

Green Preparation of Fluorescent Nitrogen-Doped Carbon Quantum Dots for Sensitive Detection of Oxytetracycline in Environmental Samples

Rong Gao ^{12,†}, Zhibin Wu ^{1,2,†}, Li Wang ², Jiao Liu ², Yijun Deng ², Zhihua Xiao ², Jun Fang ^{1,2,*} and Yunshan Liang ^{1,2,*}

- ¹ Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; gaorong0130@163.com (R.G.); wzbaaa11@hunau.edu.cn (Z.W.)
- ² Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; wliiris1024@163.com (L.W.); liujiao913@163.com (J.L.); dengyijun9910@163.com (Y.D.); xiaozhihua@hunau.edu.cn (Z.X.)
- * Correspondence: fangjun1973@hunau.edu.cn (J.F.); lyss3399@126.com (Y.L.); Tel.: +86-731-8461-3600 (J.F.)
- ⁺ These authors contributed equally to this work.

Selectivity

We verified the good selectivity of the two fluorescent probes with three similar structural tetracycline antibiotics (tetracycline, doxycycline, and oxytetracycline) [1,2]. Fluorescence quenching reaction between N-CQDs and metal ions and organics in several environments was observed. Figure S6a showed that the fluorescence intensity of ON-CQDs was not greatly affected, while Figure S6b showed that the fluorescence quenching of WN-CQDs occurred. In contrast, oxytetracycline (OTC) addition resulted in a significant quenching of the original fluorescence intensity. Tetracycline and doxycycline showed small changes compared with OTC. This indicates that among these metal ions and antibiotics, N-CQDS has a strong absorbance spectral response to OTC [2].

HCI

Figure S1. The chemical structure of OTC.

Figure S2. Fluorescence performance of ON-CQDs (black) and WN-CQDs (red) at various pH values.

Figure S3. Effect of buffer solution volume on fluorescence intensity of N-CQDs: (a) ON-CQDs; (b) WN-CQDs.

Figure S4. Effect of reagent adding sequence on fluorescence intensity of N-CQDs: (**a**) ON-CQDs; (**b**) WN-CQDs.

Figure S5. Fluorescence performance of ON-CQDs (black) and WN-CQDs (red) at different reaction times.

Figure S6. Selectivity of N-CQDs: (a) ON-CQDs; (b): WN-CQDs. Concentrations of various substances: (a), (b) correspond to 40 μ mol L⁻¹ and 80 μ mol L⁻¹ respectively. (I' and I'₀ represent the fluorescence intensity of N-CQDs in the presence and absence of various substances, respectively.).

Samples	Spiked	Recovery Rate (%)	RSD (%, n = 5)	Citations
River water	5 µmol L-1	98.73	1.26 %	
	15 µmol L-1	104.28	1.22%	[1]
	25 µmol L⁻¹	103.42	1.32%	
Milk	1 µmol L⁻¹	104	0.11%	
	5 µmol L-1	101	0.21%	[3]
	10 µmol L-1	99	0.24%	
Honey	10 µmol L-1	107.9	1.49%	
	20 µmol L-1	107.2	1.46%	[4]
	30 µmol L-1	101.9	0.75%	
Pork	10 µmol L-1	109.5	1.74%	
	20 µmol L-1	98.3	1.19%	[4]
	30µmol L⁻¹	104.9	1.09%	
Tap Water	10 µmol L ⁻¹	97.5	0.94%	
Soil	12.240µmol Kg ⁻¹	103.2	0.82%	This work
Lake Water	40 µmol L-1	100.9	0.62%	

Table 1. Compare OTC recovery rates in various samples.

References

- Qi, H.J.; Teng, M.; Liu, M.; Liu, S.X.; Li, J.; Yu, H.P.; Teng, C.B.; Huang, Z.H.; Liu, H.; Shao, Q., et al. Biomassderived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe³⁺ ions and tetracyclines. *J. Colloid. Interf. Sci.* 2019, *539*, 332-341.
- 2. Xu, Z.Q.; Yi, X.F.; Wu, Q.; Zhu, Y.C.; Ou, M.R.; Xu, X.P. First report on a Bodipy-based fluorescent probe for sensitive detection of oxytetracycline: application for the rapid determination of oxytetracycline in milk, honey and pork. *RSC Adv.* **2016**, *6*, 89288-89297.
- Xu, N.; Yuan, Y.Q.; Yin, J.H.; Wang, X.; Meng, L. One-pot hydrothermal synthesis of luminescent siliconbased nanoparticles for highly specific detection of oxytetracycline *via* ratiometric fluorescent strategy. *RSC Adv.* 2017, *7*, 48429-48436.
- 4. Chandra, S.; Ghosh, B.; Beaune, G.; Nagarajan, U.; Yasui, T.; Nakamura, J.; Tsuruoka, T.; Baba, Y.; Shirahata, N.; Winnik, F.M. Functional double-shelled silicon nanocrystals for two-photon fluorescence cell imaging: spectral evolution and tuning. *Nanoscale* **2016**, *8*, 9009-9019.