

Article Gold nanocylinders on gold film as a multi-spectral SERS substrate

Wafa Safar¹, Médéric Lequeux², Jeanne Solard³, Alexis P.A. Fischer³, Nordin Felidj⁴, Pietro Giuseppe Gucciardi⁵, Mathieu Edely¹, Marc Lamy de la Chapelle^{1*}

- ¹ Institut des Molécules et Matériaux du Mans (IMMM UMR CNRS 6283), Université du Mans, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
- ² Université Paris 13, Laboratoire CSPBAT, CNRS, (UMR 7244), 74 rue Marcel Cachin, 93017 Bobigny, France.
- ³ Université Paris 13, Laboratoire de Physique des Lasers, CNRS, (UMR 7538), 99 av. JB Clément, 93450 Villetaneuse, France.
- ⁴ Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France.
- ⁵ CNR IPCF, Istituto per i Processi Chimico-Fisici, Viale F. Stagno D'Alcontres 37, I-98158 Messina, Italy.
- * Institut des Molécules et Matériaux du Mans (IMMM UMR CNRS 6283), Université du Mans, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France. E-mail: <u>marc.lamydelachapelle@univ-lemans.fr</u>

Received: date; Accepted: date; Published: date

Figure SI1: Extinction spectra for the four film thicknesses: a) 20 nm, b) 30 nm, c) 40 nm, d) 50 nm and different nanocylinder diameters (black spectrum: 250 nm, red spectrum: 230 nm, blue spectrum: 210 nm, green spectrum: 190 nm, purple spectrum: 170 nm).

Figure SI2: SERS spectra of MBA on gold nanocylinders with a diameter of 250 nm and a film thickness of 20 nm at the excitation wavelengths of (a) 532 and (b) 785 nm.

Figure SI3: Evolution of the SERS intensities of the band located at 1080 cm⁻¹ depending on the nanocylinder diameter and for the four film thicknesses: a) 20 nm, b) 30 nm, c) 40 nm, d) 50 nm. Excitation wavelength: 638 nm. Points size include the error bars.

Figure SI4: Evolution of the SERS intensities of the band located at 1080 cm⁻¹ depending on the nanocylinder diameter and for the four film thicknesses: a) 20 nm, b) 30 nm, c) 40 nm, d) 50 nm. Excitation wavelength: 785 nm. Points size include the error bars.

Figure SI5: Evolution of the SERS intensities of the band located at 1080 cm⁻¹ depending on the nanocylinder diameter and for the four film thicknesses: a) 20 nm, b) 30 nm, c) 40 nm, d) 50 nm. Excitation wavelength: 532 nm. Points size include the error bars.

Figure SI6: Comparison of the variation of the surface of the nanocylinder edges (red lines) and the evolution of the SERS intensities of the band located at 1580 cm⁻¹ depending on the nanocylinder diameter and for the four film thicknesses: a) 20 nm, b) 30 nm, c) 40 nm, d) 50 nm. Excitation wavelength: 638 nm.

Figure SI7: Comparison of the variation of the surface of the nanocylinder edges (red lines) and the evolution of the SERS intensities of the band located at 1580 cm⁻¹ depending on the nanocylinder diameter and for the four film thicknesses: a) 20 nm, b) 30 nm, c) 40 nm, d) 50 nm. Excitation wavelength: 785 nm.

Figure SI8: Comparison of the variation of the surface of the nanocylinder edges (red lines) and the evolution of the SERS intensities of the band located at 1580 cm⁻¹ depending on the nanocylinder diameter and for the four film thicknesses: a) 20 nm, b) 30 nm, c) 40 nm, d) 50 nm. Excitation wavelength: 532 nm.

SI9: Normalization of the SERS intensity by the Si Raman intensity

The Raman intensity of the Si, $I_{Si}(\lambda)$, depends on the volume excited by the laser. Such volume depends on the excitation wavelength, λ , and the volume probes by the laser is then different from one wavelength to another.

Thus, as $I_{Si}(\lambda)$ is proportional to the $V_{Si}(\lambda)$, it has to be normalized by the $V_{Si}(\lambda)$ to be comparable from one wavelength to another.

$$I_{Si_Norm}(\lambda) = \frac{I_{Si}(\lambda)}{V_{Si}(\lambda)}$$

One can assume that the confocal volume has an ellipsoidal shape as shown on the figure below, with r_{xy} , the radius in the sample surface and r_z , the half axis perpendicular of the sample surface.

In diffraction limited optics, $r_{xy} = \frac{0.61\lambda}{NA}$ and $r_z = \frac{2n\lambda}{NA^{2\prime}}$ with *n*, the refractive index and *NA*, the objective numerical aperture.

The volume, V_{Si} , probes by the laser inside the material is the half of the ellipsoid volume and can be calculated as follow: $V_{Si} = \frac{2}{3} \pi r_{xy}^2 r_z$.

In the same way, to be comparable from one wavelength to another, the SERS intensities have also to be corrected by the surface of collection $S_{SERS} = \pi r_{xy}^2$ (the volume is not applicable as the SERS is only a surface process).

$$I_{SERS_Norm}(\lambda) = \frac{I_{SERS}(\lambda)}{S_{SERS}(\lambda)}$$

To compare the SERS intensity between the different wavelength, we then divided the $I_{SERS_Norm}(\lambda)$ by the $I_{Si_Norm}(\lambda)$ to remove the apparatus response that is wavelength dependent.

$$\frac{I_{SERS_Norm}(\lambda)}{I_{Si_Norm}(\lambda)} = \frac{I_{SERS}(\lambda)}{S_{SERS}(\lambda)} \frac{V_{Si}(\lambda)}{I_{Si}(\lambda)} = \frac{I_{SERS}(\lambda)}{I_{Si}(\lambda)} \frac{2}{3} r_{z}(\lambda) \propto \frac{I_{SERS}(\lambda)}{I_{Si}(\lambda)} \lambda$$

The $\frac{I_{SERS_Norm(\lambda)}}{I_{Si_Norm(\lambda)}}$ is then proportional the $\frac{I_{SERS(\lambda)}}{I_{Si}(\lambda)}$ ratio and to λ . The $\frac{I_{SERS(\lambda)}}{I_{Si}(\lambda)}$ is then relevant to determine the relative enhancement factor from one wavelength to another but should be corrected by a factor to take into account the proportionality to λ .

Thus at 532 nm, the $\frac{I_{SERS_Norm}(\lambda)}{I_{Si_Norm}(\lambda)}$ is overestimated by the $\frac{I_{SERS}(\lambda)}{I_{Si}(\lambda)}$ as the excitation wavelength is

lower whereas at 785 nm, the $\frac{I_{SERS_Norm}(\lambda)}{I_{Si_Norm}(\lambda)}$ is underestimated as the excitation wavelength is larger. If

we fixed the reference $\frac{I_{SERS_Norm}(\lambda)}{I_{Si_Norm}(\lambda)}$ for the wavelength at 638 nm (assuming that $\lambda = 1$ in the equation

 $\frac{I_{SERS_Norm}(\lambda)}{I_{Si_Norm}(\lambda)} \propto \frac{I_{SERS}(\lambda)}{I_{Si}(\lambda)} \lambda$), the $\frac{I_{SERS}(\lambda)}{I_{Si}(\lambda)}$ ratio has to be multiplied by $\frac{638}{532} = 0,834$ at 532 nm and by $\frac{785}{638} = 0,834$

1,23 at 785 nm to be comparable with the $\frac{I_{SERS}(\lambda)}{I_{SI}(\lambda)}$ at 638 nm.

We then corrected the $\frac{I_{SERS}(\lambda)}{I_{Si}(\lambda)}$ ratio in the figure 6 to remove the wavelength dependence of the $I_{Si}(\lambda)$.