. Sonochem.
2020, 61, 104836. [CrossRef] [PubMed]

28. Zhou, X.; Liu, D.; Zhang, Y.; Chen, J.; Chu, H.; Qian, Y. Degradation mechanism and kinetic modeling for UV/peroxydisulfate
treatment of penicillin antibiotics. Chem. Eng. J. 2018, 341, 93–101. [CrossRef]

29. Navarro, P.G.; Blázquez, I.H.; Osso, B.Q.; De Las Parras, P.J.M.; Puentedura, M.I.; Marquez García, A.A. Penicillin degradation
catalysed by Zn(II) ions in methanol. Int. J. Biol. Macromol. 2003, 33, 159–166. [CrossRef]

30. Martínez, J.H.; Navarro, P.G.; Garcia, A.A.; De Las Parras, P.J. β-Lactam degradation catalysed by Cd2+ ion in methanol. Int. J.
Biol. Macromol. 1999, 25, 337–343. [CrossRef]

31. Toda, F.; Sato, A.; Nassimbeni, L.R.; Niven, M.L. Optical resolution of amino acid and hydroxycarboxylic acid esters by complexation
with optically active host compounds: A crystallographic result. J. Chem. Soc. Perkin Trans. 1991, 2, 1971–1975. [CrossRef]

32. Gensmantel, B.N.P.; Proctor, P. Metal-ion Catalysed Hydrolysis of Some p-Lactam Antibiotics. J.C.S. Perkin I1 1980, 2, 1725–1732.
[CrossRef]

33. Kamranifar, M.; Allahresani, A.; Naghizadeh, A. Synthesis and characterizations of a novel CoFe2O4@CuS magnetic nanocom-
posite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater. J.
Hazard. Mater. 2019, 366, 545–555. [CrossRef] [PubMed]

http://doi.org/10.1016/S0140-6736(05)17907-0
http://doi.org/10.1186/2052-336X-12-56
http://doi.org/10.1016/j.watres.2013.07.005
http://doi.org/10.1016/j.watres.2012.01.014
http://doi.org/10.1016/j.watres.2010.10.013
http://www.ncbi.nlm.nih.gov/pubmed/21093013
http://doi.org/10.1080/01919518708552148
http://doi.org/10.1021/acsami.5b01212
http://www.ncbi.nlm.nih.gov/pubmed/25891123
http://doi.org/10.1021/acsanm.9b00976
http://doi.org/10.1016/j.seppur.2016.09.006
http://doi.org/10.1016/j.cej.2020.125304
http://doi.org/10.1021/ja107874u
http://www.ncbi.nlm.nih.gov/pubmed/21105661
http://doi.org/10.1016/j.molliq.2018.03.059
http://doi.org/10.1515/pac-2014-1117
http://doi.org/10.1016/j.ceramint.2015.12.089
http://doi.org/10.1016/j.ceramint.2014.08.063
http://doi.org/10.3390/app9224933
http://doi.org/10.1002/pssb.19660150224
http://doi.org/10.1016/j.physb.2018.09.004
http://doi.org/10.1016/j.jallcom.2018.11.390
http://doi.org/10.1016/j.ultsonch.2019.104836
http://www.ncbi.nlm.nih.gov/pubmed/31683234
http://doi.org/10.1016/j.cej.2018.01.137
http://doi.org/10.1016/S0141-8130(03)00081-3
http://doi.org/10.1016/S0141-8130(99)00052-5
http://doi.org/10.1039/p29910001971
http://doi.org/10.1039/P29800001725
http://doi.org/10.1016/j.jhazmat.2018.12.046
http://www.ncbi.nlm.nih.gov/pubmed/30572294

	Introduction 
	Materials and Methods 
	Elaboration of (Mn0.5Zn0.5)[CdxFe2-x]O4 NSFs 
	Photocatalytic Test 
	Catalysts Characterization 

	Results and Discussion 
	Analysis of Phase and Morphology 
	Nitrogen Physisorption 
	Optical Properties 
	Kinetic Study 
	Intra-Diffusion Study 
	Correlation between Kinetic and Optical Data 

	Conclusions 
	References

