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Abstract: Nowadays, environmental pollution due to synthetic polymers represents one of the biggest
worldwide challenges. As demonstrated in numerous scientific articles, plant-based nanocellulose
(NC) is a biodegradable and nontoxic material whose mechanical, rheological, and gas barrier
properties are competitive compared to those of oil-based plastics. However, the sensitivity of NC
in humid ambient and lack of thermosealability have proven to be a major obstacle that hinders its
breakthrough in various sectors including food packaging. In recent years, attempts have been made in
order to provide a hydrophobic character to NC through chemical modifications. In addition, extensive
works on nanocellulose applications in food packaging such as coating, layer-by-layer, casting,
and electrospinning have been reported. Despite these enormous advances, it can easily be observed
that packaging manufacturers have not yet shown a particular interest in terms of applicability
and processability of the nanocellulose due to the lack of guidelines and guarantee on the success
of their implementation. This review is useful for researchers and packaging manufacturers because
it puts emphasis on recent works that have dealt with the nanocellulose applications and focuses
on the best strategies to be adopted for swift and sustainable industrial manufacturing scale-up
of high-performance bio-based/compostable packaging in replacement of the oil-based counterparts
used today.

Keywords: hydrophobic nanocellulose; nanocellulose coating and lamination; bio-based;
compostable food packaging

1. Introduction

1.1. Cellulose Properties and Capabilities

First revealed in the world by a French scientist Anselme Payen in 1838, cellulose is the most
abundant biopolymer on the earth. Cellulose is generally synthesized by plants, but it is also available
in some bacteria (Acetobacter xylinum) [1]. d-glucopyranose molecules contribute to the building blocks
of cellulose polymer chains. Anhydroglucose units are linked by β(1–4) glycosidic bonds and two
units of anhydroglucose form an anhydrocellobiose structure (Figure 1).
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Cellulose content varies according to the botanic specie, e.g., the cotton has about 90% cellulose,
wood 40–50%, or bast fibers such as flax, hemp, or ramie about 70–80% cellulose. Cellulose chains are
tough, fibrous, and water-insoluble structures arranged in microfibrils with high strength and other
superior mechanical properties. Intermolecular bonds provide stiffness, while the intramolecular
bonds provide sheet structures to the polymer chain [2]. Succinctly, apart from paper and boards,
cellulose without any modification does not have many applications in packaging and, in particular,
in flexible packaging materials. However, when the cellulose is subjected to chemical, mechanical,
or enzymatic modifications, it can be employed for example as coatings on food and packaging.
Such modifications, which include the obtainment of methylcellulose (MC), hydroxypropyl cellulose
(EC), and carboxymethyl cellulose (CMC) have long been used as coatings on foods, emulsifiers,
bulking-extender agent, texturizers, and pharmaceutical excipient [3]. Furthermore, secondary
cellulose acetate (56% acetyl groups) has been employed in thermoplastic processing and grafted
cyclic lactones simultaneously onto polysaccharide and hydroxy functional plasticizer for packaging
applications [4,5]. More recently, these cellulose derivatives have been employed in combination with
other matrixes, i.e., lactoferrin and lysozyme have been successfully incorporated into a cellulose-based
material for being used as an antimicrobial packaging for conservation of thin slices of raw meat [6];
furthermore hydroxypropylmethyl cellulose (HPMC) has been found to be very compatible with
chitosan to set up a packaging displaying both antimicrobial and gas barrier properties [7,8]. In food
packaging, a regenerated and biodegradable cellulose like the cellophane has long been used as a thin
and transparent sheet for its high barrier to gases, oils, greases, and bacteria. Such properties have
contributed to the cellophane expansion in complex multilayer packaging capable of preventing meat
from oxidation and discoloration and from spoilage of fresh and dried oxygen-sensitive foods [9,10].
However, if seeking higher gas barrier biodegradable materials, cellophane that is even an expensive
material is not appropriate to guarantee such requirements. The advent of the nanotechnology has
opened a door for new opportunities to create cellulose-based materials with higher gas barrier
performance. In recent years though, research on nanocellulose has sprung up and many scientific
works dealing with studies of the chemicophysical properties and potential applications in various
sectors including food packaging have been published. As a matter of illustration, when used as
coating, layer-by-layer (LbL), casting or fillers, the nanocellulose displays unique gas/oil barrier
and optical/mechanical properties useful for food packaging [11,12].

1.2. Introduction to Nanocellulose

Nanotechnology that implies the manipulation of very tiny matter has made possible the discovery
of the nanocellulose (NC). According to ISO/TS 20477:201, NC is a structure whose at least one dimension
is equal or less than 100 nm, and it can be subdivided into cellulose nanocrystals and cellulose
nanofibrils, which are chemically and mechanically produced, respectively [13]. Throughout the years,
the nomenclature of the cellulose nanocrystals has changed from being called whiskers, needles
to rod-like while the cellulose nanofibrils have been referred to nanofibrillated cellulose (NFC),
nanofibrillar cellulose (NFC), microfibrillated cellulose (MFC), microfibrillar cellulose (MFC), cellulose
microfibril (CMF), and cellulose nanofiber (CNF). However, to avoid any confusion, in this review about
plant-based nanocellulose, the acronym “CNCs” has been used to indicate the cellulose nanocrystals
while both “MFC” and “CNFs” have been referred to cellulose nanofibrils [14,15]. However, it has to
be pointed out that the ambiguity exists towards micro-/nanofibrils because the mechanical process
breaks the cellulosic materials in both nano- and microparticles simultaneously.

Cellulose nanocrystals (CNCs) are very tiny and crystalline nanoparticles that are obtained by
a chemical process through an acidic or oxidative hydrolysis during which the amorphous regions of the
cellulosic materials are rapidly hydrolyzed releasing unblemished crystalline regions [16]. Unlike CNCs,
the cellulose nanofibrils (MFC/CNFs) contain both amorphous and crystalline regions and they are
prepared by mechanical shear during which the cellulose is defibrillated and disintegrated [17]. NC is
characterized by its size, aspect ratio and shape, surface charges, tensile strength and stiffness, thixotropic
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behavior and crystallinity degree, which all depend not only on the type of production adopted but
also on the raw material sources (plant-based) used. By comparison of their general features, CNCs
are a more crystalline structure having a length of 100–250 nm and width of 3–50 nm while the CNFs
have a higher aspect ratio with the length >1 µm and width 3–100 nm. Prior the “top-down” process
(chemical or mechanical shear), it is necessary to subject recalcitrant raw materials to enzymatic, alkaline,
and acid pretreatments to facilitate the disintegration of fibers in order to increase the production yield
on the one hand and make the process less energy consuming on the other hand [18]. Widely reported
in literature, nanocellulose has been demonstrated to exhibit an effective barrier to gases and aroma,
thermal resistance, and mechanical and rheological properties useful for food packaging. However, as
nanocellulose swells in a humid environment, this harms its exceptional properties and as a result,
it hinders its breakthrough and application on an industrial scale. Accordingly, scientists have
performed chemical functionalizations to provide hydrophobic character to nanocellulose and its
subsequent resistance to water. In addition, in view of achieving better performance for food packaging
applications, operational aspects and manipulation/handling of the NC requires very strong attention
and expertise.

1.3. CNCs and MFC/CNFs Production

Acid hydrolysis is traditionally adopted to isolate the cellulose nanocrystals (CNCs) from
the cellulosic sources. The propensity of the cellulose fibers to tightly adhere makes the crystalline
regions less accessible to acid attack while amorphous regions are preferably accessible and hydrolyzed.
Various acids such as sulfuric acid, hydrochloride acid, periodic acid, and phosphoric acid have been
successfully employed for the extraction of CNCs from many cellulosic raw materials such as cotton
linters, wood pulp, microcrystalline cellulose (MCC), soy husks, rice hulls, etc. The type of hydrolysis
and raw material influence the CNCs properties like the morphology and size, the crystallinity,
and the charges density. As a matter of fact, CNCs obtained by HCl do not contain charges on
their surface while CNCs obtained by other acids contain residual charges attributable to their
higher colloidal stability [19]. As a result, a wide spectrum of residual charges has been found
of great benefits for the functionalization of the CNCs surface. Another widespread technique
of extraction consists of using strong oxidizing agents such as the ammonium persulfate (APS)
and the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) for the CNCs production. Both APS and TEMPO
can be used directly on the raw material or on CNCs thereby introducing carboxylic groups on the surface.
By generating repulsive forces, such negative charges on the CNCs surface prevent the crystals from
aggregating through electrostatic stabilization of the colloidal suspension [16,20].

Unlike CNCs, CNFs are generally manufactured by mechanical shear. More often preceded by
enzymatic, chemical, or mechanical pretreatment, the mechanical disintegration of the cellulose to
obtain CNFs, usually includes phases such as grinding, refining, and high-pressure homogenizing
(Figure 2). Following refining that usually occurs when the dilute cellulosic fibers are forced to pass
between two discs to be separated; the refined slurry of small fibers is subjected to high pressure
through the homogenization [21]. After the homogenization, the concentration of the slurry is usually
about 0.5–3% [22]. Due to this energy intensive process to produce the MFC/CNFs, cellulosic raw
materials have to be subjected to mechanical, chemical, or enzymatic pretreatments to facilitate the next
steps of the production. Such enzymatic (i.e., endoglucanase), acidic, and mechanical (i.e., sonication)
pretreatments can also be used in combination [23]. In addition, a research related to MFC/CNFs
production upon chemical pretreatments reported energy savings up to 98% [24].

It bears noting that the source of the raw materials, the type of pretreatment and mechanical
disintegration dictate the production yield and the MFC/CNFs features such as crystallinity, morphology,
and surface ratio [21]. Due to the presence of amorphous and crystalline regions in their structure, CNFs
are known to be more flexible and less crystalline than the CNCs. APS and TEMPO have been also
used to produce more stable colloidal suspensions of cellulose nanofibrils due to negative carboxylic
charges present on their surface [25,26]. Both CNCs and MFC/CNFs exhibit gas, aroma, and solvent
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barrier properties required in food packaging for shelf-life extension. However, as pointed out above,
humid conditions compromise the nanocellulose properties; therefore, the hydrophobization could
allow for the incorporation of NC into packaging.Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 27 
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2. Chemical Modifications of Nanocellulose

Nanocellulose modification has been a subject of interest because it can allow to mitigate the water
sensitivity that strongly hinders the implementation of cellulose-based nanocomposites in various fields
of applications including food packaging. One major limitation to overcome lies in the poor compatibility
and affinity of the nanocellulose with most hydrophobic and synthetic polymers like polyolefins [27].
Nanocellulose is by nature a very hydrophilic and hygroscopic material due to adjacent polar groups
(-OH) linked by weak hydrogen bonds on the structure. Hence, the tendency of the nanocellulose to
aggregate makes difficult its use in nonpolar solvents and blending with synthetic matrix like polymers.
However, the abundance of reactive hydroxyl groups on the nanocellulose surface creates a wide spectrum
of opportunities for chemical functionalizations [28,29]. Furthermore, adsorption of chemical compounds
onto the cellulose nanocrystals surface can be either by “affinity” or by “electrostatic interaction” with
surfactants or positive charges [30]. Succinctly, the final scope of the NC modification would be that
of improving its dispersibility in water or solvents, providing high compatibility with hydrophic polymers
and improving gases and water barrier properties [31].

2.1. Nanocellulose Oxidation

Generally, carboxylated nanocellulose occurs when oxidizing agents such as TEMPO, APS, and others
are applied on cellulosic raw materials or uncharged nanocellulose (CNCs and CNFs) [16,32]. Oxidation
is mostly performed on the already-produced nanocellulose with a catalytic amount of TEMPO using
a secondary oxidant such as sodium hypochlorite or sodium chlorite during which the degree of substitution
of the oxidation is increased by the use of sodium bromide [32]. Contrarily to TEMPO, APS preparation is
usually performed on lignocellulosic raw materials during which simultaneous hydrolysis and oxidation
take place. The main advantage of using APS is the fact that not only it can be used on recalcitrant raw
materials with aromatic rings but it also contributes to bleaching the raw materials by providing white
suspensions at the end of the reaction. Both APS and TEMPO make possible the introduction of the
carboxylic groups on nanocellulose surface. In addition, aldehyde groups can also be found on the NC
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surface through the periodate oxidation by a selective cleavage of vicinal diols, in which the 2,3-diol
of glucopyranose ring of the cellulose breaks down. The oxidized CNCs produced with that approach
was used to improve the dry tensile index of 32.6% of the paper [33].

2.2. Esterification

The esterification of the cellulose nanocrystals has been extensively reported by many scientists.
Ester compounds are formed when a carboxylic acid or acyl halides react with an alcoholic group.
CNFs have been modified with oleic acid to graft esters groups on its surface to improve the compatibility
with PLA (polylactic acid). After the blending of PLA matrix and esterified CNFs, the mechanical
properties like tensile strength and Young’s modulus of nanocomposites were improved twice as
compared to the pure PLA films. In addition, the barrier to water vapor was also improved on PLA
blended with modified CNFs [34]. The first esterification of the CNCs has been implemented in situ in
a single step with HCl in presence of mixed acids such as acetic acid and butyric acid, and it resulted
that about half of hydroxyl was converted into esters at the end of the esterification [35]. De Castro et al.
performed an esterification by surface grafting of CNCs with natural antimicrobial rosin using a green
process called “sol-react” [36]. Similarly, acetylated CNCs have been prepared by using the acetic acid
catalyzed by citric acid [37]. More recently, an in situ esterification was successfully performed by
crystals interaction containing hydroxyl and carboxylate groups present on their surface. Several plastic
films were coated with those esterified CNCs, resulting in significant improvement in oxygen barrier
at 50% and 80% RH [38]. Esterified CNFs was also produced by the succinic anhydride esterification,
yielding a better thermal stability and higher transparency compared to the neat one [39].

2.3. Amidation

The mechanism of amidation is formed by the involvement of the carboxylic acid reacting with
a primary amine. The amidation of the carboxylated CNCs have been the first to be implemented by using
a combination of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide
(NHS) [40,41]. Cellulose nanocrystals have been modified by reacting citric acid-crosslinked CNCs with
chitosan to produce amidated CNCs. Nanostarch films used with the amidated CNCs showed 230%
tensile strength improvement and decrease of water vapor permeability and moisture absorption of 87.4%
and 25.6%, respectively [42]. Amidation has been performed also on CNFs through the reaction between
the N-hydroxysuccinimide-modified rhodamine B ester and nanofibers initially modified with amine
groups using 4-(Boc-aminomethyl)phenyl isothiocyanate [43].

2.4. Carbamination

The carbamination has been implemented to provide hydrophobic behavior to the cellulose
nanocrystals through a reaction between isocyanates and the hydroxyl groups of the cellulose
nanocrystals. For example, the toluene-2,4-diisocyanate (TDI) has been used to attach polymers
and molecules, and nonpolar isocyanates have been used to modify the nanocrystals properties [44].
Very recently, a work has been reported in which sisal cellulose nanocrystals were modified with
n-octadecyl isocyanate without any catalysts and the hydrophobization of the cellulose nanocrystals
by using isocyanates and grafting with phenyl isocyanates through TDI and trimethylamine in
catalyzed conditions [45].

2.5. Grafting “from” and Grafting “onto”

“Grafting onto” approach typically involves attachment of presynthesized polymer chains onto
nanocellulose surface by means of a coupling agent, whereas in “grafting from” approach, the polymer
chains are formed in the course of the grafting process by in situ surface-initiated polymerization
from immobilized initiators on the substrate. Both approaches have been used for polymers “grafting
onto” CNCs or CNFs surface [16]. As such, the “grafting onto” technique allowed developing malted
polypropylene-grafted cellulose nanofibrils. After the grafting, a significant reinforcement of the atactic
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polypropylene was observed while the layer of the grafted CNCs showed a significant decrease in
mechanical properties [46]. “Grafting from” can be divided in the graft polymerization, the ring
opening, and the radical polymerization. It has been reported a successful “grafting from” by grafting
the polycaprolactone onto CNCs surface mediated by a ring-opening polymerization with a subsequent
improvement in thermal stability and increase of hydrophobicity [47]. In another study, a cellulose-based
hydrogel, poly(acrylic acid)-modified poly(glycidylmethacrylate)-grafted nanocellulose (PAPGNC)
was synthesized by graft copolymerization reaction of glycidylmethacrylate onto nanocellulose in
the presence of ethylene glycol dimethacrylate as cross-linker followed by immobilization of poly(acrylic
acid). The results showed that PAPGNC was very efficient in adsorbing chicken egg white lysozyme
from aqueous solutions [48].

3. Nanocellulose and Food Packaging

Scientists and researchers have been working on the process of incorporating the nanocellulose
into the food packaging. As highlighted above, various ways of nanocellulose applications such as
coating, casting, and layer-by-layer (LbL) have been developed.

3.1. Layer-by-Layer (LbL) Assembly

LbL assembly has been long employed to deposit a very thin layer of functional substances
onto surfaces. Dispersions of cellulose nanocrystals are coated multiple times on solid substrates
(several layers) until reaching a sufficient thickness able to provide gas barrier properties, mechanical
properties, and wet-strength requirements [49,50]. Layers of multicomponent films can be coated on
polymers or papers to form a complex mosaic of multistructures to keep unblemished properties that
are useful for food packaging applications. It is worth mentioning that the electrostatic interaction
can be exploited by alternating polyanionic and polycationic NC layers to obtain denser and ultrathin
layers [51]. Polyaniline has been alternated with cellulose nanofibrils in an electrostatic layer-by-layer
deposition process to form thin nanocomposite films [52]. In search of creating barrier and active
packaging, several researchers have created LbL by interacting the nanocellulose with cationic
polyelectrolytes such as the chitosan [53], poly(ethyleneimine), poly(allylamine hydrochloride)
and poly(diallyldimethylammonium chloride) [54] or polyamidoamine wet-strength resin [55].
The combination of multiple layers shows high versatility for coating of end-use structures like
containers, trays, and bottles [56].

3.2. Nanocomposite Extrusion

Extrusion is a generic process in which raw materials are melted at a given temperature and formed into
a continuous profile to obtain a desired thickness. After, the molten matrix is then forced into a die, which
shapes the polymer or composite into a shape that hardens during cooling. However, the incorporation
of nanocellulose into plastic polymers is a challenge due to the lack of compatibility between both
materials [57]. Recently, nanocellulose has been used as filler for the mechanical reinforcement of adhesives
and polymers such as PLA taking advantage of the very high aspect ratio and specific surface area of the
nanocellulose [58]. Esterified CNCs grafted with organic acid chlorides have been used in extrusion
with low-density polyethylene. As a result, the mechanical properties like the elongation at break were
significantly improved [59]. Nanocellulose/montmorillonite (MTM) composite films have been prepared
from 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose nanofibrils (TOCNs) with
MTM nanoplatelets. The resulted composite films obtained were transparent and flexible exhibiting
ultrahigh mechanical and oxygen barrier properties [60].

3.3. Electrospinning

Electrospinning (ES) is a technique based on the electrostatic forces of the fiber to produce fibers up to
macrometric scale. The polymer or composite melt can be produced by heating from either resistance heating
or circulating fluids. In the past years, cellulose-based materials have been successfully electrospun [61].
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The alignment of the fibers that occurs during the ES, improves or changes the thermal/mechanical
properties and crystallinity of the electrospun structure.Polyethylene and polyvinyl alcohol have been
electrospun with the MFC and CNCs and the respective electrospun complex matrices displayed
higher compatibility and improved mechanical properties [62–65]. Very recently, electrospun matrix
processed by electrospinning coating between films of nanocellulose and polyhydroxyalkanoates was
shown to exhibit water resistance. Martínez reported the nanocomposites fully synthesized by bacteria
composed of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) matrices reinforced with bacterial cellulose
nanowhiskers (BCNW) by electrospinning technique and the nanocomposite obtained was highly dispersed
exhibiting a reduction in oxygen permeability without relevant modifications in mechanical performance [66].
Very recently, poly(vinyl alcohol) (PVA) and cellulose nanocrystals (CNCs) composites have been prepared
by the electrospinning method. After heat treatment at 170 ◦C for 2 h, composites showed a decrease
in tensile strength, an increase in tensile stiffness, and a decrease in strain to yield (%). That effect was
attributable to both cross-linking between -OH groups on PVA and esterification between vinyl groups
and CNCs [67].

3.4. Casting and Evaporation

Casting is a generic operation of evaporation of water or solvent from the NC at a controlled
temperature to obtain dried films of neat or modified NC. It is important to note that CNCs are brittle
compared to flexible CNFs; therefore, the addition of the plasticizers like sorbitol and glycerol can
mitigate the brittleness by reducing the capacity of the CNCs structure to form hydrogen bonds [55].
A nanocomposite material has been successfully obtained by the casting of a mixture formed of cellulose
nanocrystals and plasticized starch. The casting structure underwent a remarkable enhancement
of water resistance and mechanical properties such as tensile strength and Young’s modulus from 3.9 to
11.9 MPa and from 31.9 to 498.2 MPa, respectively [68]. Even though the casting is not commonly used
in packaging, Wang and coworkers recently created polypropylene laminates based on nanocellulose
(CNCs and CNFs) casting. Following the casting, CNCs films were found to be clearer and denser
(≈1.4 g/m2 vs. ≈1.1) than CNFs films given the same thickness [69].

4. Nanocellulose and Resins Barrier: Properties, Applications, and Market Trends

By virtue of high barrier performance, thermoplastic resins barrier such as the copolymer of ethyl
vinyl alcohol (EVOH), polyvinylidene chloride (PVDC), and aromatic polyamide (MXD6) have long
been used in end-use industries for food shelf-life extension by blocking small molecules of gases
such as CO2 and O2, water vapor and aroma. Compared to EVOH, PVDC exhibits a better barrier to
oxygen and water vapor in in humid and freezing conditions. However, as illustrated by the Figure 3,
the nanocellulose displays the highest oxygen barrier properties than both resins barrier, i.e., PVDC
and EVOH used today [70].
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Figure 3. Oxygen and water vapor resistance coefficients of the nanocellulose in comparison with
synthetic, bioplastics, and bio-based structures with KPO2 and KPW2O expressed in cm3 µmPa−1

day−1 m−2 and cm3 day−1 m−1 Pa−1, respectively (modified) [70].

Even though, EVOH is a moisture-sensitive material, manufacturers have been focused their
attention on its production because it creates less environmental concerns with respect to PVDC
and aluminum foils. To this regard, EVOH has a more closely similar behavior to nanocellulose
(Figure 4); their gas barrier properties are compromised when exposed to high relative humidity due
to the plasticization mechanism, which leads to an increase in the distance between neighboring chains
(free volume) through the swelling of hydroxyl groups present in both structures [70–72]. Figure 4 also
shows that the oxygen barrier of the CNCs is maintained up to almost 40% RH (KPO2 ≈ 0), however,
after that, there is a sharp increase in O2 permeation, whereas the EVOH that behaves even similarly
has a slightly higher but constant oxygen permeability from 0% to 50% RH, which then increases
considerably as the RH increases.
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Figure 4. Effect of relative humidity on oxygen permeability coefficients of ethyl vinyl alcohol (EVOH)
films (left) and cellulose nanocrystals (CNCs) films (right), (modified) [73,74].

EVOH is a thermoplastic material that can be coextruded, coated and laminated in multilayered
structures while a neat NC is not a thermoplastic one; therefore, it must be used in combination with
thermoplastics to make their application possible in packaging. The lamination is a technique that
has allowed alleviating the water sensitivity of the EVOH and made possible their use in flexible



Nanomaterials 2020, 10, 1726 9 of 26

packaging materials; hence, the same strategy can also be adopted for the NC applications. That being
said, it becomes clear that the NC can share of a part of the market of the resin barriers such as EVOH
and PVDC used in various packaging applications including for example polyethylene (PE), oriented
polyethylene terephthalate (OPET), polyamide (PA), oriented polypropylene (OPP) (Table 1). NC can
also replace the EVOH that has recently been explored and proven to be effective as barrier layer to
oil-saturated hydrocarbon (MOSH) and mineral oil aromatic hydrocarbons (MOAHs) [75].

Table 1. Packaging based on ethyl vinyl alcohol (EVOH) for food applications (adapted) [76].

Structures Requirements Applications

PE/paper/tie/EVOH/sealant Gas and flavor barrier, pinhole resistance Juices, jam, snacks
PE/paper/tie/EVOH/tie/EVOH Gas and flavor barrier, pinhole resistance Juices, soups

PA/EVOH/PE Gas and flavor barrier Jam, raw meat
OPET/tie/EVOH/tie/sealant Gas barrier, transparency Snacks, lid stock

OPP/tie/EVOH/sealant Gas and flavor barrier, water barrier Snacks, spices, jam, rice paste

Prior to initiating any packaging manufacturing based on the NC, the productive capacity
of the nanocellulose has to be guaranteed. According to Research and Markets (2019), the PVDC whose
world production was 242 kt in 2014, compared to 142 kt of EVOH, has remained the leading technology
in the world global resin barrier market even in 2019. The global EVOH market is expected to reach
1123.3 million USD by the end of 2026 (Research and Markets, 2019). By comparison, according to
TAPPI (2018), the world global market of the nanocellulose is estimated to be 13,000 tons and projected
to reach about 150,000 tons by 2045 (Nanocellulose Market Forecasts, 2017). From the 2015 TAPPI
report, the nanocellulose market was around $250 million in 2014, with projected growth of 19% to
2019 (Table 2, Table 3, and Table 4).

Table 2. World production of cellulose nanofibrils, 2018 (per producer).

Producers Process Capacity (tons/year)

Asia Modified hydrophobic, oblique collision, TEMPO, phosphate esterification, aqueous counter collision 754
Europe Chemical, enzymatic 10

UK Chemical pretreatment 100
USA TEMPO, SO2 fractionation, chemical 391

Table 3. World production of microfibrillated cellulose, 2018 (per producer).

Producers Process Capacity (tons/year)

Asia High-pressure homogenizer, TEMPO 200
Europe Enzymatic, chemical, and mechanical 1635

UK Mechanical and minerals 8800
America Mechanical 25

Table 4. World production of cellulose nanocrystals, 2018 (per producer).

Producers Process Capacity (tons/year)

Asia Unmodified and modified, proprietary Pilot
Europe Enzymatic, chemical hydrolysis 35

America SO2 fractionation, reactive extrusion 130
Canada Sulfuric acid hydrolysis, catalytic conversion 267

5. Why Focus on Nanocellulose Coatings?

In this review, attention has been given to nanocellulose coatings for various valid reasons. First, it
can be seen that despite extensive research through many published works, written books, and conferences
about the nanocellulose, its implementation in food packaging has not taken off. According to Directive
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(EU) 2018/852 of the European Parliament and of the Council of 30 May 2018 amending Directive
94/62/EC on packaging and packaging waste, packaging manufacturers and operators should implement
a waste management to be transformed into sustainable material management and a political and societal
incentive should promote recovery and recycling as a sustainable way to handle natural resources
within circular economy. Among different applications of nanocellulose described above, the coating
technique appears to be the most promising and sustainable approach to accelerate the incorporation
of nanocellulose into packaging industries. The casting technique could be an interesting approach to
improve both mechanical and gas barrier properties of the nanocellulose; however, it is a complex
operation to manage on the industrial scale of packaging manufacturing. In addition, the large amount
of nanocellulose required for casting applications could make the choice less economically viable for
manufacturers [69]. The coating is a well-known and developed technique which has long been used
to cover functional surface in packaging for coating papers and polymers. Therefore, the emphasis
placed on the coating can be justified by the fact that its application that can be rapidly extended to
the industrial level taking account the low investment costs for its implementation. Furthermore, due
to the lack of heat-sealability capacity, the nanocellulose must be used in association with thermoplastic
polymers to manufacture a new packaging material. The most important advantages of the coating are
the uniformity, preservation, and continuity of the crystalline lattice of the CNCs layer. Therefore, as
indicated in Figure 5, works on NC applications revealed that the coating could provide the substrate
with 5 types of barrier requirements such water molecules (liquid and gas), oxygen, carbon dioxide,
volatile compounds (MOAH and MOSH), and grease properties useful for food packaging [77,78].
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Other researchers have shown that the nanocellulose coatings may also be used in combination with
other matrices to create active packaging. Missio and coworkers have produced nanocellulose-tannin
films that have improved gas barrier properties in humid conditions and antioxidant properties
upon water soaking [79]. Antimicrobial activity of about 98.8% reduction in CFU of Saccharomyces
cerevisiae, Gram-negative bacteria Escherichia coli, and Gram-positive bacteria Staphylococcus aureus
has been made possible by nanocomposites including CNCs, titanium, and wheat gluten [80].
Lavoine and collaborators have implemented new release systems for active packaging based on
the microfibrillated cellulose-coated paper [81]. In a more recent work, coatings based on MFC
and nisin have been incorporated with the biaxially oriented polypropylene/low density polyethylene
(BOPP/LDPE) laminates to create an antimicrobial packaging. As a result, the coated laminates showed
better oxygen barrier compared to the uncoated ones (24.02 vs. 67.03) and exhibited antimicrobial
properties, with a growth inhibition of L. monocytogenes by 94% [82]. From this global research effort,
a new door is opened, that of using a safe and more sustainable material like the NC in replacement
with the resins gas barrier currently used in food packaging.
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6. Optimization of NC Coatings for Packaging Applications

When it comes to nanocellulose coatings and its adhesion with the substrate, some important
factors such as (1) type of the nanocellulose, (2) neat or modified nanocellulose, (3) type of substrate,
(4) type of surface treatment, (5) type of coating process, and (6) coverage and thickness of the coating
can be considered (Figure 6). After the coating with the nanocellulose, the gas barrier of the coated
material improves significantly. However, the preparation and coating phases of the nanocellulose
are very critical operations, since any lack of precision leads to a sharp increase in the permeation
of the gases through the coated material. This chapter focuses exhaustively on the most important
precautionary measures to consider for the optimization of the NC coatings.
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6.1. NC Redispersion

To reach their end-use destination, NC suspensions should be dried to make their shipping
and transportation practical and sustainable. The form of dried NC represents a critical factor for coating
applications because their complete redispersion requires a particular attention. That being said, NC can
be commercialized in various forms: never-dried suspensions, freeze-dried, oven-dried, spray-dried,
and supercritically dried. Importantly, the dried NC should be kept at low temperature and humidity
while the wet NC should be kept in the refrigerator at 4 ◦C. Drying NC has an important relevance on
the organization, morphology, conformation, and crystallinity [83]. Spray-drying technique is more
employed on an industrial level because it is more practical and sustainable in terms of time and costs
of the operation. On the other hand, freeze-drying creates flake-like and iridescent CNCs bundles
and hence, the complete breakdown of their aggregates is a complex and energy-consuming operation
including sonication and handheld homogenization to obtain a complete NC redispersion. In the same
way, a protocol proposed by Beck et al. for the redispersion of spray-dried CNCs must be scrupulously
followed [84]. For brevity, it is highly recommended to put the CNCs in water (small amount added
gradually) and possibly in presence of sodium chloride or polyethylene glycol in conditions of vigorous



Nanomaterials 2020, 10, 1726 12 of 26

stirring for at least 1 h for favoring a complete redispersion of all the CNCs aggregates. After, it can be
followed by 10–20 kJ sonication energy per gram of CNCs [85]. The temperature of the dispersion
must be controlled during the sonication in an ice bath not exceeding about 50–60 ◦C [55].

Due to the greater entanglement, MFC/CNFs are not commonly dried because their redispersion
is complex and energetic. However, a successful redispersion of dried carboxymethylated CNFs
and mixture of CNFs and carboxymethyl cellulose in water has been reported [86]. Missoum et al. used
an inorganic salt like the sodium chlorite to block hydrogen bonding formed during the MFC/CNFs
freeze-drying and thus avoiding the hornification of the structure and facilitating the redispersion
in water [87].

6.2. NC Surface Chemistry

CNCs surface charges have to be considered because not only they dictate the redispersibility
of the NC but they also affect the adhesion with the substrate to be coated (i.e., papers and plastics).
CNCs obtained by HCl hydrolysis do not contain charges on their surface; therefore, the pH adjustment
is not necessary. Moreover, CNCs-HCl are not suitable for coating because they are less redispersible
even with intense sonication due to van der Waals interactions and hydrogen bonding present [18].
The other types of CNCs and CNFs suspensions are pH dependent due to protonation and deprotonation
of their charges and consequently, their pH must be adjusted before the coating for obtaining better
adhesion with the substrate. More specifically, the pH of carboxylated NC suspension should be 6–8,
whereas that of CNCs with sulfate half ester groups should be >4.3 and neat MFC/CNFs could have
a pH < 12.3 [74,88].

6.3. NC Concentration

The rheological properties of the NC suspensions dictate the concentration to choose for coating.
The viscosity of the suspension strongly depends on type of extraction and type of the cellulosic
raw material. To illustrate that, at the same concentration and extraction type, CNCs obtained from
wood pulp exhibit higher viscosity with respect to CNCs obtained from cotton linters and oxidized
CNCs (APS, TEMPO, etc.) show lower viscosity compared with uncharged CNCs (HCl). For coating
deposition, the concentration between 6 and 8 wt% of CNCs slurry has been adopted in many
works [38,78]. As a rule of thumb, a lower concentration requires several CNCs layers until it reaches
the necessary thickness for a complete coverage of the material, whereas a much higher concentration
causes the brittleness of the CNCs coating after drying. However, to mitigate the CNCs brittleness,
plasticizers such as the sorbitol and glycerol have been employed. On the other hand, MFC/CNFs
have a higher tendency for gel formation at low consistency; therefore, the highest concentration for
MFC/CNFs coating should be 3 wt% and more than a layer would be needed for a complete coverage
of the substrate. Due to differences in features like size, morphology, aspect ratio, surface chemistry,
and affinity with the substrates, the growth of CNCs and MFC/CNFs layer is not similar during
the deposition of multiple depositions. For CNCs deposition, the thickness increment per bilayer was
found between 2 and 39 nm, whereas for CNFs, below 20 bilayers deposited, the thickness growth was
found between 2 and 12 nm depending on the type of coating and the substrate to be coated [89,90].

6.4. Coating Process and Storage of Coated Materials

Due to the hydrophilic character of the NC, substrates to be coated must be subjected to corona,
plasma, and UV treatment for increasing their surface energy and adhesion with the aqueous NC
suspension. The intensity of the treatment (power and time) to be set depends on the initial hydrophobicity
of the substrate, which can be known from the evaluation of the water contact angle noting that a high
hydrophobic material requires an intense treatment. Following coating, the coated plastic films are
suspended and dried under lower humidity and temperature conditions (30 ◦C/50% RH) for about
48 h. The coating technique has been demonstrated to play an important role in the obtainment of a
certain thickness and weight of the nanocellulose layer on the substrate. Coating techniques such as
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bar/rod coating, size press, and spray have been widely used to coat the nanocellulose suspension even
in multilayer structures. Actually, a bar coating deposit weigh of 1 g/m2 of the CNCs in a single layer
application and a thickness of 1 µm were employed [38]. It was also reported that for bar coating,
the number of layers is proportionally linked to the thickness. As a matter of fact, 5- and 10-layer coating
of slurry of MFC at 2% provide weights of 6–7 and 14 g/m2, respectively. On the contrary, the press
coating was shown to be not really effective to obtain higher thickness [63,91]. In fact, after 5-layer
coating of 3.5–10% of MFC on bleach paper, the weight was only 2–8 g/m2 because of the pressure applied
by the rolls during the coating [81]. It is also important to note that the drying of the coating has been
reported to influence the layer thickness. For instance, it was shown that contact drying is very often
used for coated plastic films, whereas IR drying is more suitable for coated papers [92]. Koppolu et al.
successfully used the roll-to-roll coating technique with noncontact infrared drying and air drying to
coat CNF onto paper at speeds of 30 m/min [93]. In another work, it has been shown that by increasing
the rod metering speed and the drying temperature, the thickness and the weight of the coating decrease;
in addition, it has also been reported that the WVTR of polymer dispersion coatings decreases with
the increase of the drying temperature of the coating [94,95].

7. Practical Solutions for the Protection of NC Coatings

Nowadays, an ideal food packaging must meet all the requirements of food safety and comply
with environmental concerns concomitantly. One of the strategies to implement a food package that
encompasses all consumer needs is to resort to eco-friendly laminates that combine multiple layers
of materials with different functions in terms of gas/oil/water/aroma barrier and mechanical properties.

Nanocellulose-based coatings have been demonstrated to be very effective in the improvement
of gas barrier properties of papers and plastic films. Improvements of gas barrier properties of plastics
and papers containing cellulose nanomaterials as components have been widely proven in many
works [44,96]. On the other hand, Fotie et al. have shown that the excellent gas barrier is obtained under
dried conditions but can be completely lost in higher relative humidity (RH) and therefore, inappropriate
for food packaging [74]. Several attempts of chemical modifications to provide hydrophobic nature to
the nanocellulose have been partly discussed in this review. Yan et al. successfully produced hydrophobic
microfibrillated cellulose using alkyl ketene dimer (AKD). MFC was solvent exchanged by ethanol
and ethyl acetate and mixed with AKD in the same solvent at 130 ◦C for 20 h, and the water contact
measured on hydrophobic MFC pellets was higher than 100◦ [83]. Even though, the hydrophobization
of the nanocellulose seems to increase its hydro repellent properties, it can be noted that it does not always
improve gas barrier properties. In this respect, one of the best ways of implementing nanocellulose
coatings, which exhibit both water vapor and gases (O2 and CO2) barrier, required in food packaging
should be a double-layer coating having as first layer (confined) pure nanocellulose for gas barrier
and as second layer (exposed), hydrophobic nanocellulose or other water-repellent material (very thin
aluminum layer) for water vapor barrier (Figure 7). Österberg and coworkers obtained a water-resistant
multilayered structure based on CNFs and wax coatings having the wax layer as an outer layer to
insulate the CNFs layer against the humid ambient [96]. Acetylated microfibrillated cellulose with
high hydrophobic behavior has been produced without modifying the morphology and the tensile
strength of the structure [97]. Yang also achieved superhydrophobic cellulose nanocrystals having
a water contact angle of 150◦ by acrylamide grafting [98]. A water-resistant cast-coated paper has been
created with CNFs/PLA composites, which has lower WVTR (34 g/(m2day) compared to the control
value (1315 g/(m2day) at 38 ◦C/90% RH [99]. In 2011, Korhonen prepared by freeze-drying highly porous
nanocellulose aerogels from microfibrillated cellulose and by functionalizing with titanium dioxide;
the matrix obtained was oil absorbing and capable of floating on water [100]. Kisonen set up a very
hydrophobic CNFs films after they were coated with alkylsuccinic esters of the hemicellulose [101].
A hydrophobic CNFs has been implemented through a very easy approach. In that work, CNFs films were
coated with a silicone filament by polycondensation to introduce reactive vinyl groups for a UV-induced
functionalization with perfluoroalkyl thiols [102]. In view of the first approach, the biocomposite (coated
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material) can be created in combination with a sealable biopolymer like PLA film creating a compostable
packaging or with sealable synthetic polymers like PE and PP creating bio-based packaging as well.
This approach is worth experimenting because it appears feasible and realistic since the package can be
fabricated and sealed with ease (Figure 7).
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8. Lamination of Coated Materials

Technically, the implementation of the nanocellulose coating can be swift with the fabrication
of multilayer structures in which the coatings are confined between laminated hydro repellent polymers
like PE, PET, and PP (Figure 8). The hydrophobization of the nanocellulose might be irrelevant in this
case if the water barrier is actually provided by synthetic polymers. The advantage of such strategies
is that it is possible to coat the polymer with neat nanocellulose and subsequently, laminate it to
obtain a bio-based packaging like PET/NC/PE, or PET/NC/PP and PE/NC/PE can be manufactured on
the industrial scale where coating and lamination have long been used. Furthermore, it might be possible
to create fully compostable laminates structured, e.g., of cellophane/aluminum/nanocellulose/PLA
respecting the thickness requirement of the aluminum [103].
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Such strategies have been successfully implemented by setting up bio-based and fully compostable
laminates based on the cellulose nanocrystals. Very recently, it has been shown that through lamination,
it was possible to create multilayer materials based on NC layers. Fully compostable laminates
structured of CNCs layer, cellophane and metalized aluminum (<1 µm), and PLA showed fourfold
superior gas barrier properties (O2 and CO2) with respect to synthetic laminates composed of EVOH
layer, PE, and PET at 40 ◦C and 35% RH [104]. Wang et al. used such approach to mitigate
the water sensitivity of casted CNCs and CNFs films whose thickness was 36 and 39 µm, respectively.
After the lamination of the casted nanocellulose films with the polypropylene film and polyurethane
adhesive, the water vapor transmission rate dropped from 516 to 1 g/(m2day) as well as the oxygen
transmission rate dropped from 126 to 6.1 cm3/(m2.day.bar) at 80% RH [69]. In another study, similar
strategy has been adopted for an immediate and swift application of the nanocellulose in packaging
even in higher RH (50–80%) by resorting to lamination. As a result, the oxygen permeability performed
on the laminates based on CNCs coatings was null at 80% RH [38].

9. Nanocellulose in Food Packaging Applications: MFC/CNFs or CNCs?

Food packaging manufacturers have been reluctant in the past years to incorporate the nanocellulose
in their products. Therefore, they need to build up a certain guarantee based on reliable information
and to be reassured about the successful implementation of the nanocellulose in food packaging.



Nanomaterials 2020, 10, 1726 15 of 26

9.1. Yield and Performance

In terms of physical and chemical features, CNCs and MFC/CNFs are different as shown above
(introduction). However, they can exhibit similar performance; in particular, as a barrier to gases, grease,
or aroma or if used in combination with other compounds, they can allow to create an active packaging.
Based on the raw materials and the type of process adopted for the extraction, CNCs yield varies from
50% to 65%, whereas that of MFC is about 90% [14,105–109]. As pointed out, the coating approach
seems much closer to the manufacturing of the nanocellulose-based packaging on an industrial scale.
The coating of the concentration of CNCs slurry can even reach 10%, whereas that of the MFC/CNFs
cannot exceed 3% because they have a different viscosity and rheological properties. To demonstrate
similar performance, the thickness of coating layer of the CNCs can be less than 1 µm while that of the
MFC must be at least 2–3 µm [78,110,111]. Although still under discussion, MFC has been shown to
exhibit a better oxygen barrier than CNCs. However, although the MFC yield is much higher, more
quantity in needed to offer the same barrier performance. In contrast, by comparing castings of the
same grammage (g/m2) based on CNCs and CNFs/MFC extracted from softwood kraft pulp, Wang et
al. revealed that laminates including MFC casting exhibited better oxygen barrier properties while
those including CNCs casting showed higher transparency. In addition, the castings thickness of the
laminates was between 14 and 39 µm corresponding to 20.5 and 50.1 g/m2, respectively. It is important
to note that a much higher NC thickness displays a higher swelling capacity if exposed under humid
conditions and as a result, the gas barrier properties will be compromised. In terms of comparison
of optical properties either in coating or castings, materials (plastics and papers) including CNCs are
more transparent than those containing MFC/CNFs. In several works, the mechanical properties of both
materials have been studied. MFC/CNFs castings showed higher mechanical properties with respect
to CNCs ones whose structure is more brittle [69]. Furthermore, multilayer laminates including thicker
nanocellulose castings exhibit higher tensile properties than the thinner ones. The WVTR is high in
coating and casting of the nanocellulose, hence, the protection of the NC layer through the lamination
is needed. A notable advantage was given by a very low oxygen permeability of CNF-coated paper
at 0% and 40% RH due to inter- and intrahydrogen bonds between the -OH group fibrils and chains
of individual microfibrils and high adhesion between the paper and the CNFs chains. The layer
thickness was 5 g/m2; however, that oxygen barrier dropped dramatically at 65–80% RH due to
the CNFs sensitivity to humidity. The air permeability of the coated paper decreased significantly with
an MFC coating in agreement with the oil barrier properties it showed [112].

9.2. Regulations about CNCs and MFC/CNFs

Cellulose-based materials have generally been safe for food packaging applications. However, when it
comes to nanomaterials (NMs), particular regulations have to be respected. According to EU Recommendation
2011/696, NMs are intended as a natural, incidental, or manufactured material containing particles, in
an unbound state or as an aggregate or as an agglomerate and where, for 50% or more of the particles
in the number size distribution, one or more external dimensions is in the size range of 1–100 nm [113].
Even though the cellulose nanomaterials (CNMs) are of significant scientific research and economic
interest, it remains that the European commission has not yet authorized them as food contact materials
(FCMs). In 2011, the European commission established that the manufacturing of FCMs “substances in
nanoform should be used only if explicitly authorized” [114]. As such, it has to be acknowledged that
there is a set of inorganic nanomaterials (i.e., titanium nitride, zinc oxide, and silicone dioxide) that has
already been approved by EFSA and currently used as FCMs [115].

The reason is that there are doubts and voids of knowledge about the nanoparticles impact on
the human health. Recent investigations on the harmonization of the analytical approaches and risk
assessment of the nanoparticles have been carried out. A recent work demonstrated that cellulose
nanoparticles have always been part of our daily intake. The findings provided further necessary
and preliminary information/data to the EFSA for the approval of the cellulose nanoparticles as
FCMs [116]. Although studies have shown that, for 10 nm diameter particles, an apparent diffusion



Nanomaterials 2020, 10, 1726 16 of 26

coefficient (D) of 1.1 × 10−35 cm2 s−1 theoretically calculated in a LDPE host matrix exhibits a benign
risk of inadvertent migration [117], it remains that the same investigation has to be performed
specifically on CNCs to confirm those results. Consequently, when it comes to decide which of CNCs
and MFC/CNFs should be incorporated into food packaging, it becomes clear that according to
the existing EU regulation, for immediate use as food contact materials, only MFC can be used for
European food packaging.

9.3. Processability Performance and Production Costs

It is important to consider the aspect of processability, energy consumption, and efficiency when
it comes to packaging manufacturing. The paradigm shift from synthetic polymers containing EVOH
or PVDC to polymers containing the nanocellulose requires further investments. An immediately
complete replacement of barrier resins (EVOH and PVDC) is not possible for various reasons including
higher production cost of the nanocellulose and insufficient production to cover all the demand
of EVOH and PVDC packaging market. However, the cost of manufacturing of packaging-based NC
can be alleviated as the same coaters and laminators actually used for packaging manufacturing can be
used. It probably needs more machines but the processing line may remain the same as that of some
types of applications with barrier resins (EVOH and PVDC). It is evident that casting requires a much
bigger consumption of the nanocellulose compared to the nanocellulose coating whose thickness can be
between 1 and 3 µm [62,65]. More importantly, when comparing CNCs and MFC rheological properties,
the MFC suspension exhibits much higher viscosity compared to CNCs suspension. Actually, about
1 µm layer of CNCs coated at 6 wt% displayed the required performance [65]. To obtain similar
performance, more than an MFC layer will be required to obtain the ideal thickness because it is
very difficult to handle more than 3 wt% of MFC slurry (too viscous) for coating. As a result, in
terms of energy consumption and production, CNCs coating will be more sustainable than that
of MFC. There is a little information about the production cost and the price of the nanocellulose.
However, few researchers have evaluated the costs of the CNF production in relation with the type
of the pretreatments. For the same raw materials, the most expensive CNFs were TEMPO-CNF
(205.73 €/kg) and the cheapest CNFs were those obtained from mechanical pretreatment (2.25 €/kg)
followed by acid-CNF (7.33 €/kg) and enzymatic-CNF (13.66 €/kg) [118]. The cost of conventional
CNCs production stage (sulfuric acid) was found to be 1.54 $/kg, whereas by using a water subcritical
treatment, the cost could have dropped to 0.02 $/kg [119]. Strategies of containing the cost of production
of the CNCs from wood pulp have been investigated. A recent work showed that, to reduce the cost
of production of the CNCs, it is necessary to optimize and make efficient the step of dissolving pulp
since the price of the lime and the sulfuric acid is almost constant over the years [120]. Even though
the price of the nanocellulose is usually around 4–10 $/kg, trends of the price in relation with the type
of the NC can be observed from a recent study [121]. On one hand, the price of the MFC/CNFs
can be predicted to be lower than that of CNCs. On the other hand, even though steps such as
fractioning, refining, and high-pressure homogenizing to produce the MFC/CNFs require high energy
to break down fibers into fibrils, the production and yield are much higher with respect to CNCs. Both
CNCs and MFC/CNFs can be commercialized in various forms including freeze-dried, never-dried,
oven-dried, spray-dried, and supercritically dried.

9.4. Biodegradability and Safety

Several scientific works have proven the biodegradability of the nanocellulose. Coma et al.
conducted the first study of the biodegradability of the nanocellulose used as a reinforcer in
the polymers, and according to their findings, the complex matrix evaluated was biodegradable.
Although the nanocellulose is a very tiny and small particle, its biodegradability is not compromised.
In fact, they reported that the nanoparticles from cellulose and starch were even rapidly degraded
than their macroscopic counterparts. It is strong evidence that the nanocellulose incorporated into
the packaging can be easily recyclable [122,123]. Nanomaterials have recently drawn the attention of the
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scientific community to their possible adverse effects on health, and for that, their safety has extensively
been evaluated accordingly. Some researchers of the field have evaluated potential cytotoxicity,
genotoxicity, and ecotoxicity of the nanomaterials. Nanomaterials properties differ from their parent
bulk materials because of their smaller size, different morphology, and larger surface area resulting
in their ability to cross natural barriers including electronic and plasmonic effects. Pure cellulose
cellulose-based foods additives (i.e., carboxymethyl cellulose and microcrystalline cellulose) are
generally known as a safe and nontoxic food substance. CNCs have been assessed by the potential
environmental risks of the carboxymethyl cellulose and cellulose nanoparticles, and according to
their findings, the toxicity potential and environmental risk of both cellulose-based materials are
negligible [124]. Moreira and coworkers tested the potential genotoxicity of bacterial cellulose on
fibrous nanoparticles through in vitro analysis and other techniques and no genotoxic effects were
found [125]. Vartiainen found no inflammatory effects or cytotoxic on mouse and human macrophages
after being exposed for 6 and 24 h to nanocellulose [126]. DeLoid et al. employed in vitro approach
to assess the effects of a 24 h incubation with tract simulator-digested CNFs and CNCs at 0.75%
and 1.5% w/w on the cytotoxicity, cell layer integrity and oxidative stress through a triculture of small
intestinal epithelium. According to their findings, no significant changes in cytotoxicity, reactive oxygen
and monolayer integrity was observed. In addition, in vivo toxicity performed on rats gavaged with 1%
w/w CNFs suspensions showed no significant differences in hematology, serum markers, or histology
between controls and rats given CNFs [127]. Functionalized nanocellulose (carboxylated) has been
reported as nontoxic substances. It was assessed by using standard ecotoxicological and mammalian
test protocols and have, to date, been shown to be practically nontoxic in each of the individual
tests [128]. In addition, CNCs have recently obtained regulatory approval under Canada’s New
Substances Notification Regulations (NSNR, 2012) for unrestricted commercialization and use in
Canada. Recently, Environment Canada has also partnered with the National Research Council
and academic laboratories of Canada to initiate a project on the development and support of test
methods to characterize nanomaterials for the purposes of regulatory identification and to support
risk assessments.

10. Summary and Conclusions

Table 5 reports various ways of utilization of the cellulose nanocrystals (CNCs) and cellulose
micro/nano fibrils (MFC/CNFs) for packaging requirements. As indicated, below 40% of relative
humidity (RH), the coating and the casting of the nanocellulose can offer an outstanding barrier to gases,
MOSH, and MOAHs. However, relative humidity superior to 40% compromises the initial properties
of the nanocellulose; hence, it is necessary to resort to effective solutions including hydrophobic NC
and/or lamination to protect its layer against the humid surroundings.

Table 6 highlights some of the recent works about the techniques adopted for the nanocellulose
applications in food packaging. The casting/coating of the nanocellulose used in combination with
the lamination seems very effective in mitigating the effect of the humidity even at 80% RH.
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Table 5. Nanocellulose applications for packaging requirements.

Packaging Requirements
ONLY

Coating
(i.e., LbL)

ONLY
Casting Coating and Laminating Casting and Laminating Extrusion-ES

O2 and CO2 barrier 0% RH +++ +++ +++ +++ +
>40% RH + + +++ +++ -

Water vapor barrier − + +++ +++ +
Grease barrier +++ +++ +++ +++ ++
MOSH and MOAHs barrier +++ +++ +++ +++ +
Antimicrobial activity +++ +/- +/- +/- +/-
Mechanical and thermal properties +/- +++ +/- +++ +++

Transparency CNCs +++ + +++ +/- -
MFC/CNFs + +/- +/- - -

Regulation requirements CNCs - - - - -
MFC/CNFs ++ ++ ++ ++ ++

Low production cost
and less time consuming

CNCs +++ + +++ +/- -
MFC/CNFs ++ + ++ +/- -
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Table 6. Coated nanocellulose (NC) and laminated (*), casted NC and laminated (**); cellulose nanocrystals-ammonium persulfate (CNCs-APS) (A); CNCs-H2SO4 (B);
90% RH and 38 ◦C (S).

NC Type NC Thickness Conditions KPO2
[cm3 µm/(kPam2day)]

WVTR
(g/(daym2) References

CNCs

PET-coating
PET-CNCs A 1 50% RH, 23 ◦C 0.36 [38]

PET-CNCs B

PLA-CNCsB
1
1

50% RH, 23 ◦C
50% RH, 23 ◦C

0.55
1.13 [38]

Laminating (*)

PET/CNCs A/Tie/PE
PET/CNCs B/Tie/PE

1
1

80% RH, 23 ◦C
80% RH, 23 ◦C

0.0006
0.0025

[38]
[38]

Cellophane/metalized aluminum (<1 µm)/tie/CNCs B/Tie//PLA 1 35% RH, 23 ◦C 0.0047 6.31 S [104]

Casting CNCs B 36 20 452 S [69]

Laminating (**) BOPP/tie/CNCs/tie/BOPP 36 80% RH, 23 ◦C 10.4 0.9 S [69]

MFC/MFC

PLA-coating
MFC

MFC-TEMPO 0.1
0.4

0% RH, 23 ◦C
50% RH, 23 ◦C

1.33
18 [129]

Casting
MFC 37.7

39
50% RH, 23 ◦C
80% RH, 23 ◦C

<0.011
11.4 407.6 S [130]

[71]

MFC-TEMPO
23.3
3.19
3.19

0% RH, 23 ◦C
0% RH, 23 ◦C
50% RH, 23 ◦C

<0.007
0.0006

0.85

[130]
[112]
[112]

Laminating (**) BOPP/tie/MFC/tie/BOPP 80% RH, 23 ◦C 42.2 0.8 S [69]
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In conclusion, food packaging operators could successfully manufacture food packaging materials
based on nanocellulose coatings on an industrial scale taking into consideration these suggested
relevant guidelines:

(1) MFC and CNFs can be regarded as an effective and competitive alternative to packaging including
resins barrier like EVOH and PVDC.

(2) Nanocellulose coatings of plastic film/papers and castings can be used for barrier to MOSH
and MOAHs, gases, and oil; however, the coating technique seems more practical and sustainable
for food packaging manufacturing on an industrial level.

(3) The hydrophobic nanocellulose seems not to be effective in blocking the water vapor in standard
conditions (90% and 38 ◦C).

(4) Until now, the nanocellulose has not yet been made heat sealable; therefore, it must be used in
combination with thermoplastic films or sealant layers to create packaging materials.

(5) If the packaging is made for the storage of oil or dry products (aw < 0.4) with a high content of fatty
acids food in dry environment, the coating of the nanocellulose may not require any protection.

(6) If the one between the product to be conserved and the storage environment is humid (>40%
RH), hydrophobic nanocellulose coatings or neat nanocellulose confined in multilayer structures
are needed to preserve the integrity of the NC in humid conditions.

(7) It is possible to implement fully compostable and bio-based multilayer’s packaging incorporating
the neat nanocellulose; in addition, the bio-based laminates may include hydrorepellent films
such as the PP, PE, or OPP to protect the coatings from the humidity.

(8) Castings and coatings of CNCs are clearer and more transparent than those based on MFC.
(9) On the one hand, certain modified nanocelluloses may not be suitable for food packaging

applications if the chemical modification makes the NC less biodegradable/nonbiodegradable or
if the modifications are implemented with unhealthy, toxic, or dangerous chemical compounds.

(10) Although the CNCs coating appears more practicable than MFC one, only the latter is currently
approved by EFSA and therefore can be used in food contact materials for the European Union
packaging market.
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