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Abstract: Three-dimensional cell culture has revolutionized cellular biology research and opened the
door to novel discoveries in terms of cellular behavior and response to microenvironment stimuli.
Different types of 3D culture exist today, including hydrogel scaffold-based models, which possess a
complex structure mimicking the extracellular matrix. These hydrogels can be made of polymers
(natural or synthetic) or low-molecular weight gelators that, via the supramolecular assembly of
molecules, allow the production of a reproducible hydrogel with tunable mechanical properties.
When cancer cells are grown in this type of hydrogel, they develop into multicellular tumor spheroids
(MCTS). Three-dimensional (3D) cancer culture combined with a complex microenvironment that
consists of a platform to study tumor development and also to assess the toxicity of physico-chemical
entities such as ions, molecules or particles. With the emergence of nanoparticles of different
origins and natures, implementing a reproducible in vitro model that consists of a bio-indicator for
nano-toxicity assays is inevitable. However, the maneuver process of such a bio-indicator requires
the implementation of a repeatable system that undergoes an exhaustive follow-up. Hence, the
biggest challenge in this matter is the reproducibility of the MCTS and the associated full-scale
characterization of this system’s components.

Keywords: 3D cell culture; oncology; nanoparticles; nano-toxicity

1. Introduction

The closer we can get to mimicking the human condition, the better the scientific
research is going to be toward understanding the fundamental pathology of a disease, and
also toward predicting patient response regarding drug therapy and estimating the toxicity
of certain physico-chemical entities surrounding us on a daily basis. Biomaterials will allow
us to recreate a smaller version of our inner physiological microenvironment, making it
possible to host cells and allow the diffusion of small entities such as nanomaterials.

Cell culture is an indispensable tool for understanding the fundamental biophysical
and bio-molecular mechanisms by which cells assemble into tissues and organs; and to
understand the physiological functions of cells and consequently their disruption dur-
ing illness. Nowadays, cell culture is used in biomedical research, tissue engineering,
regenerative medicine as well as other industrial practices.

Accordingly, these in vitro cell cultures serve as a platform to understand the in vivo
cellular behavior such as migration and differentiation. Nevertheless, conventional two-
dimensional (2D) culture systems may give results that deviate from the true in vivo
response. To overcome this limitation, new three-dimensional (3D) cell culture platforms
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are designed to better mimic in vivo conditions [1]. Cell lines provide us with excellent
materials for biological studies and 3D culture leads these cells to behave in a way close to
the natural conditions existing in the organism [2].

Under conventional 2D culture conditions, components of the extracellular matrix
(ECM) as well as cell–cell and cell–ECM interactions, which are important for differentia-
tion, proliferation and normal cell function in vivo, are altered [3]. In addition, 2D culture
methods do not provide control over cell shape, which is a biophysical parameter affecting
cell bioactivity in vivo [4]. Cells in the body have bioactivity stimuli dependent on their
3D microenvironment as cell–cell and cell–ECM interactions affect basic cellular behavior
and even organ function. Historically, previous studies have shown that 3D cell organiza-
tion reveals unanticipated results on the mechanism of tumorigenesis. These discoveries
suggest that 2D in vitro cancer studies display shortcomings. 3D cell culture increases the
dimensionality of the ECM around the cells. Thus, the major advantage of 3D culture over
2D culture is the reduction of the gap of cell behavior between in vitro cell culture systems
and in vivo cell physiology [4–6] (Figure 1).
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Figure 1. 2D vs. 3D cell culture: (A) Cell behavior in 2D conventional cell culture. Cells cultured in a
2D manner tend to have a flat shape that does not represent the real physiological cell morphology.
(B) Cell behavior in 3D cell culture. Cells cultured in a 3D system are present in a microenvironment
similar to that in vivo, therefore they have a more representative morphology and behavior

In order to confirm an observation made in vitro, the most reliable approach and most
common is to use standard animal models such as mice, zebra fish, etc. [7].

However, there are numerous worries rising today concerning in particular the amount
of pain and discomfort that an animal model has to endure. A fair amount of the animals
that go through testing have a jeopardized immune system and do not possess a tumor–
microenvironment interaction similar to that of humans. Consequently, it weakens the
reliability of the given results. This prevents an efficient translation of novel research to
clinical settings [8]. In addition, experiments including animal trials can be time consuming
and very expensive. The 3D models are a credible alternative to the use of animals and
meet the ethical rule of the 3Rs (Reduce, Replace, Refine) limiting the use of animal
experimentation [2,9–12].

A continuous challenge that we face today is obtaining a conformity between animal
testing and clinical trials [13]. Therefore, the need to create cellular models that can better
capture the complexities of research in biology is a motivation to switch from 2D to 3D
culture [14]. By replacing in vivo models with 3D cultures, the latter forms a bridge
between 2D culture and animal testing.

3D models have proven their potential in many applications in today’s research
that we will be discussing later on. Nevertheless, the core of this review is to explain



Nanomaterials 2021, 11, 481 3 of 27

their role in nanotechnology, in particular how these 3D cellular models can serve as a
platform to study nano-toxicity, especially their impact on living systems including human
organisms. This field has been insufficiently exploited and demands urgent attention due
to the complexity in sample preparations as well as in vitro models implementation [15].
While presenting a panel of 3D systems alongside their advantages and inconveniences,
we will be mainly focusing on hydrogels that have particular characteristics and their
implications in nano-toxicity assays.

2. Three-Dimensional Culture Systems

In the preclinical development and translation of nanotechnology-based oncology
platforms, cell-based biological systems that closely mimic tumors are vital. [16] A single
3D technology, consisting as a solution or remedy to all difficulties or diseases, does
not exist. Numerous approaches have been developed to meet the expanding interest
in 3D cell culture. Therefore, scientists are required to select the most suitable model
for their cell-based assay [1]. A 3D system must answer to key characteristics such as
retaining the natural shape of the cell [17], allowing heterogeneous exposure between
the cell interface and medium as in the physiological state there is a gradient availability
of media components [18]. Cell junctions should be prevalent and enable cell-to-cell
communication [19]. Particularly, a 3D system should permit a high cell viability as
observed in vivo [20], and cell proliferation [21].

Two broad categorizations for 3D culture exist: culture systems scaffold-free or
scaffold-based, with the latter being either natural or synthetic.

2.1. Scaffold-Free Systems

The spheroids technique consists of a model with different layers of cells that compen-
sates the deficiencies seen in monolayer cultures [1,22]. This model can be obtained in
different methods such as the use of low-adhesion plates to promote the self-aggregation
of cells into spheroids [16,23] (Figure 2A), the use of hanging drop plates [9] or the use of
bioreactors to produce such models under dynamic culture conditions [24].
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Figure 2. Types of 3D systems. 3D systems fall into two categories either scaffold-free or scaffold-
based systems. Scaffold-free systems depend greatly on the plate where the cells are culture whether it
is (A) ultra-low attachment plate for the production of cell aggregates as spheroids or (B) Extracellular
matrix (ECM) coated plates for cell differentiation into organoids. Scaffold-based systems are
manmade microenvironments that can host cells whether they are (C) solid scaffolds that offer a rigid
matrix and allow spheroid formation or (D) soft scaffolds like hydrogels that contain an ECM-like
complex architecture in which multicellular tumor spheroids (MCTS) are produced similar to solid
in vivo tumors.
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However, spheroid culture is accompanied by several limitations that include the
difficulty in production of spheroids having a uniform size and standardized composition,
out of a small number of seeded cells; and an absence of adequate standardized assays
regarding drug-screening studies therefore narrowing the spectrum of applications of these
models [22].

The organoids technique, that are “a collection of organ-specific cell types that develop
from stem cells or organ progenitors and self-organize through cell sorting and spatially
restricted lineage commitment in a manner similar to in vivo” [25]. It either is obtained by
a monolayer culture of cells on feeder cells or on a surface coated with an ECM, for example
fibroblasts, so by cell differentiation, organoids are formed (Figure 2B) [22]. Alternatively,
there is a second approach by differentiating primary tissues [26].

Studies have shown that, even though this model present an in vivo-like architecture
and complexity, its main limitations reside in its variability and amenability to withstand
high-throughput screening (HTS) and high-content screening (HCS) [27].

2.2. Scaffold-Based Systems

Another more important and complex facet of 3D culture is scaffold-based systems.
This is a discipline that extents the range of options available to scientists.

Scaffolds are described as fabricated 3D structures made of an array of materials
having different porosities, permeability, surface nature and mechanical stability that are
modulated in order to design an architecture representing an ideal reconstruction of the
microenvironment of specific tissues, also known as the ECM.

Unlike scaffold-free systems, this micro architecture enhances the biophysical and
biochemical interaction of the adhered cells and provides a biologically active matrix for
the cells to proliferate, differentiate and auto-organize.

Two subcategories emerge from this discipline:

- Solid scaffold-based technology that provides a 3D space hosting cells and allowing
them to create 3D tissue-like structures. Natural or synthetic, they consist of porous
membranes or fibrous scaffolds that have been widely studied in the field of stem
cells and regenerative medicine, for example, porous membranes produced by ther-
mally induced phase separation [28,29]. Owing to their porous structure, these 3D
matrixes facilitate tissue regeneration (e.g., cornea, skin and bone) [30–32]. Other
types of solid scaffold-based technologies are 3D tissue models made of paper-based
microfluidics. The latter are materials retrieved from plant tissue in the perspec-
tives of developing human tissue structures compatible for 3D culture of mammalian
cells [33]. Nanocellulose-based scaffolds, in particular nanocrystalline cellulose and
nanofibrillated cellulose [34], and silk-based composite scaffolds [35] have proven
their potential in regenerative medicine such as wound healing and organ reparation,
due to their special permeability and hemocompatibility.

The interconnected network implemented in the inner matrix present a 3D microenvi-
ronment assisting the progress of different indispensable cellular activities like migration,
proliferation and cellular interactions [36] (Figure 2C).

Nonetheless, this scaffold-based system demands laborious synthesis and construction
steps. It is equally challenging to seed and incorporate cells inside this matrix [37]. The cells
tend to exhibit inhomogeneous distribution within the microenvironment hence giving
unstandardized results. This behavior is widely observed in large constructs with low
seeding density [38].

For this matter, a biodegradable, biocompatible and tunable scaffold-based system
that is able to host cells in a homogeneous manner is mandatory.

With the advent of technology, the design of a scaffold that meets the requirement of a
reproducible 3D culture was brought to life.

- Hydrogels that can be designed as a soft scaffold for hosting cells.
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Hydrogels are matrixes made of molecules that have the ability to swell but without
dissolving in water. This class of materials has a high affinity to its solvent, which explains
its swelling properties [39].

Today, hydrogels attract material scientists and biomedical researchers, to which
their formulations and applications undergo until this day a series of improvements and
optimizations. In their entirety, hydrogels are water based, 3D viscoelastic networks, which
allow the diffusion of entities throughout their nano-pores or interfibrillar spaces, and
attachment of cells [40].

Hydrogel materials exhibit characteristics of biocompatibility and high permeability
for nutrients, oxygen and other water-soluble metabolites, rendering them ideal candidates
as scaffolds for cell encapsulation [41].

Hydrogel networks can contain both permanent junctions and semi-permanent junc-
tions like chain entanglements. These architecture’s properties, such as stiffness, swelling
features and molecules transportation, are highly affected by the cross-linkage type and
branching degree [42]. The most common are either polymeric gels, formed by bioinspired-
designed units linked by covalent bond, or low-molecular-weight gelators (LMWG) often
mentioned as supramolecular gels since they consist of units self-assembled by weak
interactions [43].

Hydrogels have their own properties and natures, yet they exhibit some similarities
that could give interest for cell culture. Several of them tend to mimic the ECM architec-
ture: cells encapsulated in a fibrillary environment, formed by a network of covalently-
linked or self-assembled units, where they can recover their spatial organization and
three-dimensional specificities such as cell–cell and cell–ECM interactions [44].

Further, these hydrogels mimic the ECM architecture in a morphological and biophys-
ical manner. Most of the hydrogels designed to host cells inside of them have rheological
properties (i.e., stiffness), often close to living tissue, leading to a cellular development and
behavior close to that in vivo without the intervention of animal models [45].

Hydrogels hold many advantages over other types of cell encapsulating systems. They
resemble natural soft tissue by comparison to other types of polymeric biomaterials due to
the fact that hydrogels are water-swollen entities [39–45]. They also have advantages over
other types of polymeric scaffolds, such as easy control of structural parameters ensuring
biocompatibility and a scaffold having adjustable architecture [45]. Hydrogels also provide
a complex three-dimensional tissue architecture and complex interactions between ECM
and cells [46]. On the biological analysis level, unlike scaffold-free methods, hydrogels
are applicable to microplates, amenable to HTS/HCS, are highly reproducible and offer a
platform for co-culture assays [22].

Hydrogel design is solely based on the nature of their constituent units [47]. Depend-
ing on the desired experiments’ end-result, researchers can design a hydrogel that fits their
needs. Materials for hydrogel design can either be natural polymers, synthetic polymers or
low-molecular-weight gelators.

Natural polymers are used to create natural hydrogels, and different groups can
be found:

• Proteins used historically in stem cell-based tissue engineering [2,9,22,45] such as
collagen used for example in differentiation of human embryonic stem cells into
hepatocytes [48,49], gelatin proved efficient in chondrogenic differentiation of adipose-
derived adult stem cells [50,51], fibrin for differentiation of murine embryonic stem
cells into neural lineage cells [52,53], and silk [54,55].

• Polysaccharides that are naturally found in the ECM [9,45] such as hyaluronic acid
that is either used as an integral scaffold for tissue engineering [56,57] or used as a
functionalization tool of synthetic biomaterials to create a hybrid more biomimetic
matrix [58] and chitosan for tissue engineering applications [59].

• Matrigels, that originated from murine sarcomas ECM, are basement membrane
matrixes composed mainly of four ECM proteins: laminin (60%), collagen IV (30%),
entactin (8%) and heparin sulfate proteoglycan perlecan (2%) [60]. By virtue of their
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built-in bioactivity, they exhibited diverse applications in cellular biology [61]. They
have been used in cancer invasion studies to assess the metastasis capabilities of
cancer cells [62]. Matrigels were used in cell culture of human pluripotent stem
cells (hPSCs) to understand the impact of the micro-environmental factors on cell
differentiation [63], for cardiomyocytes as in vitro models of heart activity [64] and
organoid production [65]. However, matrigels construction requires a large number
of structural proteins but also involves other factors such as growth factors [66] and
transcription factors [67]. Previous studies displayed major inconvenience that can
limit cellular behavior studies linked to the matrigel’s complex, unclear and highly
fluctuating composition [66–68].

Hydrogels made of natural polymers exhibit very important advantages much needed
in biomedical applications that are biocompatibility, biodegradability and nontoxicity [47].
In addition, they are expected to have better interaction with cells enhancing the occurrence
of cell proliferation and differentiation [69].

However, for the purposes of cell culture, high uncontrollable biodegradation capaci-
ties of the scaffold can end up being an inconvenience more than an advantage because it
establishes a variable that is hard to control and may influence cell activity in unknown
ways [9]. Other limitations may include batch-to-batch variabilities in biochemical and
mechanical properties. For instance using atomic force microscopy, Soofi et al. showed
that a batch of matrigel exhibited featured an average elastic modulus also known as
stiffness of 400 Pa whereas another batch displayed an elastic modulus of 840 Pa, twice as
high [70]. Other variabilities are observed in soluble factors like peptide and protein con-
centration [66,68,71]. These variabilities hinder the reproducibility of the results. They also
have a higher probability of xenogenic contamination in the likes of viral contaminants [72].

To overcome these limitations, researchers resorted to non-animal synthetic hydro-
gels made of synthetic polymers that are more reproducible in terms of biochemical and
mechanical properties.

Synthetic polymers are also found in different groups:

• Biodegradable biomaterials including poly(lactic acid) (PLA), poly(glycolic acid)
(PGA), poly(vinyl alcohol) (PVA) and their copolymers. They are commonly used in
regenerative medicine for differentiation assays of stem cells progenitors [73,74].

• Non-biodegradable biomaterials such as poly(ethylene glycol) (PEG) [75], 2-hydroxyethyl
methacrylate (HEMA) and acrylamide (AAm) [76]. They maintain physical and me-
chanical integrity for non-biodegradable applications in tissue engineering [45]. Today
non-biodegradable biomaterials are more used combined with biodegradable materi-
als to help tune and control some of their properties such as porosity and permeability.

Synthetic polymers possess tunable mechanical strength because of the strong co-
valent bonds within their matrix [40,47]. These characteristics are known to affect cell
differentiation [77] and cell adhesion [78] so the preference of the desired synthetic polymer
depends on the anticipated cellular behavior.

A synthetic scaffold provides reproducibility [9] by minimizing the inter batches
quality fluctuation since they are often processed and manufactured, hence there will be
more consistency between cultures. These hydrogels possess high water content, enabling
transport of oxygen, nutrients, waste, and soluble factors, all of which are important to cell
functions [79]. However, several studies have shown that this theory does not apply on all
these polymers. They suffer often from several limitations including poor biocompatibility,
toxicity, pro-inflammatory unwanted activity etc. [80].

Low-molecular-weight gelators (LMWG) are an alternative for synthetic polymers.
They are small-molecule-based hydrogels, and are emerging as a promising tool [80]. The
common definition of LMWG includes two key features: (1) they consist of molecules with
a molecular weight of at most 3000 Da, (2) they are capable of self-assembling by non-
covalent interactions such as hydrogen bonds, electrostatic and Van der Waals interaction,
π-stacking or other low energy interactions.
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Nowadays, we know several different bio-inspired designs of LMWG, of which the
most spread are: (Figure 3)
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• Carbohydrate [81–84]
• Peptide [85–89]
• Nucleic acid based [90–93].

They have excellent biocompatibility and biodegradability, modular structure that
permits specific interactions and most importantly they form a nano-fibrous network that
mimics the natural ECM fibrillary architecture [94–96].

Carbohydrate-based hydro-gelators are less used in life science than peptide-based,
although some of them have shown their successful application as cell culture scaffold,
owing to their non-cytotoxicity, their very simple structure and their easy synthesis [83,84].

Amphiphilic-peptides (PAs) are found amidst the self-assembling peptides family.
The amphiphilic nature of the molecules constitutes the most relevant feature of PAs.

This feature is a key structure allowing the formation of nanofibers by PAs self-
assembly, followed by intertwining to form a hydrogel network [89].
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Studies conducted on these molecules showed that the nano-fibrous network resulting
from these self-assembling peptides have the ability to form stable hydrogels for cell encap-
sulation [45,97]. Some other design strategies showed their success by creating bio-inspired
derivatives. For example, nucleolipids are perfect molecular design candidates for this
type of target hydrogels, because they are made of lipids covalently linked to nucleosides
and they can form intermolecular non-covalent interactions hence the biodegradability
asset of this gel [92]. An example of hydrogel forming nucleolipids-based LMWG are
glycosyl-nucleoside-lipids (GNLs) owing to their intrinsic supramolecular properties [98].
These types of molecules are amphiphilic, given their particular structure consisting of a
hydrophobic tail and a hydrophilic head group, giving upward thrust to their surfactant
properties and conjointly their ability to self-assemble into nanostructures [98]. In view of
their transfection capabilities, they are valued in biomedical research for the delivery of
nucleic acids into cells [99].

Another interesting molecular structure for gelators design is the bola-amphiphile
structure. The self-assembling features of bolas have been described for decades now [100]
and inspired many bola-based gelators [101–103]. From this design, further other deriva-
tives have shown their potential such as glycosyl-nucleoside-bola-amphiphiles (GNBAs).
They consist of the same moieties of GNL arranged in a bola structure: the two polar heads
(glycosylated nucleobases) at each end of a hydrophobic chain (lipidic chain)[80]. Their
interesting self-assembly characteristic that bola-amphiphiles hold allows the creation of
a unique architectural hydrogel that features fast gelation kinetics, high elastic moduli,
thixotropic and thermal reversibility properties [98,104].

Synthetic hydrogels, prominently amphiphilic molecules based gels, are used in a
variety of applications such as nano-material synthesis [105] and more importantly in the
biomedical field for tissue engineering, wound healing or drug delivery [106–108].

3. Cancer Applications of Hydrogels

Cancer cell lines are considered today as significant in vitro models in the medical field
primarily due to their distinctive potential to produce an unlimited amount of biological
material. The conception of databases that describe thoroughly the molecular and cellular
diversifications of cancer cells such as mutations and difference in gene expression, ease
the selection process of the desired cell type [109].

Unlike normal cell lines that present a short life span, cancer cell lines can be pas-
saged with a low mortality rate. Owing to their anchorage-independent feature, they are
convenient candidates for 3D culture. They are often observed to have a small size, more
rounded with a higher nucleus/cytoplasm ratio by comparison to normal cells. Moreover,
they have low serum dependency, as well as a higher growth rate and a higher ability of
cloning than that of normal cells observed during toxicology assays [110].

Previous studies for example proved that cancer lines have a greater potential in
drug-induced liver injury toxicity assessment, compared to conventional human hepa-
tocytes. They also preserved some toxicity-related pathways throughout different assay
systems, such as peroxisome proliferator-activated receptor pathway and fatty acid-related
pathways [111].

Consequently, cancer cell lines are commonly used during drug design and treatment
optimization [112–116], for personalized medicine using patient derived tumor cells [117]
and in vitro toxicity testing of physico-chemical contaminants. In particular, recently many
studies demonstrated the use of cancer cells as support for nanoparticles (NPs) toxicity
assays [118,119]. Nanoparticles are proven to have a certain impact on cancer development,
thus its toxicity could be correlated to the severity of the situation. [120,121]

Hydrogels retained historically a major application in biomedical research in particular
tumor modeling in vitro [96,122].

Cancer research was subjected over the years to a load of optimizations and enhance-
ment in experimentations. Scientists have gone from theories, to practical examination
of cancer cells regarding their behavior, progression and reaction vis-a-vis therapy ap-
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proaches. Cell culture was and remains until this day, the foundation of the development
of today’s well-known cancer therapies. Without cell culture assays, we would not have
understood how cancer cells answer when exposed to chemotherapy or radiotherapy.
We would not have understood the concept of metastasis, therapeutic resistance and the
emersion of therapeutic multi-resistance. The emergence of 3D culture helped us overcome
many 2D culture barriers and took cancer research to a completely new dimension. The
ECM-mimicking network created inside the biomimetic hydrogels allows us to recreate the
physiological microenvironment in which cells grow and develop inside the human body.
Accordingly, hydrogels became a more suitable microenvironment, in which, 3D culture
of hosted cancer cells leads the cells to behave in a physiological manner. This behavior
of cancer cells drives toward a more realistic tumor progression. Meaning, the cells are
going to assemble inside the nano-fibrous network, and will proliferate and differentiate
as they would in the ECM. Depending on the nature of the polymer used to create the
hydrogels, the cells will eventually create their own ECM and their own tumor niche [123].
In this kind of biomaterials, the assessment of tumor progression can be done from start to
end because analysis of cell behavior, using different biological assays, can be done at any
given time. It is important to understand how cancer cells begin their journey into tumor
construction, so that innovative early-stage treatments can be conceived.

On another hand, unlike other 3D systems, these kinds of hydrogel networks allow
the creation of multicellular tumor spheroids (MCTS) (Figure 2D). MCTS are solid cancer
models that are created from a small number of seeded cells in a complex architecture.
They represent solid tumors found inside the human body such as glioblastoma. This kind
of cancer model is very particular, very interesting and not easy to obtain [124].

As their name implies, MCTS are a well-constructed series of cell layers forming a
necrotic center, followed by a layer of quiescent cells and finally peripheral proliferative cells.
An oxygen and nutrient gradient is created from the tumor surface to the core. This structure
is uniform to the solid tumors observed in vivo. The conception of this structure culturing
cancer cells in hydrogels, promote many possibilities of cancer therapy trials. The results
using this in vitro model are similar when applied to the in vivo tumors [6,11,125,126].

Nowadays, in the field of drug discovery research, MCTS have proven efficient for
all-inclusive drug penetration, efficacy and discharge [126]. Owing to their architectural
structure, MCTS showed a higher resistance for antineoplastic agents compared to mono-
layer 2D cells. The reduced number of cells that are exposed to the anticancer drug in 3D
MCTS similar to a solid tumor in vivo, and the highly necrotic core of the MCTS explain
this high resistance to cancer therapy trials. In addition, the establishment of an ECM
surrounding the MCTS can limit the drug penetration by comparison to a 2D culture. Thus,
this is a clarification of the failed attempts of cancer treatment in vivo [127]. Many method
articles have exposed detailed protocols for a successful production of MCTS inside a 3D
microenvironment [128,129].

Radiotherapy assays have been investigated in 3D spheroids to examine the response
of the latter to irradiation. Patient derived tumor cells spheroids demonstrated a radiation-
dependent reaction representative of a patient’s specific response. Murine cell lines were
also used in 3D irradiation approaches, and alongside human cell lines, they showed
radio-biologic hypoxia that requires post treatment reoxygenation [117].

Furthermore, chemo-sensitivity analyses were carried out on 3D MCTS, due to its
particular architectural structure. Gene expression profiling of these MCTS showed a
similar gene expression of survival, proliferation and resistance genes to those of in vivo
tumors by comparison to 2D cultures. In addition, the ECM surrounding the MCTS in
the 3D systems was shown to play a key role in chemo-resistance, a role that is held by
the physiological ECM during chemotherapy [22,112,113]. Other experiments such as
combination therapies, chemotherapeutics and drug carriers can also be studied in these
in vitro models [114]. For this matter, nano-vectors for drug delivery were investigated
in cancer research. They have the ability to retain in their core a therapeutic payload that
can be targeted to the tumor niche [115]. Current breakthroughs were documented in
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the biomedical research and approved by the FDA, consist of therapeutic nanoparticles
encapsulated chemotherapy for the treatment of acute myeloid leukemia [116].

Two important questions rise at this point. How can the hydrogel matrix’s complex ar-
chitecture be used in novel assays? Is MCTS’s importance solely restricted to cancer research?

The porous architecture of hydrogel matrix has been subjected to various diffusion
studies over the years. For example, diffusion of phage particles for bacterial bio sensing
were analyzed in carbohydrate hydrogels [130]. Macromolecules diffusion in hydrogels
were also a center of attention [131], especially protein diffusion inside the matrix such as
in PEG hydrogels for the design of an artificial cornea material [132] or poly(sulfobetaine
methacrylate) hydrogel for biological transport assays in zwitterionic hydrogels [133]. In
addition, chemical elements diffusion such as ions were also investigated in a calcium
alginate hydrogel-structure [134]. This means that other entities whether they are macro-
molecules or simply small particles may also have the ability to diffuse through this
complex structure hence promoting the establishment of innovative particle, molecule or
entity analysis such as toxicity assays of contaminants. Nevertheless, a thorough toxicity
analysis remains insufficient without studying the impact of these contaminants on a living
system. This is the important role of MCTS being the living system of interest grown inside
the hydrogel.

4. Nanoparticles Emergence

Today, with modern technology, the world is witnessing a global emergence of par-
ticles of all sorts, notably NPs. This may have an unforeseen impact on humans and
ecosystems, becoming an object of particular attention for public health and environmen-
tal studies.

4.1. Definition of Nanoparticles

A nanoparticle is characterized based on its size, shape, structure and chemical com-
position giving it particular personalized properties. Due to its very small size, it exhibits
physical and chemical properties different from those of a big sized object of the same
matter [135]. With stable material conditions and a low number of atoms, the majority of
the atoms of a nanoparticle are present on the outside rather than the inside of the particle
itself. This gives particular atomic properties to a nanoparticle [135]. With the smallest
observed nanoparticles ranging slightly less than 1 nm and the biggest going to several tens
of nanometers, ISO [136] defined nanoparticles as entities having one or several external
dimensions at the nanoscale ranging from about 1 to 100 nm in size.

Nevertheless, another factor to be taken into consideration is the reactivity of a
nanoparticle in regard of the environment in which it is found, due to its very large
exchange surface with this environment. The latter can cause, among other transforma-
tions, agglomeration (reversible) and aggregation (semi-reversible) assemblies of NPs
generating larger nanoparticles going up to several hundreds of nanometers; or dissolve
NPs leading to smaller ones, or even to their total disappearance in favor of the ions and/or
molecules that made them up. The surrounding medium can also modify the composition
of the surface of nanoparticles by sorption or desorption, affecting their reactivity and
fate [137]. This is the reason why it is fundamentally important to determine and monitor
the NPs state before, during and after an experiment that requires their use.

4.2. Nanoparticles Origin and Environmental Dispersion

Nanoparticles that are generated in or migrate to the environment are ubiquitous [138–141]
and found in natural aqueous media where they can cause potential hazards to living
species [142–144]. They can have natural origins such as forest fires, dust storms and
volcanic ash or anthropogenic origins. The latter are man-made and have two classifica-
tions [145].

The first of anthropogenic origins are NPs with no prearranged size nor defined
chemistry. For example, they can originate from combustion and diesel exhaust. For a
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matter of fact, NPs released by diesel engine are urban air pollutants of great importance
and may possess a compelling threat on public health. The NP modeling showed that,
when released from their host medium into the environment, they could have different
compositions and properties such as size distribution and state of agglomeration. This
implies that these unintentionally discharged NPs have an unforeseen and unpredictable
impact on the environment and its inhabitants [146].

In another category, we can find the engineered or manufactured NPs, with a po-
tentially controlled size range, materials and surface composition [145]. For example,
silver nanoparticles (Ag-NPs) were shown to exhibit antimicrobial effect making them
interesting in medical devices [147]. Titanium (TiO2-NPs) and zinc oxide nanoparticles
(ZnO-NPs) have photochemical properties that are exploited for UV protection [148,149],
photo degradation [150], pigmenting, etc. Iron oxide nanoparticles (IONPs) have magnetic
properties that are used in medical imaging and cell targeting [151]. As a result, these
nanomaterials are found in many everyday products, such as cosmetics, textiles, food and
medical compounds. They are also used in industrial applications, such as in modified con-
crete [152,153], energy production [154,155], the health field [156,157], etc. In view of their
ubiquity in manufactured products, these NPs are inevitably found in the environment via
discharges, waste, etc.

4.3. Why Are NPs a Center of Attention Today?

Due to their recent growing emergence and environmental dispersion, NPs interac-
tions with human organisms can originate from different sources.

NPS have witnessed a large spectrum of applications nowadays. One of the most
important is their use as a diagnostic tool for example by functionalizing the surface of
NPs (e.g., gold NPs) with biological matter such as antibodies that can detect the presence
of certain proteins correlated to a given disease [158]. In addition, NPs have become a
center of attention because of their magnetic properties, such as iron oxide considered as
superparamagnetic NPs. These NPs can serve as materials for cancer treatment and drug
delivery systems owing to their controlled orientation and arrangement in a strong mag-
netic field [159]. These features of NPs make them ideal candidates as thermal mediators in
hyperthermia, drug vectors as well as contrast agents administered to patients for magnetic
resonance imaging (MRI) or computed tomography [160]. Thus, whether they are natural,
incidental or engineered, NPs emergence and contact with living entities are exponentially
growing [161].

Thus, it is a crucial issue to assess their physiological impact and especially their
cytotoxicity. Until now, the majority of the NPs toxicity assays were conducted in 2D
in vitro models [162–170] or in vivo models [171–177]. Accordingly, gaps in the results
were found when it comes to comparing nano-toxicity results between in vitro and in vivo.
Consequently, developing in vitro models are needed for NPs toxicity assays knowing that
very little progress has been registered in the conception of in vitro models to study the
distribution and translocation of nanoparticles across different barriers. The development
of more specific in vitro models is of upmost importance to understand systemic effects of
nanomaterials [15].

4.4. In Vitro Cellular Models for Nanoparticles Toxicity Assays

At first, the standard nano-toxicity assays were mostly based on cytotoxicity and geno-
toxicity evaluation for nanoparticles uptake by 2D cancer cells. Ag-NPs [167–169,178–181] and
TiO2-NPs [162,165,174,182–188] cytotoxicities are now established, with adopted hypothesis
of mechanism involving ROS production, organelles inhibition and DNA damage, in a
dose-dependent manner. As mentioned above, the use of cancer cell lines for most of
these studies, such as HeLa [181,189], Hep2/HepG2 [180,183,187] or PC-3M [184], leads to
more reproducible and homogenous results under similar conditions, helping to focus on
interactions between NPs and specific type of cells according to the purpose. For instance,
because of the potential dispersion of Ag- and TiO2-NPs in the respiratory system, studies
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of their effects were conducted on A549 lung cancer cell line and permit the determination
of some adverse effects, from DNA damage to apoptosis [167,186,188]. In the same spirit,
the use of immortal skin cell lines such as HaCaT is consistent with the fact that TiO2-NPs
is found in everyday products such as cosmetics and with the purpose of uncovering
their effect on skins [190]. It is noteworthy that TiO2-NPs are still considered as inert for
animals and humans, even though some advancements are made on their pulmonary
effects [191,192]. For other NPs such as gold, the conclusion is still unclear since some
studies demonstrated their cytotoxicity [164,193] and other their harmlessness [194,195].

However, some studies showed the potential of 3D culture in assessing the nano-
toxicity in a more relevant way (Table 1). Indeed, by recreating cell–cell interactions
and tissue-like behavior, the impact of NPs is clearly influenced. In some studies, 2D
cell culture were found to overestimate some harming effects of NPs when compared
to 3D cell culture [196–199]. In 3D spheroid of central nervous system cells cultured in
suspension in ultra-low attachment (ULA) wells, IONPs (Fe3O4) have a concentration and
time-dependent effects on cell mortality comparable to those measured in vivo [200]. Thus,
the cell mortality seems attenuated compared to 2D cell culture results [201]. Same results
were previously obtained in IONPs toxicity assessment in 3D culture of other cell type,
with a higher toxicity in 2D monolayer compared to 3D [197].

Relatively, cell sensitivity to nanoparticles is 3D environment dependent. Some 3D
cultured cells can be more sensitive to NPs effect, as shown using human lung carcinoma
spheroids developed in ULA wells [202]. They displayed a higher sensitivity regarding
ZnO-NPs compared to 2D cell monolayer. This study also showed that TiO2-NPs induce a
minor decrease in cell viability in 3D, whereas they do not exhibit any toxicity in 2D. 3D
cells cultured in alginate matrix are more sensitive to IONPs used as nano-carrier for drug
delivery and that coating NPs could enhance their biocompatibility [203]. However, 3D
cells cultured on agar plate, in which the architecture is less complex, are less sensitive to
nano-toxic effects in general, but some inflammatory responses were found to be higher in
3D cells exposed to ZnO-NPs by comparison to 2D [204].

The difference in NPs’ impact between 2D and 3D cell culture is explainable by
many considerations. As previously presented, the spatial cell organization is crucial for
an extended recovery of molecular and biochemical mechanisms of the cell in in vitro
conditions, such as cell behavior when exposed to exogenous factors. Moreover, cell
clustering will influence the NPs penetration and thus their hazardous effect. The fact
that some 3D models tended to reproduce in vivo results is also a promising clue of their
legitimate use [205,206].

A 3D in vitro model is considered as a bio-indicator when used for measuring nano-
toxicity. The 3D systems used in these studies demonstrated primary behavior of 3D
spheroids when put in contact with nanoparticles. Taking this into account, an upgrade
in the implementation of these experiments can render the nano-toxicity assays more
predictive and reproducible.
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Table 1. Brief of nanoparticles (NPs) toxicity in 2D vs. 3D: cell line/NPs used/3D system/analysis.

NPs NP Size (nm) NP Coating NP Concentration Cell Line 3D System Cytotoxicity Assays Cytotoxicity and Comparison to
2D Cell Culture Ref.

ZnO

24; 56; 87 - 10; 25; 50; 75;
100 µg mL−1

Caco-2 (colorectal
adenocarcinoma ) Agarose gel

ROS expression
(CellROX orange

reagent); measurement
of pro-inflammatory
cytokines (IL-8 and

IL-1β); cell
proliferation

(PicoGreen); modes of
cell death

(AnnexinV_FITC/PI)

Increased ROS expression;
size-independent toxicity;

decreased DNA amount at high
concentrations;

cell death: apoptosis in 3D vs.
necrosis in 2D;

less toxic in 3D than in 2D

[187]

222.0 (in water); 142.2
(in FBS-DMEM) - 31.5; 125; 500; 1000 µM SW480 and NCM460

(colorectal cancer) Agarose gel

Mode of cell death
(annexinV-PI);

Immunofluorescence
staining of NF-κB;
metabolic activity

(MTT method)

Increased ROS expression in
NCM460 cells upon NPs uptake

but no ROS increased in 3D SW480;
higher basal ROS expression in 3D

SW480 than in 2D;
ROS-independent inflammatory
response increased in both cell

lines in 2D and 3D;
3D is more resistant to DNA

damage than 2D

[192]

ZnO
TiO2

ZnO: 41 ± 5 (in water);
190 ± 3 (in DMEM); 106

± 11 (in standard
culture medium);
TiO2: 79 ± 25 (in

water); 142 ± 29 (in
DMEM); 118 ± 28 (in

culture medium)

- 0.5–2.5 µg mL−1
A549 (human lung

carcinoma); NIH-3T3
(mouse fibroblasts)

ULA well plates
(spheroids)

Cell viability
(CellTiter-Blue viability
test; reduction of blue

resazurin to purple
resofurin monitored by

fluorescence);
(CellTiter-Glo luciferase
reaction in presence of

Mg/ATP/oxygen;
monitored by

luminescence); cell
morphology
(microscopy)

ZnO: similar toxicity in NIH-3T3 in
2D and 3D;A549 more sensitive in

3D than in 2D; both toxicity
displayed in

concentration-dependent manner;
TiO2: small toxic effect in 3D;

no toxicity in 2D

[190]

TiO2
Au
Ag

Au “15 nm”: 51 ± 6;
Au “80 nm”: 116 ± 5;

TiO2: 896 ± 133;
Ag: 120 ± 4 (in DMEM)

Au: phosphine
TiO2: PVP 1.25–625 µg cm−2

Caco2 (colorectal
adenocarcinoma)
mono-cultured of

co-cultured with THP-1
(human macrophages)
and MUTZ-3 (human

dendritic cells)

Collagen hydrogel

Inflammatory response
(IL-8); cell viability
(alamar blue assay;

LDH assay)

No impact of Au on cell viability or
inflammation in Caco2

mono-culture but slight increase of
IL-8 in co-cultured cells;

mono-cultured cells more sensitive
to Ag;

inflammatory response from Ag at
any concentration in co-culture;

no toxic or inflammatory effect for
TiO2 in both mono- and

co-cultured cells

[184]
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Table 1. Cont.

NPs NP Size (nm) NP Coating NP Concentration Cell Line 3D System Cytotoxicity Assays Cytotoxicity and Comparison to
2D Cell Culture Ref.

Ag
ZnO
SiO2

Ag: 6.873 ± 3.330 (in
water); 6.887 ± 4.176 (in

cell culture medium);
ZnO: 43.58 ± 9.113 and
292 ± 42.50 (in water);

134.7 ± 108.2 and
3902.0 ± 1119.0 (in cell

culture medium);
SiO2: 30.99 ± 20.0 (in

water); 41.65 ± 22.09 (in
cell culture medium)

-
Ag: 5–50 µg mL−1;

ZnO: 10–120 µg mL−1;
SiO2: 0–2000 µg mL−1

HepG2
(hepatocarcinoma)

Gelatin; collagen
hydrogel; Matrigel

Metabolic activity
(albumin and urea

assays); cell viability
(trypan blue and

alamar blue);
colorimetric cell

proliferation assay
(CellTiter96);
morphology
(microscopy)

3D show less toxicity than 2D;
FBS hinder toxic effect of NPs but

no change cell survival;
Increase spheroids disaggregation

at higher frequency of low
concentration of NPs uptake

compared to lower frequency of
high concentration

[204]

CdTe
Au

CdTe: 2.4–6;
Au: 3.5 ± 0.7 (in

citrate); 5.5 ± 0.6 (in
CTAB1)

CdTe-NPs: L-cysteine
monolayer; Au-NPs:

citrate/CTAB

CdTe: 10 µg mL−1; Au:
98.5 µg mL−1

HepG2
(hepatocarcinoma)

Polyacrylamide
hydrogel

Cell morphology (SEM;
light microscopy);

membrane integrity;
metabolic activity
(LDH and MTT

methods); cell death
mechanism (caspase
assay for apoptotis;
LDH for necrosis);
live/dead assays

(confocal microscopy)

Drop of cells metabolism and
change in phenotype upon CdTe

and CTAB-Au uptake;
no toxicity reported for citrate-Au;

less toxic in 3D than in 2D

[194]

IO

fluidMAG-D: 150;
fluidMAG-

PEI: 100;
fluidMAG-
CMX: 150

D: neutral starch
PEI: cationic

polyethyleneimine:
anionic

carboxymethydextran

25 µg cm−2
HBMEC (Human brain

microvascular
endothelial cells)

Spheroids suspension
in inverted plate

Real-time cell analysis
based on electronic

impedance
measurement via

electrode at the bottom
of wells;

immunoblotting (Akt
signalling); stained cell
observation (confocal

microscope)

Increased Akt activation in 2D vs.
3D upon NPs uptake; NPs

distribution is coating
charge-dependent; cell death more

pronounced in 2D vs. in 3D

[185]

Fe3O4: 48.7 (in sodium
citrate);

10; 25; 70; 700 (in cell
culture medium)

Polyvinylpyrrolidone
(PVP)

0.1–25 µg mL−1 (long
term exposure);

1–100 µg mL−1 (short
term exposure)

D384 (astrocyte);
SH-SY5Y

(neuroblastoma)

ULA well plates
(spheroids)

Cell viability (Trypan
blue); cell morphology

(microscopy)

Concentration-dependent cell
mortality and spheroid

disaggregation;
at highest concentration: 50% and
34% cell viability decrease of D384
and SH-SY5Y respectively in 3D vs

75% and 45% in 2D

[188,193]

5 and 30 Dextran; PEG or no
coating 100; 250; 500 µg mL−1 PAEC (Porcine aortic

endothelial cells) Alginate hydrogel

Cell viability
(live/dead assay;

alamar blue assay);
ROS level; cell shape
(actin cytoskeleton

labeled and
microscopy)

Bare NPs decrease cell viability and
increase ROS expression in
dose-dependent manner;

any coating reduces cytotoxicity
and ROS expression with no effect

of the size in both 2D and 3D;
bare NPs more toxic at low
concentration in 3D vs. 2D

[184]
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Table 1. Cont.

NPs NP Size (nm) NP Coating NP Concentration Cell Line 3D System Cytotoxicity Assays Cytotoxicity and Comparison to
2D Cell Culture Ref.

PELGA 2
PELGA10: 79.2 ± 5.7;
PELGA20: 90.5 ± 5.0;
PELGA40: 175.8 ± 4.3

- 2 µg mL−1
HeLa (human

epithelioid
cervix carcinoma)

Collagen hydrogel

Cell viability (alamar
blue assay); cell

morphology
(microscopy)

Sub-100 nm NPs more internalized
and toxic in 3D than in 2D [177]

Polymicells
drug

nanocarrier
151.9 - 100 µg mL−1

95-D (lung cancer); U87
(glioblastoma); HCT

116 (colorectal cancer)
Collagen hydrogel

Metabolic activity
(MTT method); cell

morphology
(microscopy)

Attenuation of antitumoral effect
and drug sensitivity in 3D vs.

in 2D.
[186]

1 cetyltrimethylammonium bromide. 2 poly(D,L-lactic-co-glycolic acid) (PLGA)–block–poly(ethylene glycol) (PEG). Numbers 10, 20 and 40 indicate the concentration (mg ml−1) of PEG-PLGA used during NPs
preparation.
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5. Conclusions and Perspectives

Over the recent years, 3D cell culture demonstrated great capacities in cancer research,
regenerative medicine and tissue engineering. 3D culture can be produced using either
scaffold-free systems such as spheroids and organoids, or scaffold-based systems like solid
scaffolds or hydrogels.

In this matter, hydrogels displayed abilities to overcome many limitations that other
types of 3D culture impose on researchers such as biodegradability, biocompatibility
and most importantly, its inner matrix consists of a complex structure that mimics the
physiological ECM hence getting us closer to human conditions. LMWG based hydrogel
are capable of producing multicellular tumor spheroids with an initial low-density cell
seeding. More importantly, owing to its high reproducibility, an LMWG-based hydrogel
can ensure a reproducible production of MCTS, an important feature for reliable results
concerning any type of imminent experiments. This in vitro model still manifests today
major importance in cancer research in regards of understating tumor progression and
therapeutic resistance. However, due to its reproducibility and long cancer cell life span, it
could also be used as a bio-indicator to assess the toxicity of chemical elements, molecules
or particles that we may encounter in the environment that we live in.

Today, with the emergence of nanoparticles of many sorts, the implementation of a
reproducible in vitro model that can host NPs will allow the investigation of their impact
and inevitably their burden on public health.

Based on the previously established NPs toxicity trials, a guideline for the anticipated
experiments can be suggested in an attempt to get reproducible and comparable results,
more representative of the real-life toxicity of NPs. The guideline consists of choices and
alterations to be taken into account on different key points.

First, the choice of the cell line that will be the biological matter of interest is primordial.
As described before, the majority of the toxicity experiments are done on cancer cell lines
and for all the right reasons. Cancer cell lines are and will always be ideal candidates for
such experiments. However, the choice of the cancer cell line is correlated with the type of
toxicity in hand. Meaning if we are studying nano-toxicity in food products, the cancer
line could be colorectal cancer line, that of the digestive tract. If the study concerns aerial
toxicity, the cancer model could be pulmonary cancer line, that of the respiratory tract.
These cell lines grown in a 3D system will produce MCTS.

We would like to restate that one of the key points of a successful and repeatable
toxicity experiment is the repeatability of the MCTS itself. However, the majority of cancer
cell lines derived from solid tumors such as glioblastoma present a high heterogeneity
that can compromise the standardization of the MCTS. For this reason, we recommend
exploiting cell sorting techniques to sort specific subpopulations from heterogeneous
populations. The use of these subpopulations will ensure the standardization of the in vitro
cellular model [10,207].

Second, at the light of the previously discussed 3D systems, an LMWG based hydrogel,
which is a biomimetic synthetic scaffold, is a more fitting candidate that offers the ideal
architecture for 3D culture as well as molecules and nanoparticle diffusion. In a system
such as the latter, the discrimination between NPs and colloidal natural entities becomes
easier [208]. These gels should be well characterized and optimized so properties such as
stiffness and structural stability resemble that of the ECM hosting the cells inside the human
body [209]. Moreover, since the biophysical properties of the cellular microenvironment
influence the cellular behavior, such as cell differentiation, morphology and proliferation,
gel characterization should be done in parallel with biological characterization of the
encapsulated cells in order to relate the 3D system to the cellular model features. Then, the
reproducible standardized MCTS grown inside these gels can serve as predictive models
for quantifying NPs effects on cell functionalities. Several mathematical equations were
conceived to better quantify these responses on the following hallmarks. The binding of the
NPs on cell surface by means of ligand-receptor association, the occurrence of endocytosis
meaning the uptake of NPs inside the MCTS cells and vice versa the expulsion of NPs by
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exocytosis and the interaction of NPs and the ECM will influence a specific movement of
the NPs in the interstitial space of the MCTS. An understanding of these responses will
give a clearer insight on NPs behavior in a human-mimicking microenvironment [210,211].
In addition, the entry of NPs into solid tumors can serve as vectors for potential treatment
of these cancers. [212]

Third, prior to studying the impact of an exogenous factor on a biological entity, the
latter should be characterized beforehand. This means that before the NPs are put in
contact with the 3D MCTS, the latter must undergo biological characterizations. These
characterizations that define the initial state of the MCTS (t0) (Figure 4), will give us
information about the structure of the MCTS (the three previously described layers), the
state of differentiation of the cells, the state of viability and proliferation of the cells, etc.

1 
 

 
Figure 4. Initial state t0 vs. final state tf of the MCTS. In order to assess the effectiveness of the
bio-indicator, a comparison between t0 and tf is inevitable for the understanding of the impact of
NPs on the living in vitro 3D model.

Fourth, manufactured nanoparticles disseminated in the environment are emerging
pollutants present in the air, water and soil and likely to contaminate and affect the quality
of the environment, water resources and agricultural production. It is important to evaluate,
in a thorough manner, the characteristics of these entities of interest: their multidimensional
state significantly the size of the NPs, their morphological state, chemical composition, their
concentration, their size distribution and state of aggregation (homo or hetero aggregation).
This information should be acquired throughout the experiment for a controlled experiment
and in order to correlate the given results with a given environment. Most of the size
characterizations are done by transmission electron microscopy (TEM) [16] that provides an
effective representation of the spheroid ultra-structure on a nano scale and dynamic light
scattering (DLS) among zeta potential characterization [213]. Taking into account the NPs
surrounding environment during the experiment should be a reflection of the environment
in which given NPs were found and which motivated the study. For example, assessing the
effect of NPs on gut environment needs to be preceded by characterization of these NPs
in a medium having at least similar acidity and ionic strength, also their interaction with
the components of culture media. FBS-supplemented (fetal bovine serum) cell medium
contains many factors that can influence NPs behavior, such as protein adsorption on NPs
surface that can change their surface charge [214–216], influence their aggregation and
eventually hinder their harmful effect. Moreover, the influence of the time point of NPs
exposure needs to be taken into account to define a representative 3D model for in vitro
nano-toxicity assay [202].

Until this day, quantitative information is still needed regarding the concentration-
dependent size distribution of the particles at any given time. We must insist that knowing
the nanoparticle physico-chemical state before, during and after the experiment is the only
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true indicator of the cross-effect of these NPs and their given environment. Along with the
analytical run, sample preparation is also a crucial step. Data is regularly published on the
subject. However, hardly any of these publications have validated the approach and/or
tested it in biological or environmental monitored system.

Associated with sample preparation, the preparation of the study medium, typically
for hosting NPs and biological cells, or for studying the behavior of NPs in environments
simulating the environment remains a totally open question to this day.

For this in vitro model to be considered as a bio-indicator, NPs distribution and time
points studies as well as series of biological analysis must be performed on the in vitro
cellular model subsequent to NPs contact, which constitutes the final state of the MCTS (tf)
(Figure 4 below).

Which brings us to the fifth target, the time points of NPs exposure to the MCTS inside
the hydrogel. The use of hydrogel as a cell culture scaffold leads to thinking about how to
expose encapsulated cells to external factors. The fibrillar architecture and network permit
the diffusion of molecules and NPs through the interfibrillar spaces, such as molecules and
NPs. Although, the diffusion kinetics of these entities from outside to inside the gel have to
be determined in order to take into consideration the delay between their administration
and their effective uptake by the cells. We must also ensure that the administered factors
are homogeneously diffused in the whole volume of the hydrogel. It is noteworthy that
this concerns NPs as well as reagents for biological analysis. The 2D cell culture cannot
give this kind of information since it lacks intercellular organization, so 3D cell culture is
a suitable model to study the impact on NPs on multicellular formation and physiology.
Using a 3D system such as ULA to study the spheroid development upon NPs exposure
facilitates NPs uptake [202], but as previously mentioned, the diffusion kinetic through the
hydrogel is also a parameter to be considered. Finally, in a context of NPs dissemination in
the environment or human being exposed to NPs from everyday products or professional
activity, the frequency of NPs uptake by 3D cultured cells must be determined according to
the issue (e.g., chronic or acute exposure). This also brings another layer of complexity to
be treated, for instance knowing how the hydrogel reacts to long term exposure to NPs
or if there is some architecture disruption upon high dose on short term. In all cases, the
interaction between NPs and the 3D-cells system must be fully explored by integrating the
timescale that will be considered for the experiment, for the sake of results relevance.

Finally, just like for the initial state (t0), a series of biological analysis must be per-
formed at the final state (tf) of the in vitro cellular model. For example, cell viability is one
of the first factors investigated during toxicology assays to assess the impact of entities
on the life cycle of the cellular model. For this matter, a tetrazolium-based colorimetric
such as MTT, WST-1 and MTS is used to assess the cell metabolic activity and consequently
their viability [118,217,218]. Cell membrane integrity can also be evaluated using lactate
dehydrogenase (LDH) assay [118].

Notably, using a hydrogel matrix might influence the diffusion and the dilution of
reagents used in cell viability tests, so it has to be taken into account when deciding about
the conditions of these assays [219]. Since cell death can either occur by apoptosis, which
is a programed regulated cell death, or necrosis, which is an incidental cell death due to
non-physiological factors such as infection or particle impact; discriminating between both
types is inevitable. Scanning and flow cytometry are the perfect techniques that allow
single-cell study and that are able to discriminate between both forms of cell death [220].
The cell inflammatory response can also be induced by NPs and has to be examined using
ELISA targeting inflammatory biomarkers in the likes of IL-8, IL-6 and tumor necrosis
factor [118]. Oxidative injury is also a significant biological incident that needs to be
assessed by determining the levels of total antioxidant capacity (TAC) and total oxidative
stress (TOS) [221], using ELISA or spectrophotometric methods [222].

We also recommend a genotoxicity study using a bioluminescent whole-cell biore-
porter, such as E-coli bioreporter, for quantitative evaluation of the DNA damage induced
by the NPs and other mutagenicity such as clastogenic and aneugenic effects and chromo-
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somal structure abnormalities. Furthermore, assessing organelles dysfunction can also be
predictive of NPs impact on cells physiological function by potentially inducing cell au-
tophagy. For example, examining mitochondrial dysfunction by studying ATP production
for respiratory control ratio.

An extra advantage for using cancer models is assessing tumor aggressiveness and
progression following NPs impact. These observations can be done by studying the state
of differentiation of the cells forming the MCTS and by doing cell invasion assays that are
naturally correlated with metastatic features. Such studies can be reflective of a potential
cancer development subsequent to NPs interaction with human organisms.

The production of repeatable MCTS, by the means of 3D culture of cancer lines
inside hydrogels, and the characterization of NPs and control of their spatiotemporal
behavior, consist of the ideal cartography of a bio-indicator for nanoparticle toxicity assays.
The biological analysis of MCTS at tf will inform us on the cellular behavior and state
subsequent to their exposure to NPs.

Thus, the study of ∆(t0/tf) (Figure 4) is informative of the difference of cellular prop-
erties before and after NPs impact. If ∆(t0/tf) truly demonstrates a significant difference,
then this 3D in vitro cellular model can be considered as an ideal successful bio-indicator.
This will allow the standardization of the 3D system in a global manner that might help in
obtaining results that are more concordant.

However, some of the targeted information should be unified in an intra and inter-
laboratories manner. What is the best cartography of this 3D system? What are the most
relevant tests to be performed in order to highlight a significant impact?
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