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Abstract: Nanoparticles (NPs) provide multipurpose platforms for a wide range of biological applica-
tions. These applications are enabled through molecular design of surface coverages, modulating NP
interactions with biosystems. In this review, we highlight approaches to functionalize nanoparticles
with “small” organic ligands (Mw < 1000), providing insight into how organic synthesis can be used
to engineer NPs for nanobiology and nanomedicine.

Keywords: inorganic nanoparticles; surface chemistry; peptide and proteins; monolayers; nanozyme;
bioorthogonal catalysis; bacterial biofilm; tumors; stimuli-responsive; drug delivery

1. Introduction

Inorganic nanoparticles can be engineered to possess useful physiochemical properties
for use in applications including biomedicine and diagnostics [1–6]. While shape [7] and
size [8] both play critical roles in defining nanoparticle properties, surface chemistry is
likewise crucial for function and colloidal stability [9,10]. The nanoparticle surface inter-
faces with the external environment, and appropriately engineered surfaces can be used to
regulate interactions between nanoparticles and biomolecules [11] including peptides [12],
proteins [13] and nucleic acids [14].

A wide range of strategies have been used to modulate surface properties of nanopar-
ticles (NPs), including polymer-based surface modification of nanoparticles [15–18]. These
systems are quite useful; however, the intricacies of polymer structure and dynamics
introduce complexities that add an additional layer to understanding and harnessing
the interactions between nanoparticles and biomolecules [19]. Designing small ligand
molecules to tailor the surface properties of nanoparticles provides an approach comple-
mentary to polymer coatings, providing ease of fabrication and scalability [20]. The wide
range of functionalities provided by organic chemistry renders a rich toolkit, allowing for
atom-by-atom control of nano–bio interactions contiguous [1]. In this review we provide
an overview of approaches for controlling nanoparticle–cell and nanoparticle–protein
interactions by tailoring small molecule ligands on the particle surface. Particle–protein
interactions are important in their own right and also serve to modulate nanoparticle–cell
interactions through corona formation. Nanoparticle interaction with nucleic acids [21]
and intracellular delivery of nanoparticle-bound biomolecules [22] are likewise important
related concepts that are beyond the scope of this review.

2. Modulating Nano–Bio Interactions through Surface Design

Engineered NPs can feature a diverse range of chemical surface functionalities to
promote specific or nonspecific interaction with proteins or other biomolecules of interest.
Proteins are particularly interesting targets for their roles in cellular homeostasis and
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metabolic diseases [23,24]. Enzymatic activity is closely linked to protein structure, creating
an intriguing engineering challenge for NP design at the ligand–protein interface.

2.1. Regulation of Enzyme Activity

NPs can be used as enzyme inhibitors by engineering them to noncovalently interact
with protein surfaces, blocking access to the active site or triggering protein denatura-
tion [25,26]. In early studies, the Rotello group functionalized gold nanoparticles (AuNPs)
with COO-surface moieties to allow them to interact with the cationic region surrounding
the active site of chymotrypsin, thereby inhibiting enzymatic activity [27]. Using these
surfactant-like ligands, an almost complete denaturation of chymotrypsin was observed
by circular dichroism (CD) upon addition of AuNPs. Importantly, negatively charged
AuNPs showed a relatively high degree of selectivity to chymotrypsin over proteins like
elastase and β-galactosidase due to electrostatic complementarity. Follow-up studies [28]
demonstrated that this AuNP-based inhibition of chymotrypsin could be reversed (up to
50%) through in situ surface modification of AuNPs using long-chain surfactant (Figure 1).
In related work, Hamad–Schifferli engineered a series of 9.6-nm AuNPs featuring anionic
and zwitterionic functionalities to investigate the effect of surface charge on the enzymatic
activity of glucose oxidase (GOx) [29]. The authors reported that neutral and zwitterionic
ligands acted as a steric barrier to the active site, and further that changing AuNP surface
chemistry varied binding kinetics greatly, with certain surface chemistries irreversibly
affecting GOx denaturation and activity.
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ured by UV–vis spectroscopy. (c) Reactivation of chymotrypsin is dependent on surfactant concentration. (Adapted with 
permission from Reference [28]; Published by American Chemical Society, 2003). 

Rotello showed that the nature of NP–protein interaction can be tuned using CdSe 
NPs featuring oligo (ethylene glycol) (OEG) ligands with chain-end functionality [30]. By 
varying ligand composition, the authors showed tunable surface recognition of chymo-
trypsin, with three levels of interaction: no interaction, inhibition with denaturation, and 
reversible inhibition with retention of structure. This work demonstrated NPs as versatile 
platforms for enzyme binding and controlled inhibition. 

Figure 1. (a) Schematic illustration of the mechanism of rescuing chymotrypsin activity using long-chain surfactants.
(b) Initial velocities of chymotrypsin before and after adding four different surfactants. Chymotrypsin reactivation was
monitored via the hydrolysis of the chromogenic substrate N-succinyl-L-phenylalanine p-nitroanilide (SPNA), as measured
by UV–vis spectroscopy. (c) Reactivation of chymotrypsin is dependent on surfactant concentration. (Adapted with
permission from Reference [28]; Published by American Chemical Society, 2003).

Rotello showed that the nature of NP–protein interaction can be tuned using CdSe NPs
featuring oligo (ethylene glycol) (OEG) ligands with chain-end functionality [30]. By vary-
ing ligand composition, the authors showed tunable surface recognition of chymotrypsin,
with three levels of interaction: no interaction, inhibition with denaturation, and reversible
inhibition with retention of structure. This work demonstrated NPs as versatile platforms
for enzyme binding and controlled inhibition.

Amino acids functionalities are attractive candidates as NP surface moieties for en-
zyme inhibition as they can not only provide structural diversity but also mimic naturally
occurring protein–protein interactions [31]. Rotello and coworkers generated a series of
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L-amino acid-functionalized AuNPs with varied hydrophobicity and electrostatic charge
to probe binding with the surface of chymotrypsin [32]. Determined by binding constant,
the authors reported that AuNPs featuring hydrophobic groups bound more strongly than
those with hydrophilic groups. Later work demonstrated that chirality plays a similarly im-
portant role in protein binding, and that unlike small molecule regulators, specific binding
interactions significantly affect AuNP-based enzyme regulation [33].

NPs can also be functionalized with small molecule recognition elements to pro-
mote specific binding to a protein of interest for inhibition [34]. Recent work by Lira
demonstrated AuNPs decorated with p-mercaptobenzoic acid ligands could bind distinct
allosteric exosites of the serine protease thrombin, providing allosteric regulation of the
enzyme active site without large-scale denaturation [35].

In contrast to enzyme inhibition, AuNPs can also be engineered to refold denatured
enzymatic proteins. AuNPs bearing dicarboxylate functionalities promoted the refolding
of thermally denatured cationic enzymes, including chymotrypsin, lysozyme and papain
to their native conformations [36]. The Vinogradov group reported alumina NPs as agents
to promote renaturation of misfolded enzymes with overall anionic charge [37]. More
recently, Khare demonstrated magnetic iron oxide nanoparticles featuring aminopropyl
triethoxysilane (APTES) modifications that were capable of refolding thermally denatured
enzymes [38]. After incubation between APTES-NPs and thermally denatured cholesterol
oxidases, dynamic light scattering (DLS), zeta potential measurements, fluorescence and
CD spectroscopy confirmed enzyme refolding to the native state. Similar engineering ap-
proaches could provide an avenue for specific enzyme regulation for therapeutic purposes,
including refolding of misfolded enzymes linked to diseases.

2.2. Modulating Interactions between NPs and Proteins

Nanoparticles administered into the blood can interact nonspecifically with serum
proteins and form a shell of protein, called the protein corona [39–44]. Protein corona for-
mation is mainly mediated by coulombic and Van der Waals forces, hydrogen bonding, and
hydrophobic interactions [45]. Moreover, the wetting behavior of the NP surface also plays
an important role in regulating protein adhesion behaviors [46–48]. Protein corona provides
new “identity” to nanomaterials in the biological environment, significantly affecting NPs
in terms of their biodistribution, cellular uptake and cargo release [49–51]. Moreover, the
protein corona diminishes targeting effects of NPs and accelerates their clearance from the
body through the mononuclear phagocyte system (MPS), greatly hampering therapeutic
potential for nanomedicines [52]. Tuning the hydrophilicity and electroneutrality of the NP
monolayer provides an effective way to reduce protein absorption on the surface [53].

OEG has been widely used to functionalize NP surfaces to reduce protein corona
formation [54–57]. The terminal hydroxyl group provides little to no charge to the entire
system, while the ethylene glycol units provide hydrophilicity. Work by Rotello reported
that AuNPs functionalized with thioalkylated OEG showed minimized protein adsorp-
tion [58]. Walker and coworkers similarly demonstrated the creation of nonfouling AuNPs
using OEG groups [59]. Interestingly, rate constant of protein–AuNP dissociation was
quantified by introducing nonequilibrium capillary electrophoresis of equilibrium mixtures
(NECEEM) in this work. Recently, Gentili [60] reported that the use of OEG-alkanethiol on
silver nanoparticles efficiently reduced corona formation in serum-containing media, as
confirmed by UV–vis spectroscopy, DLS and zeta potential (Figure 2).

Incorporating zwitterionic functionalities such as amino acids onto the NP surface
is an alternative to the use of OEG [61,62]. Early work by Frangioni demonstrated that
functionalizing quantum dots with cysteine and tumor targeting moieties could reduce
corona formation and provide “stealth” character while enhancing targeting efficiency [63].
More recently, a similar strategy was adopted to modify the surface of fluorescent silica
nanoparticles (SiNPs) by Mahmoudi’s group [64]. In this study biotin was used as a ligand
to target tumor cells bearing biotin receptors, with zwitterionic cysteine incorporated
to avoid formation of the protein corona, as confirmed by gel electrophoresis. Studies
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with several cell lines, two biotin receptor-positive and another receptor-negative, demon-
strated that nonfouling SiNPs have significantly improved targeting efficiency compared
to counterparts modified with cysteine or biotin only.
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In addition to amino acids, zwitterionic betaine groups have also been widely used
for functionalization to enhance NP stealth properties [65]. Rotello developed AuNPs with
a series of sulfobetaine terminal groups of variable hydrophobicity, reporting no protein
adsorption at physiological serum concentrations [66]. Later work by Parak and coworkers
reported that quantum dots coated with sulfobetaine ligands showed negligible change
in size after incubating with human serum albumin, suggesting no corona formation [67].
Recently, betaine-based zwitterionic AuNPs [68] were used by Rotello to encapsulate
transition metal catalysts (TMCs) within the ligand monolayer to obtain bioorthogonal
nanoezymes, or “nanozymes” (NZs) (Figure 3). Bioorthogonal NZs are artificial enzymes
that can generate imaging or therapeutic agents in situ in biological systems through bond
cleavage reactions [69–72]. Kinetic studies showed that NZs functionalized with zwitteri-
onic surface functionalities maintain high catalytic activity in biological environments due
to their “corona-free” properties [73–75].

2.3. Modulating NP-Cell Interactions

Cells interact with NPs mainly through Van der Waals and electrostatic interactions.
These noncovalent interactions can be modulated through tuning NP physicochemical
properties such as charge and hydrophobicity [76].

Surface charge of NPs plays an important role in their cellular uptake [77–79]. Typ-
ically, anionic and neutral NPs have low affinity for the anionic cell membrane whereas
cationic NPs are strongly electrostatically attracted to the membrane (Figure 4).

Based on this electrostatic property, a wide range of NPs have been engineered to carry
positive charge for their enhanced cellular internalization [80–87]. Additionally, surface
charge modification can also be used to dictate either extra- or intracellular localization
of NPs [75]. Rotello noncovalently incorporated dyes or drugs into zwitterionic AuNPs
for enhanced delivery efficiency [82]. As demonstrated by fluorescence microscopy and
cytotoxicity assays, encapsulated drugs or dyes were efficiently released into cells. Im-
portantly, there is little or no cellular uptake of AuNPs due to the noninteracting nature
of their surfaces with cells, as confirmed by transmission electron microscopy (TEM) and
inductively coupled plasma mass spectrometry (ICP–MS). Recently, these zwitterionic
AuNPs were used to encapsulate TMCs to localize the catalyst molecules specifically to
the extracellular region [75]. As shown in Figure 5, the spatial control of bioorthogonal
catalysis can be achieved by using positive or zwitterionic surfaces.
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NP hydrophobicity is another key parameter that affects cellular uptake [88,89].
Guével demonstrated that cationic gold nanoclusters with increasing surface hydropho-
bicity showed concomitantly enhanced cellular internalization [90]. Similarly, Zheng
introduced hydrophobic octanethiol onto the surface of zwitterionic AuNPs to enhance
their affinity for the cell membrane and observed an enhancement in cellular uptake by
more than an order of magnitude [91].
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Active targeting is a strategy to provide enhanced cellular uptake by utilizing affinity
ligands on the NP surface for specific recognition with receptors overexpressed on target
cells [92,93]. Small molecule ligands (e.g., folic acid, methotrexate, anisamide, cholic acid,
daptomycin, fluorine and sugars) have been utilized extensively for conjugation to various
inorganic NPs due to their stability, ease of modification and availability [94–96]. To date,
several therapeutic and diagnostic approaches using active targeting NPs have entered
clinical trials, with several gaining FDA approval [97].
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Folic acid (FA) is a frequently used targeting moiety due to overexpression of the
folate receptor on cancerous cells and inflamed tissue [98–103]. In work by Zhang, su-
perparamagnetic iron oxide nanoparticles were modified with methotrexate (MTX), a
small-molecule chemotherapeutic and synthetic analog of FA [104]. These NPs exhibited
enhanced uptake in MCF-7 and HeLa cancer cells, with enhanced cancer cell death after
MTX release triggered by low lysosomal pH (Figure 6). Similar approaches have recently
seen success using AuNPs [105] and mesoporous silica [106]. Benzamides are another
commonly used class of active targeting ligand for their ability to target the sigma receptors
overexpressed on prostate cancer cells [107,108]. Anisamide variants have been conjugated
to poly(ethyleneamine) (PEI) gold nanospheres [109] or PEGlyated AuNPs [110] to facilitate
cell-specific internalization of siRNA-conjugated AuNPs, both in vitro and in vivo. Similar
approaches have utilized NP conjugation of biotin [111], mannose [112,113] or hyaluronic
acid (HA) [114,115] for targeted delivery to various cell types.

Chan examined the effect of diameter on tumor uptake of spherical AuNPs, with
and without targeting ligand (transferrin coating). The authors reported no significant
differences with particles ≤100 nm, but observed tumor accumulation five times faster
and two-fold higher with targeted, transferrin-coated particles [100,116]. Later work
from this laboratory critically examined tumor targeting by showing that less than 14
out of 1 million (0.0014% injected dose) intravenously administrated targeted NPs were
delivered to targeted cancer cells, with the majority trapped in the extracellular matrix or
phagocytosed by macrophages [117]. This work helped to show that a re-examining of the
active targeting process is necessary for translation of NP therapeutics, and that interaction
between NPs and cells is significantly more complicated when moved in vivo.
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Figure 6. (a) Surface modification of magnetite nanoparticles with methotrexate (MTX). (b) Schematic representation of MTX
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3. Modulating Nano-Bio Interactions through Stimuli-Responsive NPs

NP localization at both the organismal and cell level remains a challenge to nanothera-
peutics. Engineering NPs for stimuli responsiveness is an effective strategy to enhance NP
localization at a desired locale [118,119]. Versatile NP ligands can be designed to respond
to optical stimuli, pH differences and enzyme-induced cleavage.

3.1. Enzyme-Induced Aggregate Formation

Efficient cellular uptake is crucial for nanoparticle use in bioapplications, including
diagnosis and therapy [77,88]. Stimuli-responsive aggregation has been widely used as
a way to enhance accumulation of NPs in cells [120]. Once AuNPs aggregate inside
cells, exocytosis will be blocked and their backflow to the bloodstream will be restricted,
effectively enhancing cellular retention of AuNPs [121]. Gao created a nanoscale platform
consisting of AuNPs functionalized with peptides (Ala-Ala-Asn-Cys-Lys) (AuNPs-AK) and
AuNPs grafted with 2-cyano-6-amino-benzothiazole (AuNPs-CABT) to trigger intracellular
aggregation [122]. With this system, peptide-modified AuNPs undergo ligand hydrolysis in
the presence of the proteolytic enzyme legumain, which triggers the formation of aggregates
due to a click cycloaddition reaction between the newly formed 1,2-thiolamino moiety and
the contiguous cyano group (Figure 7). Later studies in murine glioma models showed
that this AuNP-based nanoplatform was able to aggregate rapidly upon entering into
glioma cells, resulting in an increased amount of AuNPs internalized and greater tumor
cell death when compared to nonaggregated counterparts. Later work from this group
introduced new elements to the AuNP ligands to improve their membrane permeability
and target different tumor models. Octaarginine and arginylglycylaspartic acid [123]
were simultaneously conjugated to the ligand for an enhanced AuNP accumulation in
glioblastoma cells while cediranib [124] was grafted for that in 4T1 cells.

3.2. pH-Dependent Aggregate Formation

Another common stimulus to trigger nanoparticle aggregation is pH, a property can
be used to target acidic microenvironments such as those found in tumors or bacterial
biofilms [125–128]. Early work by Kim demonstrated that nanoparticles can respond to pH
changes and form aggregates [129]. Hydrolysis-susceptible citraconic amide was used to
functionalize AuNPs for its ability to undergo partial bond cleavage at a pH lower than 7,
forming positively charged primary amines. Upon hydrolysis, the surface charge is neutral-
ized and AuNPs begins to aggregate in the absence of electrostatic repulsion. Compared
to counterparts with permanent negative charge, pH-responsive AuNPs demonstrated
enhanced cellular uptake in B16F10 and NIH 3T3 cells, confirmed by dark field optical
microscopy. This platform was later used for photoacoustic imaging [130] and showed a
cancer-specific AuNP accumulation at the cellular level (Figure 8a). Inspired by the Kim
group, Wong and coworkers functionalized AuNPs with a hydrolysis-susceptible citraconic
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amide moiety for pH-responsiveness and a peptide for active tumor-targeting ability [131].
Engineered AuNPs demonstrated efficient cellular uptake in U-87MG cells both in vitro
and in vivo.
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Figure 8. Schematic representation of pH-triggered AuNP aggregation through two different mechanisms. (a) The surface
charge of AuNPs is designed to switch from negative to a mixture of negative and positive charges through bond cleavage
under the mildly acidic conditions; once the surface charge is neutralized, AuNPs begins to aggregate due to the absence of
electrostatic repulsion. (Adapted with permission from Reference [130]; Published by Royal Society of Chemistry, 2016).
This transformation was monitored by (b) UV–vis spectroscopy for 2 h. (c) The surface charge of AuNPs is designed to
be neutralized owing to the protonation of MUA ligand under the mildly acidic conditions. As demonstrated by UV–vis
spectroscopy (d), this transformation is reversible. (Adapted with permission from Reference [132]; Published by American
Chemical Society, 2017).
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In addition to pH-induced bond cleavage, pH-dependent protonation/deprotonation
transition has also been used as a strategy for surface neutralization to trigger aggre-
gation of nanoparticles. Grzybowski and coworkers developed a series of zwitterionic
AuNPs using both N,N,N-trimethyl(11-mercaptoundecyl)ammonium ion (TMA) and 11-
mercaptoundecanoic acid (MUA) as ligands for surface modification [133]. The protonation
of the MUA ligand at low pH can neutralize the surface charge of AuNPs to form aggregates
through Van der Waals attractions and hydrogen bonding. Importantly, the precipitating
pH value of these zwitterionic AuNPs can be engineered by tuning MUA/TMA ratio,
providing an avenue for pH-specific biological targeting. Using a similar approach, Ji
fabricated a series of pH-responsive zwitterionic AuNPs for tumor treatment [134]. It was
observed that optimized AuNPs were stable at the pH of blood and normal tissues but
aggregated rapidly in response to acidic tumor environment, rendering a significantly
enhanced cellular internalization of particles compared to nonsensitive PEGylated AuNP
controls. More recently, this platform was used to treat methicillin-resistant Staphylococcus
aureus (MRSA) bacterial biofilm (Figure 8c). In animal studies, the aggregation of AuNPs
triggered by acidic biofilm microenvironment facilitated localization in the biofilm ex-
tracellular polymeric substance (EPS), allowing for effective NIR photochemical therapy
with minimal toxicity to normal healthy cells [132]. To further develop this system, Li
performed coarse-grained (CG) molecular dynamics simulations to systematically investi-
gate the stability of MUA/TMA-based pH-responsive AuNPs and their interactions with
cells [135].

3.3. pH-Responsive Charge Conversion

As mentioned previously, cationic nanoparticles generally display significantly higher
cellular internalization compared to zwitterionic counterparts due to electrostatic attraction
with the negatively charged cell membrane [78,79]. Based on this property, the Rotello
group functionalized AuNPs with a pH-responsive sulfonamide-based ligand of which
the surface charge can switch from zwitterionic to cationic at mildly acidic conditions
to enhance cellular uptake in the acidic tumor microenvironment [136]. ICP–MS data
showed that cellular uptake of AuNPs at pH 6.0 was four-fold higher than that at pH 7.4
and no aggregation was observed under any conditions, as confirmed by DLS. Recently,
the You group utilized a similar sulfonamide-based ligand to modify the surface of their
gold nanocages [137]. After intravenous injection into 4T1 murine breast tumor models,
pH-responsive AuNPs exhibited efficient accumulation within tumor cells.

Similar approaches have been taken to target the acidic microenvironment of bacterial
biofilm infections. In 2018, Rotello group investigated the interaction of pH-responsive
AuNPs featuring sulfonamide moieties with bacterial biofilms [138]. Zwitterionic AuNPs
transitioned to cationic at the acidic biofilm pH, essentially “honing” to the infection
due to strong electrostatic interaction (Figure 9). In a fibroblast–biofilm coculture model,
AuNPs selectively penetrated and accumulated inside biofilms. In an alternative approach,
carboxyl betaines were recently used by Luo to modify the surface of silver nanoparticles,
resulting in enhanced adhesion of nanoparticles to the bacteria membrane [139].



Nanomaterials 2021, 11, 1001 10 of 16

Nanomaterials 2021, 11, 1001 10 of 17 
 

 

3.3. pH-Responsive Charge Conversion 
As mentioned previously, cationic nanoparticles generally display significantly 

higher cellular internalization compared to zwitterionic counterparts due to electrostatic 
attraction with the negatively charged cell membrane [78,79]. Based on this property, the 
Rotello group functionalized AuNPs with a pH-responsive sulfonamide-based ligand of 
which the surface charge can switch from zwitterionic to cationic at mildly acidic condi-
tions to enhance cellular uptake in the acidic tumor microenvironment [136]. ICP–MS 
data showed that cellular uptake of AuNPs at pH 6.0 was four-fold higher than that at 
pH 7.4 and no aggregation was observed under any conditions, as confirmed by DLS. 
Recently, the You group utilized a similar sulfonamide-based ligand to modify the sur-
face of their gold nanocages [137]. After intravenous injection into 4T1 murine breast 
tumor models, pH-responsive AuNPs exhibited efficient accumulation within tumor 
cells.  

Similar approaches have been taken to target the acidic microenvironment of bacte-
rial biofilm infections. In 2018, Rotello group investigated the interaction of 
pH-responsive AuNPs featuring sulfonamide moieties with bacterial biofilms [138]. 
Zwitterionic AuNPs transitioned to cationic at the acidic biofilm pH, essentially “honing” 
to the infection due to strong electrostatic interaction (Figure 9). In a fibroblast–biofilm 
coculture model, AuNPs selectively penetrated and accumulated inside biofilms. In an 
alternative approach, carboxyl betaines were recently used by Luo to modify the surface 
of silver nanoparticles, resulting in enhanced adhesion of nanoparticles to the bacteria 
membrane [139]. 

 
Figure 9. (a) Schematic representation of nanoparticles, nanozymes and molecular structures of pH-switchable and con-
trol ligands on AuNPs. (b) Schematic representation showing selective targeting of biofilm infections using 
pH-responsive nanoparticles and NZ-mediated fluorogenesis of prodye inside of biofilms. (Adapted with permission 
from Reference [138]; Published by American Chemical Society, 2018). 

Figure 9. (a) Schematic representation of nanoparticles, nanozymes and molecular structures of pH-switchable and control
ligands on AuNPs. (b) Schematic representation showing selective targeting of biofilm infections using pH-responsive
nanoparticles and NZ-mediated fluorogenesis of prodye inside of biofilms. (Adapted with permission from Reference [138];
Published by American Chemical Society, 2018).

4. Conclusions

As demonstrated in this review, engineered NP surface chemistry provides a power-
ful avenue to tailor the physicochemical properties of NPs, offering potential to surpass
obstacles and enhance efficiency in nanomedicine. The examples highlighted herein demon-
strate the power of NP surface functionalization to control nano–bio interactions, from
modulation of enzymatic activity to selective localization in specific cell types. Nano-
materials undergo complex interactions with biomolecules and cell surfaces, and the
chemical versatility granted by NP ligands thus remains an unmatched tool in exploring
the nano–bio interface.

Organic chemistry provides an immense range of chemical diversity for the function-
alization of NPs. The breadth of chemical functionalities available provides a rich toolkit to
probe nano–bio interactions. Future research will continue to move toward precise control
over biochemical interactions and provide a deeper understanding of structure–function
relationships. Such studies will further extend the potential of NP platforms in therapeutics,
imaging and diagnostics.
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