
nanomaterials

Article

Scattering of Ultrashort X-ray Pulses by
Various Nanosystems

Marat Eseev, Andrey Goshev and Dmitry Makarov *

Northern (Arctic) Federal University named after M.V. Lomonosov, Severnaya Dvina Emb. 17,
163002 Arkhangelsk, Russia; m.eseev@narfu.ru (M.E.); agoshev@hotmail.com (A.G.)
* Correspondence: makarovd0608@yandex.ru

Received: 7 June 2020; Accepted: 8 July 2020; Published: 10 July 2020
����������
�������

Abstract: Currently, the study of the scattering of ultrashort X-ray pulses (USPs) by various objects
is an urgent task, in connection with the creation of powerful sources of USP generation. In this
paper, the theory of the scattering of attosecond pulses by polyatomic structures is developed taking
into account the magnetic component of USPs. It is shown that the scattering spectra depend not
only on the structure of the target, but also on other characteristics of USPs. Results are presented
of the calculation of the scattering spectra on various nanosystems, such as rings, groups of rings,
carbon nanotubes (CNTs), and groups of co-directed CNTs (forest CNTs). The calculation results are
presented in an analytical form, which allows a general analysis of the expressions. It was found that
taking the magnetic component of the momentum into the scattering spectra into account leads to
the generation of the second harmonic. In this case, the spectra have characteristic features and differ
from the scattering spectra at the carrier frequency, which can complement ultra-high-resolution X-ray
analysis. It is shown that the scattering spectra of some structures, for example, forest CNTs, have
a strictly specified radiation direction and such material in the field of such USPs is non-reflective
(completely black).

Keywords: ultrashort pulses; scattering; nanosystems; attosecond pulses; X-ray diffraction analysis;
carbon nanotubes

1. Introduction

In the last two decades, the generation of isolated attosecond pulses through the generation of
high harmonics has provided a powerful tool for studying many important physical processes on
the attosecond timescale [1]. Indeed, there is a tendency to increase the power of ultrashort pulses
(USPs) of the electromagnetic field and reduce their duration [2–5]; for example, today the shortest
pulse duration is 43 attoseconds (as) [6]. Research is being actively conducted and the technique of free
electron X-ray lasers (XFEL) is being improved [5]. At present, a subfemtosecond barrier/border with
a high peak power has been achieved, which makes it possible to study excitation in the molecular
system and the motion of valence electrons with high temporal and spatial resolution [7]. The technique
of generating ultrashort synchrotron pulsed radiation sources is also being actively developed [8].
This area of research is attracting considerable interest within the scientific community. It should
enable a deeper understanding of the fundamental processes occurring in atoms and molecules [9],
and greatly enhance the study of biomolecules, nanosystems, and complex polyatomic structures [10],
as well as of various dynamic processes [11,12]. Furthermore, these new techniques enable the stages
of a chemical reaction, and the generation of higher harmonics [3,4] to be traced. Moreover, at present
there is a technical possibility to produce various complex polyatomic systems. For example, it is
possible to obtain various nanotubes [13] and nanocomposites [14]. Two-dimensional materials can be
obtained: graphene [15], borophene [16] and others.
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When considering effects associated with the interaction of an electromagnetic field with atoms,
the influence of the magnetic component of the pulse is usually neglected due to its smallness. Indeed,
it is well known that the force acting on a charged particle from the side of the magnetic component
of the electromagnetic field is approximately c = 137 atomic units (a.u.) times less than its electric
component. However, when considering some phenomena, the contribution of this force is very
significant and neglecting it can lead to a misunderstanding of certain processes: for example, in [17],
when considering tunneling ionization in the high-field regime, its contribution was found to be very
significant; and in [18], taking into account the magnetic component of USPs made it possible to detect
the orientation effects of molecular anions.

Various approaches are used to describe the scattering of USPs of an electromagnetic field. From
a quantum mechanical point of view, light-scattering processes (both elastic and inelastic scattering)
are usually explained using the first or next order of perturbation theory [19–25]. The semiclassical
approach is also used to describe the scattering of light [26–28] this is when the atomic system is
considered to be quantum, and the electromagnetic field is classical. More recently, studies have
begun to appear that show that when using USPs in an X-ray diffraction analysis of a substance,
the usual approaches may not be correct (see [12] and the references therein). For example, in [29]
the quantum theory of USPs was developed in a general form, which shows that in the case of X-ray
diffraction analysis of polyatomic systems, it is necessary to take into account the quantum nature of
the scattered USPs.

In this paper, the theory of the scattering of attosecond pulses on polyatomic structures has been
developed taking into account the magnetic component of USPs, and studies [29] and [30] have been
used as a basis. In [29], a theoretical apparatus had been developed in a general form for calculating
the scattering spectra of USPs. This theory used an unknown wave function of electrons in an USP
field, which was found in [30]. Thus, a natural continuation of the development of these approaches is
both their generalization and specific results obtained on the scattering spectra of polyatomic systems.
The work presented here is a generalization in which analytical expressions for the scattering spectra
of specific multi-atoms systems are obtained. The main parameters are found that are responsible for
the characteristic diffraction pattern with which it is possible to carry out X-ray diffraction analysis of
complex polyatomic structures.

The atomic system of units is used throughout: } = 1, |e|= 1, me = 1 , where } is “reduced”
Planck’s constant, e is the electron charge, and me is electron mass.

2. Scattering Ultrashort Pulse (USP)

Consider a multi-electron atom which interacts with plane waves of USP extending towards
the direction n0. The duration of such a pulse is τwill be considered much shorter than the characteristic
atomic time τa ∼ 1, i.e., τ

τa
� 1, which allows us to consider the radiation process in the framework of

the theory of sudden perturbations. In this approximation, the intrinsic Hamiltonian of the system
can be neglected, since the electron in the atom does not have time to evolve under the action of
the field of the atom due to the interaction of the momentum with the electron in the atom being too
fast. It was shown in [30] that, in this approximation, taking into account the magnetic component of
the electromagnetic field, the wave function of the atomic electron will be

ψ(t) = ϕ0

x, y, z +

t∫
−∞

Er
m ∗ c

1
1 + Er

m∗c2

dt

 · 1√∣∣∣1 + Er
m∗c2

∣∣∣ · exp

−i

t∫
−∞

Er
1 + Er

2m∗c2

1 + Er
m∗c2

dt

, (1)

where m∗ is the effective electron mass; r is the radius vector of the electron in the selected coordinate
system; E is the magnitude of the electromagnetic field strength in USP [30]; c is the speed of light;
ϕ0(r) is the initial wave function of an electron in an atom. It should be added that Equation (1) has
the necessary property of completeness in quantum mechanics, regardless of E in USP. There are also
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limitations under which Equation (1) is applicable: the characteristic frequency USP ω0 should be in
the region of X-ray frequencies, and the duration of the USP should be less than the characteristic
atomic time τ

τa
� 1. Although the condition τ

τa
� 1, as discussed in [30], is not rigid enough to use

Equation (1). We are interested in electromagnetic fields that are not so strong as to take into account
relativistic effects. In this case, decomposing in the Maclaurin series over a small parameter E

c2 � 1, we
obtain

ψ(t) = ϕ0(r) exp

−i

t∫
−∞

(
Er−

1
2

(Er
c

)2)
dt

. (2)

Let some atom be located at the origin of the coordinate system, and the entire polyatomic system
be in the ground state

∣∣∣ϕ0
〉
=

∣∣∣ϕ0(r1, r2 . . . rN)
〉
. Furthermore, we will use the results of [29] and

the wave function given in Equation (2). As a result, the probability W of producing a photon of a given
frequency ω per unit solid angle Ωk with the simultaneous transition of a polyatomic system from
the ground state to all possible final states will be:

d2W
dωdΩk

=
1

(2π)2
1

c3ω

〈
ϕ0

∣∣∣∣∣∣∣∣∣∣∑a,e
exp(−ikRa,e)f(ra,e)

∣∣∣∣∣∣∣
2∣∣∣ϕ0

〉
, Ra,e = Ra + ra,e, (3)

where Ra,e are the coordinates of the electron of the atom a relative to the selected coordinate system;
ra,e are the coordinates of the electron relative to the atom number a, ω-photon frequency; and n = k

k is
the unit vector along the photon emission direction. Equation (3) describes the scattering spectrum

summed over the polarizations of the photon. In Equation (3) f(ra) =
[~
E(ω) × n

]
,

Ẽ(ω) =

+∞∫
−∞

E(ra,e, t) −
1
2
∇a

(
E(ra,e, t)

c

)2eiωtdt, (4)

where ∇a,e =
∂
∂ra.e

.
For example, in the particular case of a monoatomic system and a hydrogen-like atom, the same

result was obtained in [29]. Summation in Equation (3) goes over all the atoms a of which the polyatomic
system consists and over all the electrons e that enter these atoms. Equation (3) is of a general
nature; however, it is difficult to calculate the scattering spectra using it directly, because this
calculation requires knowledge of the wave function of a multi-electron atomic system in its initial
state

∣∣∣ϕ0
〉
=

∣∣∣ϕ0(r1, r2 . . . rN)
〉
. Carrying out such numerical calculations in the case of a polyatomic

system is practically an unsolvable task even on modern supercomputers. Large calculations can be
avoided by expressing the average in Equation (3) in terms of the spatial density of atomic electrons
ρ(r). Such an approach is well known: in [31], for example, it was used to calculate the spectra of USP
scattering by a single atom. We will consider that the studied polyatomic system comprises identical
atoms. Having performed calculations similar to those in [31], we obtain:

d2W
dωdΩk

=
1

(2π)2
1

c3ω

(
NaNeS(ω, n, n0) + N2

eδN(p)F(ω, n, n0)
)
, (5)

where S(ω, n, n0) = G(ω, n, n0) − F(ω, n, n0), Na is the total number of atoms in the system, Ne is
the number of electrons in an atom, and G(ω, n, n0) and F(ω, n, n0) are the average values expressed
in terms of electron density in the form:

G(ω, n, n0) =
1

Ne

∫
ρ(r)

∣∣∣f(r)∣∣∣2dr, F(ω, n, n0) =
1

Ne2

∣∣∣∣∣∫ ρ(r)f(r)e−ikrdr
∣∣∣∣∣2, (6)
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and the factor δN(p) (analyzed in a separate section), which completely determines the geometric
arrangement of atoms in the target, is calculated in the general form:

δN(p) =
∑
a,b

eip(Ra−Rb) =

∣∣∣∣∣∣∣∑a
eipRa

∣∣∣∣∣∣∣
2

, (7)

where p = ω
c (n−n0) = k−k0 and it has the meaning of the recoil momentum in the scattering of USPs.

Electronic density ρ(r) can be taken in various models. We will use the Dirac–Hartree–Fock–Slater

model [32], in which ρ(r) = Ne
4πr

3∑
i=1

Aiαi
2e−αir, where Ai,αi− tabular coefficients that specify the electron

density in the atom [32]. Using this model, one can find equations for G(ω, n, n0) and F(ω, n, n0) in an
analytical form. As a result, we obtain (details of the integrals calculation can be found in [31]):

G(ω, n, n0) = [E0 × n]2|F1|
2 + 6

(
ω
c

)2
|F2|

2
( E0

c

)4 3∑
i=1

Ai
αi

4 [n0 × n]2 + 2
( E0

c

)2 3∑
i=1

Ai
αi

2

{
[E0×n]2

c2 |F2|
2
−
ω
c (E0n)(n0n)Im(F1F2)

}
,

F(ω, n, n0) =
1

(4π)2

∣∣∣∣∣∣ 3∑
i=1

Aiαi
2 Ji(ω, n, n0)

∣∣∣∣∣∣2,

J(ω, n, n0) =
4πF1

p2+αi
2 [E0 × n] + 8πiF2

(p2+αi
2)

2
E0p
c2 [E0 × n]−

−
4πiF2

(p2+αi
2)

3
ω
c

{(E0p
c

)2
− 4

(E0p
c

)2
+

(
αiE0

c

)2
}
[n0 × n].

(8)

In Equation (8) E(t, r) = E0v(x,γ,ω0), where x = t− n0r/c; n0 is unit vector along the USP; γ is
parameter specifying the spectral width; ω0 is carrier frequency, i.e., v(x,γ,ω0) sets the form of the USP;

F1(ω) =
∞∫
−∞

ν(x,γ,ω0)eiωxdx; F2(ω) =
∞∫
−∞

ν2(x,γ,ω0)eiωxdx. It should be added that the functions

F(ω, n, n0) and G(ω, n, n0) in Equation (8) are responsible for the USP scattering spectra from specific
atoms. In other words, each atom has its own unique function, F(ω, n, n0) and G(ω, n, n0), for
a given USP. The F(ω, n, n0) function differs from G(ω, n, n0) in that it can change the amplitude of
diffraction maxima depending on which atoms we are considering in the system. In a polyatomic
system, if F(ω, n, n0) � G(ω, n, n0), then the studied system coherently scatters the USP, while
G(ω, n, n0)� F(ω, n, n0) or F(ω, n, n0) ∼ G(ω, n, n0), then both the coherent and incoherent parts of
the USP scattering spectrum can be present in the scattering spectrum.

The scattering spectrum described by Equation (5) is determined using the functions F1(ω) and
F2(ω). For this, we will consider USPs of a Gaussian form:

E(r, t) = E0 exp
(
−γ2(t− n0r/c)2

)
cos(ω0t− k0r), (9)

where k0 = n0
ω0
c , τ = 1/γ is the pulse duration, and γ is the attenuation parameter in a Gaussian

pulse. We assume that the USP is multi-cycle, i.e., ω0
γ � 1, then:

F1 =

√
π

2γ

{
e−(

ω−ω0
2γ )

2

+ e−(
ω+ω0

2γ )
2}

, F2 =

√
π

4
√

2γ

e
−(

ω−2ω0
2
√

2γ
)

2

+ e
−(

ω+2ω0
2
√

2γ
)

2

+ 2e
−( ω

2
√

2γ
)2
. (10)

Also, we give the value:

f(ra,e) = exp(ik0ra,e)


(
F1(ω) − F2(ω)

E0ra,e

c2

)
[E0 × n] − iF2(ω)

ω
2c

(
E0ra,e

c

)2

[n0 × n]

. (11)

Thus, the scattering spectrum can be considered quite definite. Note that the scattering in this case
is localized near frequencies ω0 and 2ω0 with dispersion γ, which is a consequence of the decomposing
of the wave Equation (1) in the Maclaurin series on a small parameter E

c2 � 1. Taking into account
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the following amendments—as a result of which, obviously, higher harmonics will appear—will be
relevant when considering the relativistic case. Therefore, in our case they are not taken into account
because of their smallness.

In limiting cases, Equation (5) demonstrates that it is possible to distinguish both the incoherent
and coherent parts of the spectrum in the scattering spectrum. In other words, the scattering spectrum
can be ∝ NeNa (for example, with c� ω0/c� 1 and a small number of atoms in the system, so that
δN(p)N2

e F(ω, n, n0)� NaNeS(ω, n, n0)).
This case corresponds to the scattering of USPs by electrons in atoms independently of each other.

In the case of the coherent part of spectrum ∝ N2
eN2

a (for example, for sufficiently small ω0/c, one
can obtain δN(p) = N2

a , for Ne � 1). This case corresponds to the scattering of USPs by electrons in
atoms together. It can be seen from Equation (5) that in the general case it is impossible to separate
the coherent and incoherent parts of the spectrum. It is also seen from Equations (5) and (7) that in
the case of a polyatomic system, the last term in Equation (5) is the main contributor to the scattering
spectrum. In addition, it is this term that is responsible for the diffraction pattern, because the factor
δN(p) determines the geometric arrangement of atoms in the target. Using the δN(p) factor, it is not
always possible to determine in which cases the diffraction pattern has maxima and minima. This
is due to the fact that, in Equation (5), the ∝ F(ω, n, n0)δN(p) scattering spectrum and the F(ω, n, n0)

function can “cut off” the maxima in the factor δN(p). Although, at certain parameters of the USP,
where the F(ω, n, n0) has a weak dependence on the direction of the n, the diffraction pattern is
determined by the factor δN(p).

3. Scattering by Multi-Atomic Systems

Thus, Equation (5) is the angular distribution of the USP scattering spectra of a polyatomic
system in which the electron density is given by the Dirac–Hartree–Fock–Slater model. Consider
a ring consisting of Na identical atoms located along the circumference of a ring of radius R, at an
equal distance from each other. We introduce a rectangular coordinate system so that the origin of
the coordinate system is in the center of the ring, and the x, y axes lie in the plane of the ring. Then
the radius vector defining the position of the atom with number a is:

Ra = R
(
Cos

[2πa
Na

]
i + Sin

[2πa
Na

]
j
)
,

where R is the radius of the ring, and i, j and k are unit vectors in the x, y, and z axes, respectively.
Next, it is necessary to find function (7) i.e., responsible for the geometric arrangement of atoms in
the target. It is clear that,

Rap = pR · Sin(θ)Cos
(2πa

Na
−ϕ

)
,

where θ is the angle between p and the normal to the plane of the ring, ϕ is the angle between the x
axis and the projection of the vector p on the xOy plane, and the atom number a takes the values a = 1,2
. . . Na. Next, we consider the sum in Equation (7)

∑
a

eipRa . This quantity for Na � 1 can be replaced

by an integral
∑
a

eipRa = Na
2π

2π∫
0

exp(ipR · sin(θ) · cos(x))dx = Na J0(pR · sinθ), where J0(x) is the Bessel

function. As a result, for the ring we obtain the equation:

δN(p) = Na
2 J0

(
ω
c

R
∣∣∣(n− n0) × k

∣∣∣)2
. (12)

Let us evaluate the result. As already stated, the spectral density of radiation has two pronounced
harmonics, as demonstrated from the form of the function F2, which includes the doubled frequency
associated with taking into account the magnetic component of the incident USP. The pulse scattered
by a nanostructure (carbon ring) is inhomogeneous in direction, as can be seen from Figure 1; Figure 2.
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Figure 1 shows the spectral density of radiation on the ring of carbon atoms for various spatial locations
of the detector, which is given by the angles Θ and φ. The angle between the direction of incidence of
the pulse and the axis of the ring is fixed at 45◦.
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Figure 1. Spectral radiation density of ultrashort pulses (USPs) at the firstω0 = 660 and second 2ω0

harmonics (figure tab) depending on the position of the detector. The number of carbon atoms in
the ring is Na = 6, the radius of the ring is R = 5, the pulse duration is τ = 43 as, and the field amplitude
is E0 = 500. The angle of incidence of the pulse with respect to the axis of symmetry of the ring is
α = π/4.

Figure 2 shows that the scattering spectrum on the ring has the following features:

• The scattering spectrum at the two harmonics has quantitative and qualitative differences.
The amplitude of the spectral density of radiation at a doubled frequency is much smaller than at
the first harmonic.

• Scattering in the region ω0 has a pronounced direction coinciding with the direction of incidence
of the pulse n0. Radiation near 2ω0, in contrast, has greater symmetry and is maximum in
the direction orthogonal to the incidence n0, which is associated with taking into account
the magnetic component of the USP. Therefore, by positioning the detector at different angles to
the system, it is possible to separately register both the first and second harmonics.

• Orientational effects (the position of the normal of the ring with respect to n0) are weakly expressed
in the case of high frequencies.

• Both parts of the spectrum are sensitive to the number of ring atoms.
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Figure 2. Three dimensional (3D) radiation pattern of USPs at the first ω0 = 660 and second 2ω0

harmonics. The number of carbon atoms in the ring is Na = 6, the radius of the ring is R = 5, the pulse
duration is τ = 43 as, and the field amplitude is E0 = 500, ω0/c ≈ 5. The angle of incidence of the pulse
with respect to the axis of symmetry of the ring is α = π/4. The z axis is in the direction of incidence of
the pulse.

Thus, the main part of the radiation falls on the carrier frequencyω0, and the emission spectrum
has a local character, which is amplified, passing into the delta function with increasing radius of
the system. As can be seen from Equations (5) and (12), the angles that specify the direction of the pulse
fall relative to the normal to the ring are included only in factor δN(p), whose contribution is very
insignificant in the case of high frequencies ω0

c ≥ 5. However, the situation changes in the case of low
frequencies; here, the terms with F(ω, n, n0) and G(ω, n, n0) are weakly dependent on the frequency ω,
and the contribution of δN(p) to the resulting scattering becomes more noticeable. In other words,
function F(ω, n, n0) weakly affects the value in the spectrum ∝ F(ω, n, n0)δN(p) and does not “cut
out” the maxima defining the factor δN(p). Figure 3 shows the scattering spectra, depending on
the orientation of the axis relative to the incident pulse for ω0/c ≈ 5.
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Figure 3. Spectral density of radiation depending on the orientation of the axis of the ring to the incident
USP (angle α), at the firstω0 = 66 and second 2ω0 harmonics. For ω0

c ≈ 0, 5, E0 = 500. The number of
carbon atoms in the ring is R = 7, Na = 6. The figure tab on the right shows the dependence of the factor
δN(p) on the radius of the nanosystem (R).

Despite the fact that, technically, a full scattering spectrum is recorded in an experiment d2W
dΩkdω ,

the distinguishing features associated with the spatial arrangement of atoms in this case are only
entering the factor δN(p). It is this factor that is responsible for the geometry of the target and
the recording of diffraction maxima in the experiment; its contribution is precisely what makes
the difference in the scattering spectra of various nanostructures. Knowledge of this factor δN(p) is of
particular interest, and therefore we will further consider various special cases where this factor can be
found analytically.

Below, we present the results of calculating the factor δN(p) for such systems as a ring, a group of
rings, a plane from a group of rings (PGR), carbon nanotubes (CNTs), and groups of co-directed CNTs
(forest CNTs). A graphical representation of these structures is shown in Figure 4. In general, the factor
δN(p) is determined by Equation (7). For one ring of Na atoms, we obtained Equation (12), which can
be generalized to the case of a group of axially symmetric rings, in this case

δN(p) =

 M∑
n=1

Nn J0

(
ω
c

Rn
∣∣∣(n− n0) × k

∣∣∣)
2

, (13)

where Nn is the number of atoms on the nth ring, Rn is the radius of the nth ring, and M is the number
of rings.



Nanomaterials 2020, 10, 1355 9 of 14

Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 13 

 

 
Figure 4. Image of the considered carbon nanostructures. 

It is also possible to obtain a structure similar to a CNT. We set the CNT so that the radius vector 

is expressed as ( ) ( )( )2 2( 1)d cos sin ,N Na n
a am R π π= − + +R k i j then 

( ) [ ]
[ ]

22

0
1

L / 2
( ) N ,

/ 2

M

N n n
n

Sin d
J R

Sin d
δ

=

  = ×        


pk
p p k

pk  (16) 

where Nn  is the number of atoms in a ring of radius nR , L is the number of planes with rings, and 
d is the step between the planes. Thus, it is possible to define both a single-layer m = 1 and a multi-
layer m > 1 CNT. For forest CNTs, the Nδ  factor is obviously determined 

( ) [ ]
[ ]

22 3

0
1 1

L / 2
( ) N ,

/ 2

M
i i

N n n
n i i

Sin
J R

Sin
δ

= =

  = ×        
 ∏

pd
p p k

pd  (17) 

where Nn  is the number of atoms in the ring of radius nR , 1 1 2 2 3 3, , ,d d d= = =d i d j d k  1 2L ,L  is 

the number of nodes on the x and y axes, respectively, and 3L  is the number of planes perpendicular 
to the z axis.  

The analytical form of the factor ( )Nδ p  allows the analysis of scattering spectra. It can be seen 
from Equation (12) that there are maxima whose width (the solid angle at which scattering occurs) is 

determined by the expression 0 R
c

ω : the larger this expression, the narrower the maximum. The 

general appearance of the diffraction pattern depends on the number of atoms in the ring. With an 
increase in the radius of the ring, and while maintaining the number of atoms, it undergoes change. 
Diffraction effects from neighboring atoms are reduced and the radiation is almost spherically 
symmetrical. Similarly, one can determine the behavior of the factor ( )Nδ p  in the case of the second 
harmonic. Obviously, the probability of radiation will be less than at the first harmonic, and the width 
of the maxima will be narrower. 

Let us present graphically the results of calculating the factor ( )Nδ p  for the polyatomic systems 
considered above. We show that each system has its own distinctive features, which allows us to 
judge the structure of complex polyatomic systems. 

Figure 4. Image of the considered carbon nanostructures.

Next, we consider a structure consisting of a group of axially symmetric rings whose centers are
located on the plane (PGR). To do this, we consider a planar system formed by identical multiple rings
lying in the same plane so that the centers of the rings are located at the nodes of the rectangular lattice
lying in the xOy plane. We denote the lattice period along the x axis as d1, and the period is equal
along the y axis as d2.Then, the radius vector defining the position of any atom with number a on a ring
centered at the node with numbers a1,a2 will be equal to:

Ra = (a1 − 1)d1i + (a2 − 1)d2j + Rn

(
cos

(2πa
Nn

)
i + sin

(2πa
Nn

)
j
)
, (14)

where the integers a1, a2, are the numbers of nodes in the lattice, such that the node with numbers a1 =

1, a2 = 1 is located at the beginning of the coordinate system.
Factor δN(p) can now be found for multiple rings whose centers are in the nodes of the rectangular

lattice:

δN(p) =

 M∑
n=1

Nn J0
(
Rn

∣∣∣p× k
∣∣∣)

2 2∏
i=1

(
Sin[Lipdi/2]
Sin[pdi/2]

)2

, (15)

where Nn is the number of atoms in a ring of radius Rn; L1, L2 is the number of nodes on the x, y axes,
respectively; and d1, d2 is the lattice period.

It is also possible to obtain a structure similar to a CNT. We set the CNT so that the radius vector
is expressed as Ra = (m− 1)dk + Rn

(
cos

(
2πa
N

)
i + sin

(
2πa
N

)
j
)
, then

δN(p) =

 M∑
n=1

Nn J0
(
Rn

∣∣∣p× k
∣∣∣)

2(
Sin[Ldpk/2]
Sin[pkd/2]

)2

, (16)
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where Nn is the number of atoms in a ring of radius Rn, L is the number of planes with rings, and d is
the step between the planes. Thus, it is possible to define both a single-layer m = 1 and a multi-layer m
> 1 CNT. For forest CNTs, the δN factor is obviously determined

δN(p) =

 M∑
n=1

Nn J0
(
Rn

∣∣∣p× k
∣∣∣)

2 3∏
i=1

(
Sin[Lipdi/2]
Sin[pdi/2]

)2

, (17)

where Nn is the number of atoms in the ring of radius Rn, d1 = d1i, d2 = d2j, d3 = d3k, L1, L2 is
the number of nodes on the x and y axes, respectively, and L3 is the number of planes perpendicular to
the z axis.

The analytical form of the factor δN(p) allows the analysis of scattering spectra. It can be seen
from Equation (12) that there are maxima whose width (the solid angle at which scattering occurs) is
determined by the expression ω0

c R: the larger this expression, the narrower the maximum. The general
appearance of the diffraction pattern depends on the number of atoms in the ring. With an increase in
the radius of the ring, and while maintaining the number of atoms, it undergoes change. Diffraction
effects from neighboring atoms are reduced and the radiation is almost spherically symmetrical.
Similarly, one can determine the behavior of the factor δN(p) in the case of the second harmonic.
Obviously, the probability of radiation will be less than at the first harmonic, and the width of
the maxima will be narrower.

Let us present graphically the results of calculating the factor δN(p) for the polyatomic systems
considered above. We show that each system has its own distinctive features, which allows us to judge
the structure of complex polyatomic systems.

The factor δN(p) for M = 1 (one ring) for different angles of incidence of the USP relative to
the axis of symmetry of the ring is presented in Figure 5. Note that for this part of the spectrum at any
angle of incidence of the USP, the spectrum is divided into the reflected and transmitted spectrum.
Furthermore, note that in this case the classical law of reflection, “the angle of incidence is equal to
the angle of reflection”, is fulfilled for it.
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and R.



Nanomaterials 2020, 10, 1355 11 of 14

3.1. Scattering on Several Axially Symmetric Rings

For case m > 1, the same regularities as for the ring are fulfilled; we only note that, in addition to
orientational sensitivity, the scattering spectra are supplemented by sensitivity to the distribution of
atomic density. A minimum of radiation occurs in the case of a uniform distribution of atoms along
the rings.

3.2. Scattering on Carbon Nanotube (CNT) and Plane from a Group of Rings (PGR)

The analysis of the factor for CNTs and the forest CNT shows that scattering occurs in such a way
that there is practically no reflection. Moreover, the scattering occurs in almost one direction, coinciding
with the direction of the incident USP. The more atoms in such systems, the greater the unidirectional
scattering with decreasing spectral width. This type of scattering is more clearly expressed for the forest
CNT. It should be added that this kind of scattering is well known in the case of the optical frequency
range, see for example [33], and is already used in many technical fields (super-black coatings, blocking
out light, etc.) In our work, an effect of this kind for USPs is first theoretically presented in the literature.
In the case of a large number of atoms in the system, factor δN(p) at the second harmonic will be similar
to that at the first harmonic, the only difference being that the width of the maxima will be narrower.
In the case where the number of atoms is not large, the scattering spectrum will be determined not
only by the factor, but also by the incoherent part of the scattering, i.e., the first and second terms of
Equation (5). As an example, in Figure 6 we present graphically the scattering for two cases.Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 13 
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Figure 6. Orientation effects of factor δN(p) depending on the angles α of incidence of pulse n0 to
the carbon nanotubes (CNTs, parameters: R = 4, N = 6, L = 10) and plane from a group of rings (PGR,
parameters: R = 3, N = 6, L1 = 6, L2 = 6). For a pulse duration of τ = 43 as, the field amplitude is E0 =

500, and ω0 = 330.

4. Discussion and Conclusions

In the framework of the method of sudden perturbations (taking into account the fact that
the duration of USPs is much shorter than the characteristic atomic time τ

τa
� 1), a general analytical

expression has been obtained for the scattering spectra on various nanosystems. Taking into account
the magnetic component of the incident USP leads to the generation of the second harmonic in



Nanomaterials 2020, 10, 1355 12 of 14

the scattering spectrum. Equation (5) obtained by us can be used in ultra-high resolution X-ray
diffraction analysis. Indeed, this expression is more accurate in comparison with the well-known
methods of X-ray diffraction analysis, see for example, [34,35]. Equation (6) includes the coherent and
incoherent parts of the scattering spectrum, and also takes into account the magnetic component of
the USP. These two important additions are usually ignored in X-ray analysis. From Equation (5) it is
not difficult to obtain in the particular case the most frequently used expression in X-ray diffraction
analysis [12,34,35]. For this, it is necessary to take into account only the electric component of USPs
and assume that all the electrons in the atoms of the substance emit coherently. In this case, from
Equation (5) we obtain:

d2W
dωdΩk

=
F2

1(ω)[E0 × n]2

(2π)2c3ω

∣∣∣∣∣∫ n(r)e−iprdr
∣∣∣∣∣2, (18)

where n(r) is the distribution of electron density of the entire atomic system. We pass to
the scattering cross section according to the well-known expression dσ

dω = 1
I

dW
dω ω [36], where intensity

I = c
4π

∞∫
−∞

E2(r, t)dt and considering that the impulse is long enough ω0/γ � 1, the well-known

equation for the cross-section of X-ray diffraction [34] can be obtained:

dσ
dΩk

=
sin2 θ

c4

∣∣∣∣∣∫ n(r)e−iqrdr
∣∣∣∣∣2, sin2 θ = [E0 × n]2/E2

0, q =
ω0

c
(n− n0). (19)

The theory presented here improves the accuracy of, and complements, X-ray diffraction analysis,
including its use for deciphering the spectra of complex polyatomic systems. There are two aspects to
our work which will advance this field of study: first, our development of a more accurate theoretical
apparatus will allow for a more accurate explanation of the diffraction pattern; second, the fact that
the scattering of USPs occurs not only at the fundamental frequency ω0, but also at a double frequency
2ω0. The scattering at each frequency has its own diffraction pattern, which makes it possible to
compare them to make a more detailed and qualitative analysis of the studied polyatomic systems.
It should be added that, using Equation (5), one can study both stationary and dynamic systems;
the latter encompass complex molecules, including biomolecules, where bonds break or form, as well
as charge migration in peptides and biological systems. For this, it is necessary to replace in Equation
(5) ρ(r) by, ρ(r, t) where t is the moment in time at which the USP acts on the system under study. Such
an approach for replacing ρ→ ρ(r, t) of a USP in a field is well known and is discussed in detail in
the literature, see for example [12].
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