

# **Supplementary Materials**



# **Cationic Magnetite Nanoparticles for Increasing** siRNA Hybridization Rates

Artur Y. Prilepskii, Arseniy Y. Kalnin, Anna F. Fakhardo, Elizaveta I. Anastasova, Daria D. Nedorezova, Grigorii A. Antonov and Vladimir V. Vinogradov \*

International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, 197101 St. Petersburg, Russia; prilepskii@scamt-itmo.ru (A.Y.P.); kalnin@scamt-itmo.ru (A.Y.K.); fakhardo@scamt-itmo.ru (A.F.F.); anastasova@scamt-itmo.ru (E.I.A.); nedorezova@scamt-itmo.ru (D.D.N.); antonov@scamt-itmo.ru (G.A.A.)

\* Correspondence: vinogradov@scamt-itmo.ru

# 1. Materials and Methods

# 1.1. Chemicals

Iron (II) chloride tetrahydrate ( $\geq$ 98.5%), iron (III) chloride hexahydrate ( $\geq$ 99%), sodium citrate, PEG 8k, gold (III) chloride solution (99.99%, 30 wt.% in dilute HCl), sodium borohydride (98%, powder), cetyltrimethylammonium bromide (99.0%, BioUltra, for molecular biology), SYBR Gold, acrylamide, bisacrylamide, urea, tris base, boric acid, ethylenediaminetetraacetic (disodium salt), tetramethylethylenediamine (TEMED) ammonium persulfate and PBS were purchased from Sigma-Aldrich (St. Louis, MO, USA). The deionized water was from Elix Essential 3UV, Millipore (Burlington, MA, USA). Sodium silicate, acetic acid and acridine orange were obtained from Chimmed (Moscow, Russia). The oligonucleotides used in the study were ordered in the IDT (Coralville, IA, USA), dissolved in RNAse/DNAse free water to a final concentration of 100  $\mu$ M and were stored frozen. Before the experiments, stocks were dissolved to 10  $\mu$ M in RNAse/DNAse free water.

The oligonucleotides sequences used in the study were:DAD1\_senseCCACACCGCAGCGUCUGAAUU andDAD1\_antisenseUUCAGACGCUGCGGUGUGGGA.

# 1.2. Characterization Techniques

The crystal phase and crystallinity of the samples were studied by X-ray diffraction method (Rigaku SmartLab 3 diffractometer of the Engineering center of the Saint-Petersburg State Technological Institute (Technical University)) using Cu-K $\alpha$  irradiation ( $\lambda$  = 1.54 Å). The samples were scanned along 2 $\theta$  in the range of 5–80° at a speed of 0.5°/min. For XRD analysis, the samples were dried at 120 °C for 4 h. The particle size and zeta potential of the NPs were measured using a Photocor Compact Z (Photocor, Moscow, Russia). For SEM analysis, the samples were dried in vacuo for 1 h and examined using a Tescan VEGA 3 electron microscope (Tescan, Brno, Czech Republic).

# 1.3. Fluorescent Measurements

Fluorescence measurements with acridine orange were performed by the following method. Three different concentrations of GNPs-15 were prepared: the stock solution, the stock solution diluted 10 times, and the stock solution diluted 100 times. 1  $\mu$ L of acridine orange (0.5  $\mu$ g/mL) was mixed with different volumes of these three GNPs solutions, namely, 1, 2, and 5  $\mu$ L (an additional sample with 10  $\mu$ L was made for the stock solution). The whole volume of the probes was brought to 100  $\mu$ L with water. These probes were used as reference values. For probes with siRNA, 1  $\mu$ L of S and As siRNA solutions (1  $\mu$ M) were added. All probes were left at room temperature for 30 minutes,

and fluorescence was measured on a CaryEclipse spectrofluorimeter (Santa Clara, CA, USA) at the excitation wavelength 490 nm and the emission wavelength 525 nm.

### 1.4. Analysis of Gel Images

Gel pictures were analyzed as follows: Each band was saved as a separate image of the same size in pixels, and the total intensity of pixels was calculated using Wolfram Mathematica software with in-build function ImageData. The hybridization rate ( $HR_t$ ) of siRNA at the specified time *t* was calculated as a ratio of the value of mean upper band intensity (hybridized siRNA) to mean total intensity (hybridized and non-hybridized siRNA) and expressed in percentage:

$$HR_t = 100 \times \frac{\frac{1}{n} \times \sum_{1}^{n} A_n^t}{\frac{1}{n} \times \sum_{1}^{n} (A_n^t + B_n^t)}$$
(1)

where  $A_n^t$  is the brightness of the  $n_{th}$  upper band (hybridized siRNA) at time t, and  $B_n^t$  is the brightness of the n<sub>th</sub> lower band (non-hybridized siRNA) at time t.  $\frac{1}{n} \times \sum_{1}^{n} A_n^t$  is the mean intensity of n upper bands (for example, in Figure 4B, the mean intensity of upper bands of lanes 1–5 for experimental samples), and  $\frac{1}{n} \times \sum_{1}^{n} (A_n^t + B_n^t)$  is the mean value of a sum of upper and lower band intensities. For all experiments n = 5. An example of the calculation along with raw data is presented in this document.

### 1.5. Statistical Analysis

Data were processed using conventional methods of variation statistics. Differences between groups were considered significant based on the Student's *t*-test.

### 2. Results

# 2.1. Scanning Electron Microscopy Investigation



**Figure S1.** SEM images and particle size distribution of NPs: (**A**) magnetite nanoparticles (MNPs); (**B**) silica nanoparticles (SNPs); and (**C**) gold nanoparticles with average diameter 30 nm (GNP-30).



**Figure S2.** Attenuated total reflection infrared spectra (IR-ATR) of MNPs: (**a**) FTIR spectra of MNPs; and (**b**), water removal at elevated temperatures, reveals the presence of OH-groups on the surface of MNPs.



Figure S3. Fourier-transform infrared spectroscopy (FTIR) spectra of MNPs<sup>-</sup>, sodium citrate, and the embedding medium (mineral oil).





**Figure S4.** FTIR spectra of MNPs<sup>P</sup>, polyethylene glycol (PEG), and the embedding medium (mineral oil).

## 2.3. Evaluation of RNA Hybridization Level Using Polyacrylamide Gel Electrophoresis (PAGE)

Tables S1–S6 present intensity values for greyscale images of PAGE bands for all three types of NPs. Each pixel in the image has a maximum intensity value of 255 (entirely white) and a minimum value of 0 (entirely black). The presented numbers are the total intensity for each band image.

|       |                        | 0 hours | 0.5 hours | 1 hour  | 2 hours | 3 hours |
|-------|------------------------|---------|-----------|---------|---------|---------|
|       | 1 <sup>st</sup> repeat | 523,775 | 374,411   | 459,844 | 508,515 | 507,921 |
| ole   | 2 <sup>nd</sup> repeat | 583,958 | 544,730   | 537,486 | 497,084 | 444,736 |
| du    | 3 <sup>rd</sup> repeat | 475,494 | 554,196   | 526,041 | 483,147 | 466,080 |
| Sa    | 4 <sup>th</sup> repeat | 337,224 | 224,971   | 381,961 | 484,059 | 442,288 |
|       | 5 <sup>th</sup> repeat | 335,349 | 244,931   | 328,545 | 496,135 | 432,326 |
|       | 1 <sup>st</sup> repeat | 137,200 | 216,452   | 216,731 | 332,501 | 248,591 |
| lo    | 2 <sup>nd</sup> repeat | 178,349 | 226,702   | 259,824 | 295,946 | 265,834 |
| Contr | 3 <sup>rd</sup> repeat | 188,402 | 168,019   | 310,895 | 209,266 | 253,189 |
|       | 4 <sup>th</sup> repeat | 160,027 | 371,901   | 385,230 | 198,782 | 250,918 |
|       | 5 <sup>th</sup> repeat | 200,109 | 254,324   | 354,186 | 172,435 | 300,775 |

Table S1. The intensity of upper bands of PAGE with MNPs.

Table S2. The intensity of lower bands of PAGE with MNPs.

|         |                        | 0 hours | 0.5 hours | 1 hour  | 2 hours | 3 hours  |
|---------|------------------------|---------|-----------|---------|---------|----------|
| Sample  | 1 <sup>st</sup> repeat | 282,956 | 188,517   | 206,509 | 215,791 | 213,525  |
|         | 2 <sup>nd</sup> repeat | 245,673 | 210,075   | 240,947 | 218,636 | 186,241  |
|         | 3 <sup>rd</sup> repeat | 247,727 | 231,569   | 241,352 | 22,034  | 195,533  |
|         | 4 <sup>th</sup> repeat | 149,618 | 139,973   | 156,357 | 199,658 | 176,139  |
|         | 5 <sup>th</sup> repeat | 151,462 | 125,028   | 128,544 | 197,878 | 16,779   |
| Control | 1 <sup>st</sup> repeat | 133,568 | 974,808   | 683,894 | 109,237 | 753,894  |
|         | 2 <sup>nd</sup> repeat | 125,713 | 107,833   | 817,506 | 883,631 | 778,227  |
|         | 3 <sup>rd</sup> repeat | 117,052 | 100,681   | 118,392 | 452,682 | 869,075  |
|         | 4 <sup>th</sup> repeat | 126,156 | 139,516   | 143,855 | 507,992 | 907,851  |
|         | 5 <sup>th</sup> repeat | 147,081 | 13,808    | 126,496 | 578,839 | 102, 776 |

|         |                        | 0 hours | 0.5 hours | 1 hour  | 2 hours | 3 hours |
|---------|------------------------|---------|-----------|---------|---------|---------|
| le      | 1 <sup>st</sup> repeat | 509,775 | 237,431   | 334,499 | 282,619 | _*      |
|         | 2 <sup>nd</sup> repeat | 450,685 | 232,524   | 158,976 | 276,353 | 385,944 |
| du      | 3 <sup>rd</sup> repeat | 354,136 | 231,304   | 268,708 | 294,620 | 146,882 |
| Sa      | 4 <sup>th</sup> repeat | 316,964 | 161,380   | 239,052 | 188,495 | 243,178 |
|         | 5 <sup>th</sup> repeat | 284,848 | 216,760   | 295,008 | 186,802 | 261,078 |
| Control | 1 <sup>st</sup> repeat | 381,938 | 202,087   | 179,695 | _*      | 362,799 |
|         | 2 <sup>nd</sup> repeat | 288,132 | 163,805   | 266,852 | 181,238 | 205,475 |
|         | 3 <sup>rd</sup> repeat | 255,712 | 197,399   | 142,436 | 244,729 | 231,473 |
|         | 4 <sup>th</sup> repeat | 431,977 | 189,007   | 216,356 | 271,378 | 370,446 |
|         | 5 <sup>th</sup> repeat | 433,606 | 223,594   | 193,334 | _*      | 398,841 |

Table S3. The intensity of upper bands of PAGE with GNPs.

\*Note: samples for these bands were lost during preparation.

|         |                        | 0 hours | 0.5 hours | 1 hour  | 2 hours | 3 hours |
|---------|------------------------|---------|-----------|---------|---------|---------|
|         | 1 <sup>st</sup> repeat | 257,958 | 128,913   | 176,819 | 142,038 | _*      |
| le      | 2 <sup>nd</sup> repeat | 214,475 | 123,551   | 963,871 | 159,678 | 197,465 |
| du      | 3 <sup>rd</sup> repeat | 183,594 | 108,355   | 118,692 | 105,964 | 813,278 |
| Sa      | 4 <sup>th</sup> repeat | 126,866 | 525,004   | 623,259 | 679,561 | 703,769 |
|         | 5 <sup>th</sup> repeat | 138,736 | 791,004   | 103,761 | 651     | 835,502 |
| Control | 1 <sup>st</sup> repeat | 154,866 | 949,325   | 734,569 | _*      | 103,084 |
|         | 2 <sup>nd</sup> repeat | 179,256 | 669,271   | 951,757 | 885,678 | 797,659 |
|         | 3 <sup>rd</sup> repeat | 135,361 | 87,289    | 12,819  | 107,764 | 882,765 |
|         | 4 <sup>th</sup> repeat | 209,898 | 107,369   | 845,863 | 926,776 | 172,212 |
|         | 5 <sup>th</sup> repeat | 281,035 | 113,729   | 835,467 | -*      | 201,396 |

Table S4. The intensity of lower bands of PAGE with GNPs.

\*Note: samples for these bands were lost during preparation.

|         |                        | 0 hours | 0.5 hours | 1 hour  | 2 hours | 3 hours |
|---------|------------------------|---------|-----------|---------|---------|---------|
|         | 1 <sup>st</sup> repeat | 295,494 | 331,319   | 230,222 | 239,579 | 171,976 |
| ole     | 2 <sup>nd</sup> repeat | 244,876 | 335,565   | 232,102 | 241,896 | 178,953 |
| du      | 3 <sup>rd</sup> repeat | 288,444 | 275,894   | 196,235 | 228,515 | 176,680 |
| Sa      | 4 <sup>th</sup> repeat | 260,855 | 291,089   | 163,298 | 206,760 | 178,547 |
|         | 5 <sup>th</sup> repeat | 246,250 | 285,301   | 168,098 | 190,354 | 147,750 |
| Control | 1 <sup>st</sup> repeat | 246,734 | 210,603   | 197,187 | 212,898 | 158,964 |
|         | 2 <sup>nd</sup> repeat | 274,491 | 219,515   | 179,632 | 210,999 | 168,215 |
|         | 3 <sup>rd</sup> repeat | 227,573 | 301,675   | 192,034 | 236,974 | 140,436 |
|         | 4 <sup>th</sup> repeat | 285,854 | 263,208   | 186,476 | 254,187 | 154,427 |
|         | 5 <sup>th</sup> repeat | 295,250 | 221,912   | 207,633 | 282,340 | _*      |

Table S5. The intensity of upper bands of PAGE with SNPs.

\*Note: samples for these bands were lost during preparation.

|         |                        | 0 hours | 0.5 hours | 1 hour  | 2 hours | 3 hours |
|---------|------------------------|---------|-----------|---------|---------|---------|
|         | 1 <sup>st</sup> repeat | 145,314 | 187,057   | 150,034 | 140,371 | 14,407  |
| le      | 2 <sup>nd</sup> repeat | 144,564 | 177,381   | 133,938 | 172,008 | 169,951 |
| Samp    | 3 <sup>rd</sup> repeat | 137,139 | 135,998   | 128,687 | 116,596 | 152,905 |
|         | 4 <sup>th</sup> repeat | 12,724  | 110,835   | 105,899 | 118,478 | 13,756  |
|         | 5 <sup>th</sup> repeat | 107,163 | 134,465   | 112,708 | 104,366 | 122,197 |
| Control | 1 <sup>st</sup> repeat | 107,334 | 110,678   | 113,188 | 102,405 | 126,898 |
|         | 2 <sup>nd</sup> repeat | 132,227 | 140,177   | 112,562 | 114,873 | 12,534  |
|         | 3 <sup>rd</sup> repeat | 139,218 | 15,004    | 904,812 | 135,424 | 147,015 |
|         | 4 <sup>th</sup> repeat | 159,239 | 136,976   | 751,996 | 146,499 | 172,095 |
|         | 5 <sup>th</sup> repeat | 149,619 | 971,043   | 117,879 | 131,167 | _*      |

Table S6. The intensity of lower bands of PAGE with SNPs.

\*Note: samples for these bands were lost during preparation.

Below are examples of the calculation of hybridization rates (HR) for MNPs after 0 hours of incubation.

The HR for samples with MNPs (lanes 1–5 as in Figure 4) was 0.6767:

$$HRs = \frac{\frac{1}{5}(5237.75 + 5839.58 + 4754.94 + 3372.24 + 3353.49)}{\frac{1}{5}((5237.75 + 2829.56) + (5839.58 + 2456.73) + (4754.94 + 2477.27) + (3372.24 + 1496.18) + (3353.49 + 1514.62))}$$

The HR, for control (HRc) (lanes 6-10 as in Figure 4) gave the value 0.5708

$$HRc = \frac{\frac{1}{5}(1372 + 1783.49 + 1884.02 + 1600.27 + 2001.09)}{\frac{1}{5}((1372 + 1335.68) + (1783.49 + 1257.13) + (1884.02 + 1170.52) + (1600.27 + 1261.56) + (2001.09 + 1470.81))}$$

The total increase in HR was calculated as follows:

$$\Delta HR = \frac{HRs}{HRc} \times 100 \tag{2}$$

This gave  $\Delta HR = 118.5\%$ , i.e., the sample with MNPs had an 18.5% better hybridization rate in comparison with the control.



Figure S5. Hybridization rates in systems with (a) MNPs, (b) GNPs, and (c) SNPs over time.



**Figure S6.** PAGE with the sample incubated with GNPs-15 (lanes 1–5) and the control without NPs (lanes 6–10). No siRNA was detected in the first five lanes.

#### 2.4. Synthesis of Nanoparticles



**Figure S7.** The synthesis scheme of nanoparticles. (**a**) MNPs: Iron salts were dispersed in water followed by the addition of ammonium hydroxide. Black precipitate was then collected by a magnet, washed until neutral pH with water and subjected to ultrasound for 4 hours. (**b**) GNPs: Ice-cold sodium borohydride was mixed with tetrachloroauric acid and CTAB, and left in the dark for seed growth. Next, CTAB and ascorbic acid were added to form GNPs. (**c**) SNPs: A water solution of acetic acid was mixed with sodium metasilicate following the formation of SNPs.

#### 2.5. Hybridization Rates for the Second Scheme with MNPs

Sense and antisense sequences were added to the NPs solution in two different ways. First scheme: NPs were added to premixed S and As sequences ((S + As) + NPs). Second scheme: Sense and antisense strands were separately mixed with NPs followed by mixing of (S + NPs) and (As + NPs) complexes together. Table 7S shows the presented data for hybridization rates with MNPs after 0 hours of incubation. Contrary to the 18% increase of HR in the first scheme, here we observed reduction of HR by 4%. We speculated that this occurs due to loss of spatial mobility of siRNA when they first bind to the surface on MNPs.

|     |                        | Upper band | Lower band |
|-----|------------------------|------------|------------|
|     | 1 <sup>st</sup> repeat | 963,333    | 807,725    |
| ole | 2 <sup>nd</sup> repeat | 100,824    | 847,031    |
| hp  | 3 <sup>rd</sup> repeat | 951,882    | 817,043    |
| Sa  | 4 <sup>th</sup> repeat | 886,725    | 763,588    |
|     | 5 <sup>th</sup> repeat | 908,353    | 763,627    |
|     | 1 <sup>st</sup> repeat | 101,173    | 785,235    |
| lo  | 2 <sup>nd</sup> repeat | 961,247    | 745,902    |
| ntr | 3 <sup>rd</sup> repeat | 986,918    | 794,608    |
| ő   | 4 <sup>th</sup> repeat | 106,544    | 859,996    |
|     | 5 <sup>th</sup> repeat | _*         | _*         |

Table S7. The intensity of PAGE bands with MNPs according to the second scheme of mixing.

\*Note: samples for these bands were lost during preparation.

#### 2.6. Correlation Between Greyscale Image Intensity and siRNA Concentration

To prove, that PAGE can be used as a technique for siRNA concentration analysis, we performed a series of dilutions of hybridized siRNA in the range from 4  $\mu$ M to 0.008  $\mu$ M and stained it with SYBR Gold, according to protocol. As a result, we found that the correlation between siRNA concentration and fluorescence intensity is linear. At the lowest concentrations dependency becomes not linear, but this is due to the detection limit of this technique.



**Figure S8.** Correlation between fluorescent intensity (in terms of grayscale intensity) and concentration of siRNA.