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Abstract: Magnetic Weyl semimetals are newly discovered quantum materials with the potential for
use in spintronic applications. Of particular interest is the cubic Heusler compound Co2MnGa due to
its inherent magnetic and topological properties. This work presents the structural, magnetic and
electronic properties of magnetron co-sputtered Co2MnGa thin films, with thicknesses ranging from
10 to 80 nm. Polarized neutron reflectometry confirmed a uniform magnetization through the films.
Hard x-ray photoelectron spectroscopy revealed a high degree of spin polarization and localized
(itinerant) character of the Mn d (Co d) valence electrons and accompanying magnetic moments. Fur-
ther, broadband and field orientation-dependent ferromagnetic resonance measurements indicated a
relation between the thickness-dependent structural and magnetic properties. The increase of the
tensile strain-induced tetragonal distortion in the thinner films was reflected in an increase of the
cubic anisotropy term and a decrease of the perpendicular uniaxial term. The lattice distortion led to
a reduction of the Gilbert damping parameter and the thickness-dependent film quality affected the
inhomogeneous linewidth broadening. These experimental findings will enrich the understanding of
the electronic and magnetic properties of magnetic Weyl semimetal thin films.

Keywords: topological materials; magnetic Weyl semimetals; Heusler compounds; magnetic dichro-
ism; photoelectron spectroscopy; ferromagnetic resonance; polarized neutron reflectivity; thin films;
magnetic anisotropy

1. Introduction

Topological materials have attracted tremendous interest in condensed matter physics
due to their unique electronic band states, which give rise to novel linear and nonlinear
responses [1–9]. Weyl semimetals constitute one class of such topological systems. They are
characterized by a lack of inversion symmetry or broken time-reversal symmetry, resulting
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in two-fold degenerate band-touching points (Weyl nodes) with opposite chirality formed
in momentum space [3,5,10–12]. The Weyl nodes act as quantized sources and sinks of Berry
curvature, which in turn lead to intriguing transport properties, such as the anomalous
Hall effect [13–18], the anomalous Nernst effect [19–22], magneto-optical responses [23]
and the chiral anomaly [24,25]. Recently, some ferromagnetic compounds were proposed to
be time reversal symmetry breaking Weyl semimetals (WSMs). Examples of such materials
are Heusler compounds [26–28] and kagome crystals [29–31].

In particular, the Heusler compound Co2MnGa has received significant attention
since the recent experimental verification of Weyl fermion lines and drumhead topological
surface states [32]. Co2MnGa crystallizes in the Cu2MnAl-type structure (L21, space group
Fm3m, #225) with a Curie temperature of TC = 694 K and saturation moment of Ms = 4.05 µB
per formula unit [33]. Single crystals and thin films exhibit Berry curvature-driven large
anomalous Hall and Nernst effects [16,34–39]. Further, Co2MnGa films show negative
magnetoresistances [40] and high spin polarization [41,42], which in turn results in low
magnetic damping [42,43]. Interestingly, Pechan et al. reported that Co2MnGa films grown
on different seed layers achieved tunable strain states, which induced remarkably large
two-fold and four-fold in-plane (IP) anisotropies [44].

Despite the promising properties of Co2MnGa, knowledge about the intrinsic magnetic
properties of thin films in the chemically ordered L21 structure remains limited. Thus,
to fully utilize Co2MnGa in practical applications, e.g., spintronic and magnetic memory
devices, it is necessary to understand its electronic and magnetic properties, particularly
the dynamic magnetic properties approaching the thin film limit. Key parameters include
the Gilbert damping, saturation magnetization and magnetic anisotropies.

In this work, we systematically studied the structural, electronic and magnetic proper-
ties of high-quality heteroepitaxial L21-ordered Co2MnGa thin films grown on MgO(001)
single crystal substrates, with thicknesses ranging from 10 to 80 nm. We obtained a uni-
form depth profile of the film magnetization using polarized neutron reflectometry (PNR).
Further, we investigated the 2p core levels of Co and Mn by means of magnetic dichroism
in hard x-ray photoelectron spectroscopy (HAXPES) to infer the itinerant and localized
characters of the respective d valence electrons and accompanying magnetic moments.
In addition, we related the thickness-dependent structural properties to the magnetic prop-
erties, including the inhomogeneous linewidth broadening, Gilbert damping parameter
and magnetic anisotropies, as determined by ferromagnetic resonance (FMR) experiments.
In that context, we found that the films showed cubic anisotropy within the film plane and
uniaxial anisotropy perpendicular to the film plane.

2. Materials and Methods

High-quality epitaxial thin films of Co2MnGa were grown in a BESTEC UHV mag-
netron sputtering system on single crystal MgO(001) substrates and capped with 3 nm Al,
which is naturally oxidized and protects the epilayer. The details of the growth are pro-
vided in [34]. The stoichiometry of the films was confirmed by energy-dispersive X-ray
spectroscopy (EDXS), with an experimental uncertainty of less than 5 at. %. X-ray diffrac-
tion (XRD) and X-ray reflectivity (XRR) measurements were conducted using a PANa-
lytical X’Pert3 MRD diffractometer employing Cu-Kα1 radiation (λ = 1.5406 Å). The film
thicknesses were determined by using XRR measurements (not shown). Atomic force
microscopy (AFM) images were collected in non-contact mode on an MFP-3D Origin+

microscope from Oxford Instruments Asylum Research in replicas of the films without
capping layers.

PNR measurements were conducted on the SuperADAM instrument at ILL (Grenoble,
France). A fixed neutron wavelength of 5.2 Å with an incident polarization of 99.6% was
used for the measurements. The neutron wavelength spread was δλ/λ ≈ 0.5%. The neutron
momentum transfer was selected by changing the incident and outgoing angles to satisfy
the specular reflection condition. In addition, the incident neutron polarization state
was controlled by a radiofrequency spin flipper for each of the consecutive measurements.
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The data were collected at an applied magnetic field of 50 mT preceded by the application of
a 0.7 T field. For the details of the SuperADAM polarized neutron reflectometer, see [45,46].

The HAXPES measurements were performed at beamline P22 of PETRA III (Hamburg,
Germany) [47]. The photon energy was set to hν = 6000 ± 0.1 eV. The magnetic circular
dichroism was measured at a fixed magnetization by changing the helicity of the photons
using a phase retarder. The degree of circular polarization was about 98–99%. The thin films
were magnetized in situ along the direction of the photon beam. The energy in the spectra
is given with respect to the Fermi energy εF calibrated to Au, with εF appearing at a kinetic
energy Ekin of 6000.50 ± 0.2 eV. This corresponds to an overall energy resolution of about
170 meV (E/∆E ≈ 3.5 × 104). For details of the HAXPES setup and HAXPES-MCDAD
experiment, see [48,49].

Magnetization measurements were performed on a Superconducting Quantum In-
terference Device (SQUID) vibrating sample magnetometer (MPMS 3, Quantum Design).
To infer the magnetic field-dependent magnetization of the films, we subtracted the dia-
magnetic substrate contribution from the raw data.

Broadband FMR measurements were performed on a coplanar waveguide (CPW) in a
vector network analyzer (VNA) setup. The CPW was connected to two ports of the VNA,
and the complex scattering parameter S21 was recorded by sweeping the frequency with a
constant field applied perpendicular to the film plane. Consecutive measurements were
performed in 0.5 mT steps. The resonance field Hres and linewidth ∆H were extracted by
fitting the field dependence of the complex transmission at constant frequency S21(H)|f to
the complex Polder susceptibility, as discussed by Nembach et al. [50].

FMR measurements as a function of the external magnetic field orientation were
performed on a continuous-wave Elexsys E500 spectrometer by Bruker. The measurements
were conducted at X-band microwave frequencies (ω = 9.4 GHz) in a cylindrical cavity
(TE011 mode). The resonance signal was recorded in the field-derivative dP/dH of the
absorbed microwave power (P) using a lock-in technique that modulated the external field
at a low frequency (100 kHz). The sample orientation was manipulated by a goniome-
ter, rotating perpendicular to H. The obtained spectra were fitted with a first-derivative
Lorentzian line shape to obtain the resonance field Hres.

3. Results
3.1. Structural and Morphological Characterization

Figure 1a shows the symmetric radial ω–2θ XRD patterns of Co2MnGa films with
different thicknesses. We observe only the 00l reflections of Co2MnGa, which suggest
that the films grow heteroepitaxially on the MgO(001) substrates. The inset in Figure
1a portrays the asymmetric 113 superstructure reflections. From those, we determined
that all of the films crystallized with L21-type chemical ordering [34]. By combining
the symmetric and asymmetric reflections, such as 002 and 220, respectively, from XRD
measurements, we estimated the lattice parameters of our films, which are depicted in
Figure 1b. The thinner films show strain-induced tetragonal distortion, whereas the thicker
films are closer to the cubic bulk value (a = 5.77 Å) [33,34]. The films are under bi-axial
tensile strain as expected based on the difference between the lattice parameters of the
films and substrate (

√
2aMgO = 5.956 Å).
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according to the results shown in Table 1, the minimum roughness is obtained for the 20 
nm sample. This is not totally unexpected, as, in the initial stages (10 nm) of growth of a 
metallic film on an insulating substrate, island formation normally occurs. Simultane-
ously, the morphology is defined by kinetic mechanisms. At elevated substrate tempera-
tures (550 °C), accelerated recrystallization and grain growth result from rapid surface 
diffusion coupled with mobile dislocations and grain boundaries. Further, the improved 
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Figure 1. (a) XRD patterns of Co2MnGa films with different thicknesses. The inset shows the asymmetric 113 reflections.
(b) Lattice parameters of Co2MnGa films as a function of thickness.

The misfit strain (averaged through the film thickness) increases from 2.51% at 80 nm
to 3.63% at 10 nm. Table 1 summarizes the structural parameters.

Table 1. Structural parameters of Co2MnGa films with different thicknesses t. Lattice parameters
perpendicular to the film plane c and in the plane a with an error of ±0.001 Å. Misfit strain f,
root-mean-square (RMS) roughness Sq and mean lateral surface diameter D of the grains.

t (nm) c (Å) a (Å) f (%) Sq (Å) D (nm)

10 5.727 5.810 3.62 3.08 45 (±8)
20 5.740 5.804 2.83 2.56 56 (±6)
40 5.743 5.792 2.61 3.19 78 (±4)
80 5.751 5.781 2.51 5.44 93 (±5)

Figure 2 illustrates the AFM topographic images for the Co2MnGa films with different
thicknesses in an area of 5 × 5 µm2. The films exhibit smooth surfaces, with an average
RMS roughness Sq that increases from 2.56 to 5.44 Å with increasing film thickness. Si-
multaneously, the mean lateral surface diameter of the grains D increases with increasing
film thickness. The roughness is expected to be proportional to the grain size. However,
according to the results shown in Table 1, the minimum roughness is obtained for the
20 nm sample. This is not totally unexpected, as, in the initial stages (10 nm) of growth of a
metallic film on an insulating substrate, island formation normally occurs. Simultaneously,
the morphology is defined by kinetic mechanisms. At elevated substrate temperatures
(550 ◦C), accelerated recrystallization and grain growth result from rapid surface diffusion
coupled with mobile dislocations and grain boundaries. Further, the improved crystallinity
inferred from rocking curve measurements [34] indicates that the overall film quality in-
creases with increasing film thickness. Similar behavior can also be observed in other thin
films [51,52]. Table 1 summarizes the values of Sq and D.
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Figure 2. (a–d) AFM topographic images of the Co2MnGa films with different thicknesses.

3.2. PNR

To determine the magnetic depth profile of an 80-nm-thick Co2MnGa film, we per-
formed PNR measurements. Figure 3a shows the intensity of the specular reflection for
two incident neutron polarizations: R+ (spin up, along the applied field) and R− (spin
down) as a function of the momentum transfer perpendicular to the film surface (Qz).
The data exhibit well-defined oscillations that are resolved up to ~0.14 Å−1. Reflectivity
measurements for the two neutron polarizations enabled us to separate the contributions
from the nuclear (ρn) and magnetic (ρm) scattering length density (SLD) profiles. To ex-
tract the SLD profiles, we fitted the experimental data with a model that included the Al
capping layer and magnetic Co2MnGa layer on top of the MgO substrate using the GenX
software [53]. To achieve the most accurate refinement of the magnetic profile, the nuclear
SLD values for the MgO substrate and Co2MnGa layer were fixed to the values calculated
based on the lattice constants. Thus, the fitted parameters included the thicknesses of
the Co2MnGa and capping layers, roughness of each interface and magnetization of the
Co2MnGa layer. The applied model resulted in good agreement with the experimental
data, as demonstrated by the fitting curves in Figure 3a.
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Figure 3. (a) PNR measurements of an 80-nm-thick Co2MnGa film. The solid lines are the fitted curves. (b) Nuclear and
magnetic SLD profiles obtained from fitting the PNR data. The right axis shows the magnetization corresponding to the
magnetic SLD profile.

Figure 3b presents the corresponding SLD profiles. The interface between the sub-
strate and Co2MnGa layer is relatively sharp (the roughness is less than the measurement
sensitivity). The Co2MnGa layer has a refined thickness of 80.3 nm and exhibits a roughness
of 1.7 nm at the interface with the capping layer. The SLD of the 1.1-nm-thick capping
layer is slightly higher than the theoretical SLD of Al (~0.21 × 10−5 Å−2), which indicates
the presence of an oxide layer (Al2O3 has a higher SLD) at the film surface. As shown by
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the good quality of the fit, the model that assumes a uniform magnetization within the
Co2MnGa layer well reproduces the experimental data. The magnetization calculated from
the magnetic SLD [54] is 827 ± 49 kA/m.

3.3. HAXPES

Figure 4 depicts the polarization-dependent core-level spectra near the Co and Mn
2p excitations for a 40-nm-thick Co2MnGa film. Note that the spectra were taken from
remanently magnetized samples; hence, the magnetic moment may be lower than the
saturation moment. The dichroism is quantified by an asymmetry defined as:

A =
I+ − I−

max
(

I0 − Ibg

) (1)

where I+ and I− are the intensities for opposite helicities, I+ − I− = ICD is the dichroism,
I0 = I+ + I− is the sum of the intensities and Ibg is the background intensity.
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Figure 4a shows the polarization-dependent spectra and dichroism in the energy
region of the Co 2p states. The Co 2p state exhibits a spin–orbit splitting of ∆SO = 15 eV
into the 2p1/2 and 2p3/2 sub-states, slightly larger than that of Co2MnSi [49]. The dichroism
exhibits a sign change (+−−+) across the energy range of the 2p excitation, which is
typical for Zeeman-type level ordering in the single-electron model [55]. A pronounced
satellite is observed at about 4.3 eV below the 2p3/2 state but is not detectable at the 2p1/2
state. Further, the 2p3/2 excitation exhibits a splitting of about 100 meV. The asymmetry
(Equation (1)) varies between +23% and –6% across 2p3/2 and between –6% and +5% across
2p1/2. Both the polarization-dependent spectra and dichroism indicate that the lines of
the multiplet extend over the entire spectral range. In particular, the dichroism does not
vanish between the two main parts of the spin–orbit doublet. Comparison with calculated
spectra [49] revealed a jj-type coupling in accordance with multiplet calculations [56].
The Zeeman-type splitting observed at both lines is caused by the exchange interaction.
The dichroism at the Co 2p states is close to that observed for exchange-biased CoFe or
Co2FeAl films [57].

The polarization-dependent 2p spectra of Mn in Figure 4b exhibit a more complicated
structure. Splittings of ∆1/2 ≈ 1 eV and ∆3/2 ≈ 1.3 eV occur at the 2p1/2 and 2p3/2 excita-
tions, respectively. The total intensity I0 (not shown) does not reveal spin-orbit splitting
due to the additional splitting of both lines, 2p1/2 and 2p3/2. The mean splitting between
the doublet-type structure amounts to about ∆ = 11 eV, similar to that in Co2MnSi [49].
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In atoms, multiplet splitting occurs due to the interaction of the nl−1 core hole with the po-
larized open valence shell. The core hole (here 2p5) in a solid is expected to interact with the
polarized d states of the valence band. The localized valence d states, however, are screened
by delocalized electrons; therefore, quantification is not easily possible. The multiplet the-
ory can be used to explain the observed splittings in the spectra [49,58–60], assuming that
the atomic character of the valence electrons is partially retained in the solid. Comparison
indicated that the two parts of the multiplet could be assigned to the 5P and 7P states
with the dipole allowed transitions

{[
2p53d5(5,7Pj

]
+ ε(s, d)

}
(6P7/2,5/2,3/2). The dichroic

asymmetry across the 2p3/2-type part varies between +47% and −24% and does not vanish
between the 2p3/2 and 2p1/2 lines. Thus, the splitting is not of Zeeman type, where no
additional states would appear between the main lines of the spin–orbit doublet similar
to the Co 2p state. Hence, the core hole created by the emission of a Mn 2p electron in-
teracts strongly with the valence band. The multiplet structure and magnetic dichroism
of the Mn 2p states of Co2MnGa are very similar to those of Co2MnSi [49], indicating the
similarity of the electronic structures, in particular, half-metallic character with very high
spin polarization.

3.4. Static and Dynamic Magnetic Properties
3.4.1. DC Magnetometry

Figure 5 depicts the IP and out-of-plane (OOP) magnetization hysteresis loops at 300 K
for the Co2MnGa films of various thicknesses. All films show magnetization hysteresis
loops characteristic for soft ferromagnetic materials with high magnetization and small
coercivity. Magnetic saturation (Ms) is reached easily along the IP direction, which is the
easy magnetic axis, while the hard magnetic axis is normal to the film plane along the OOP
direction. Between 80 and 20 nm the Ms is similar, while for the thinner film of 10 nm we
observe the highest Ms. This enhanced Ms can be attributed to the strain-induced changes
of the electronic structure.

1 
 

 
Figure 5. Magnetization hysteresis loops with H applied along the: (a) IP and (b) OOP film directions at 300 K for Co2MnGa
films of various thicknesses.

3.4.2. Broadband FMR

We performed broadband FMR measurements of the Co2MnGa films at 300 K with
H applied perpendicular to the film plane. This configuration ensured minimization of
the two-magnon scattering contribution to the extrinsic broadening of the linewidth [61].
Figure 6a–d presents Hres of the FMR mode as a function of the excitation frequency for
the Co2MnGa films. Notably, for the 80-nm-thick film (Figure 6d), Hres of another mode in
addition to the uniform FMR mode was extracted at lower fields. Aside from possible film
non-uniformities, the origin of this mode could be a perpendicular standing spin wave
(PSSW) with a nonzero wave vector q = np/t (integer order of mode n, with n = 0 as the
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uniform mode) pointing perpendicular to the film plane. Here, the absence of additional
higher order modes may be related to a very weak excitation, resulting in an intensity below
the detection limit and preventing us from attributing this mode to a PSSW with certainty.
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To determine the effective magnetization Meff, g-factor and exchange stiffness A, a sim-
plified resonance condition was evaluated. For parallel M and H (applied perpendicular to
the film surface), this gives:

ω

γ
= µ0

(
Hres −Meff +

2An2π2

Mst2

)
(2)

with the gyromagnetic ratio γ = gµB
} . The exchange stiffness was only extracted for

the 80-nm-thick film, assuming that the second mode originated from a PSSW. Here,
A = 16.8 pJ/m is comparable to the exchange stiffness in other Co-based Heusler com-
pounds (4.8–31.5 pJ/m) [62–64]. Table 2 summarizes Meff and g for all of the investigated
Co2MnGa films. As the thickness increases, Meff drastically decreases. Further, a noticeable
uniaxial magnetic anisotropy perpendicular to the film plane, attributed to the growth-
induced lattice strain, can be inferred from the increased size of Meff compared to Ms.

Table 2. Magnetic parameters of the Co2MnGa films extracted from linear fits to the resonance
fields and linewidths (Figure 6), including saturation magnetizations from the hysteresis curves
(cf. Figure 5).

t (nm) Ms (kA/m) Meff (kA/m) g α (×10−3) µ0∆H (mT)

10 857 941 1.97 1.1 ± 0.8 14.4 ± 1.6
20 744 908 1.96 0.8 ± 0.2 14.4 ± 0.5
40 752 884 1.97 1.4 ± 0.1 6.4 ± 0.2
80 760 895 1.95 2.1 ± 0.2 5.8 ± 0.4

Figure 6e–h presents ∆H as a function of the excitation frequency for the Co2MnGa
films. Notably, the data for the 10-nm-thick film show significant scattering, attributed
to a less accurate fit of the FMR mode due to the low signal intensity. ∆H characterizes
the relaxation of the magnetization due to extrinsic frequency-independent contributions
(inhomogeneous linewidth broadening ∆H0) as well as intrinsic contributions linearly pro-
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portional to the resonance frequency (Gilbert damping parameter α). These contributions
can be determined from the frequency dependence of ∆H as:

µ0∆H = µ0∆H0 +
2ω

γ
(3)

The α values summarized in Table 2 agree well with previously reported values for
Co2MnGa films (α≈ 2× 10−3) [42,43]. In that context, the low α values in conjunction with
the previously inferred high degree of spin polarization agree well with the correlation of
those properties established by Liu et al. [65]. Further, α slightly increases with thickness.
This thickness dependence likely originates in the lattice distortion affecting the spin
polarization [66]. In contrast, ∆H0 decreases with increasing film thickness, which indicates
increased inhomogeneities in the thinner films and lower crystalline quality [34].

3.4.3. X-Band FMR

Figure 7 shows the H orientation dependencies of Hres in the (001) plane (IP) and (110)
plane (IP to OOP). Note that, for the 80-nm-thick film, we only considered the main mode.
In the (001) plane (Figure 7a–d), Hres has a four-fold H orientation dependence, which can
be explained by the cubic symmetry of the Heusler structure. Here, the easy axes lie along
the [110] and equivalent directions. In the (110) plane (Figure 7e–h), the H orientation
dependence of Hres agrees with the magnetization measurements (cf. Figure 5), with the
magnetic hard axis along the (001) axis (OOP).
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Figure 7. Resonance fields Hres and simulated resonance conditions (solid lines, see main text) at
300 K and 9.4 GHz of Co2MnGa films with different thicknesses: (a–d) H rotated in the (001) plane,
i.e., IP rotation; and (e–h) H rotated in the (110) plane, i.e., IP to OOP rotation. The dashed lines
indicate the crystallographic directions of the film at the respective angles. Inset in (h): Cartesian and
polar coordinate system, where the crystallographic directions refer to the Co2MnGa film and the
angles to the direction of H.
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The magnetic anisotropies of the Co2MnGa films can be determined from the depen-
dence of the FMR resonance condition on the direction of the applied magnetic field H with
respect to the growth orientation of the crystallographic axes (inset in Figure 7h). For that
purpose, the total free energy density (Ftot) was employed. Here, we describe Ftot of the
Co2MnGa films using the Zeeman energy, the shape anisotropy, a uniaxial anisotropy term
perpendicular to the film plane and a cubic anisotropy term:

Ftot = −µ0MsH(sin Θ sin Φ sin θ sin φ + cos Θ cos θ + sin Θ cos Φ sin θ cos φ)
+ µ0

2 M2
s sin2 Θ cos2 Φ

−Ku,[001](sin Θ cos Φ)2

+Kc
1
4

(
sin2(2Θ) + sin4 Θ sin2(2Φ)

)
.

(4)

(Θ, Φ) and (θ, φ) correspond to the angles of the magnetization and applied magnetic
field defined in relation to the sample, respectively. Ku,[001] and Kc are the perpendicular
uniaxial and cubic anisotropy constants, respectively. The resonance condition can, in turn,
be derived from Ftot for arbitrary orientations of the external magnetic field with respect to
the sample as [67]: (

ω

γ

)2
=

1
M2

s sin Θ

(
∂2Ftot

∂Φ2
∂2Ftot

∂Θ2 −
(

∂2Ftot

∂Θ∂Φ

)2)
(5)

with the derivatives evaluated for the equilibrium direction of the magnetization. In ad-
dition, for the simulation of the resonance condition in the presented coordinate system,
φ was fixed at 90◦ for rotation in the film plane, whereas θ was fixed at 90◦ for rotation out
of the film plane.

From the Hres simulation results (Figure 7, solid lines) obtained using Equations (4)
and (5), the anisotropy constants at 300 K were derived, using Ms and g (entering via
γ = gµB

} ) in Table 2. The simulations well reproduced both rotation planes, and Table 3
summarizes the corresponding anisotropy constants.

Table 3. Anisotropy constants of the Co2MnGa films determined from simulations of the magnetic
field orientation-dependent resonance fields (Figure 7).

t (nm) Ku,eff (kJ/m3) Ku,[001] (kJ/m3) Kc (kJ/m3)

10 556 −95 7.0
20 415 −67 3.4
40 430 −75 3.7
80 421 −59 1.9

Based on the previous Meff results (cf. Table 2), the Co2MnGa films indeed show a uni-
axial contribution to the effective anisotropy perpendicular to the film plane according to:

Meff =
2Ku,eff

µ0Ms
= Ms −

2Ku,[001]

µ0Ms
(6)

with the effective perpendicular uniaxial anisotropy constant Ku,eff. The uniaxial term
(Ku,[001]) originates from the aforementioned tensile strain-induced tetragonal distortion
(cf. Table 1), adding to the effects of the shape anisotropy and, in turn, increasing the
effective anisotropy. Table 3 demonstrates that this behavior is the most pronounced in the
10-nm-thick film and decreases with increasing thickness, in agreement with the thickness
dependence of the tetragonal distortion along the [001] axis. This behavior is also reflected
in the cubic anisotropies Kc determined from the IP H orientation dependence of Hres.
Specifically, Kc decreases with increasing thickness. For the IP H orientation dependence,
the absence of a uniaxial contribution supports the observation by Pechan et al. [44] that
the strain is isotropic in the film plane.
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4. Summary and Conclusions

In this work, we studied the magnetic and electronic properties of L21-ordered
Co2MnGa thin films, particularly as functions of the film-thickness-dependent structural
and morphological properties. We observed a uniform magnetization throughout the
entire film thickness and determined the itinerant and localized characters of the Co d
and Mn d valence electrons and accompanying magnetic moments, respectively. Further,
by comparing the Mn 2p spectra of Co2MnGa with those of Co2MnSi [49], a very high
degree of spin polarization could be inferred. The combination of high-spin polarization
with low Gilbert damping makes the L21-Co2MnGa films very interesting for potential
spin–orbit–torque and spin–transfer–torque devices [68]. In terms of thickness dependence,
we made three main observations. First, as the film thickness decreases, a tensile strain,
related to a lattice mismatch between the film and substrate, leads to tetragonal distortion
of the Co2MnGa lattice. Similar tetragonal distortion has been observed in other cubic
films, using buffer layer and adding small amounts of a third element [69,70]. This tetrago-
nal distortion likely affects the spin polarization [66] and, in turn, leads to the reduction
of the Gilbert damping parameter α (from 2.1 × 10−3 to 1.1 × 10−3) in thinner films.
This demonstrates the possibility of further reducing the Gilbert damping parameter via
the film thickness or lattice matched film growth. Second, the crystalline quality increases
with increasing thickness [34], resulting in decreased inhomogeneous linewidth broaden-
ing (from 14.4 to 5.8 mT). This observation emphasizes the importance of controlling the
thickness-dependent film quality in the development of potential materials for device-based
applications. Third, the increasing tetragonal lattice distortion with decreasing thickness
also results in decreasing uniaxial anisotropy (from −59 to −95 kA/m3) perpendicular
to the film plane and increasing cubic anisotropy (from 1.9 to 7 kA/m3) in the film plane.
These features demonstrate that not only the substrate [44] but also the film thickness
enables the tuning of the magnetic anisotropies of Co2MnGa films, in particular at the thin
film limit. Lastly, a potential perpendicular standing spin wave mode was observed in
the 80-nm-thick film and enabled quantification of the exchange stiffness (A = 16.8 pJ/m).
The ability to manipulate the intrinsic magnetic properties with strain-induced epitaxial
engineering represents an important springboard for exploiting thin films of Co2MnGa in
topological spintronic applications. This work enriches the knowledge on the electronic
and magnetic properties of Co2MnGa films, which are promising in the development of
magnetic storage and non-volatile memory technology.
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