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Abstract: In this paper, we report the plasma-enhanced atomic layer deposition (PEALD) of TiO2

and TiO2/Al2O3 nanolaminate films on p-Si(100) to fabricate metal-oxide-semiconductor (MOS)
capacitors. In the PEALD process, we used titanium tetraisopropoxide (TTIP) as a titanium precursor,
trimethyl aluminum (TMA) as an aluminum precursor and O2 plasma as an oxidant, keeping
the process temperature at 250 ◦C. The effects of PEALD process parameters, such as RF power,
substrate exposure mode (direct or remote plasma exposure) and Al2O3 partial-monolayer insertion
(generating a nanolaminate structure) on the physical and chemical properties of the TiO2 films were
investigated by Rutherford backscattering spectroscopy (RBS), Raman spectroscopy, grazing incidence
X-ray diffraction (GIXRD), and field emission scanning electron microscopy (FESEM) techniques.
The MOS capacitor structures were fabricated by evaporation of Al gates through mechanical mask
on PEALD TiO2 thin film, followed by evaporation of an Al layer on the back side of the Si substrate.
The capacitors were characterized by current density-voltage (J-V), capacitance-voltage (C-V) and
conductance-voltage (G-V) measurements. Our results indicate that RF power and exposure mode
promoted significant modifications on the characteristics of the PEALD TiO2 films, while the insertion
of Al2O3 partial monolayers allows the synthesis of TiO2/Al2O3 nanolaminate with well-spaced
crystalline TiO2 grains in an amorphous structure. The electrical characterization of the MOS
structures evidenced a significant leakage current in the accumulation region in the PEALD TiO2

films, which could be reduced by the addition of partial-monolayers of Al2O3 in the bulk of TiO2

films or by reducing RF power.

Keywords: plasma-enhanced atomic layer deposition; titanium dioxide; nanolaminate; metal-oxide-
semiconductor; electrical properties

1. Introduction

Titanium dioxide (TiO2) thin films and nanolaminates have a significant number of promising
applications in different areas, such as microelectronics [1–6], photovoltaics [7,8], photocatalysis [9–11],
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fuel cells [12], sensors [13–16], anti-reflective coating applications [17], biomedical coatings [18,19] and
food packaging applications [20]. The properties and applicability of TiO2 thin films are intrinsically
related to their crystal structure. In this sense, they have been mainly produced in amorphous,
anatase and/or rutile structure forms by a wide range of techniques, namely sol-gel [21,22], magnetron
sputtering [23,24], chemical vapor deposition (CVD) [25], physical vapor deposition (PVD) [26], atomic
layer deposition (ALD) [27,28] and plasma-enhanced atomic layer deposition (PEALD) [29–34]. Among
them, PEALD requires lower substrate and process temperatures to obtain crystalline films [35]. It is
also one of the most promising technologies for the growth of conformal coatings and nanolaminates
in various structures and topographies [32,36] with layer thickness precisely defined by self-limited
surface reactions [37]. During the PEALD of metal oxide films, oxygen (O2) plasma is used as an
oxidant source [38]. The plasma is composed of a mixture of electrons, ions, neutrals and excited
molecules/atoms. The action of each specie depends on the plasma exposure mode that can be remote
or direct, where the latter allows contact of all plasma species with surface ligand groups [39]. The
oxidizing plasma source used in the PEALD process has the advantage of reducing the purge time after
the precursor pulse. Furthermore, its high reactivity enhances surface chemical reactions, allowing the
process to be carried out at lower temperature and, consequently, preventing the interlayer diffusion
that is responsible for the degradation of nanoscale device properties [40].

Because of its dielectric properties, TiO2 thin films are widely used in microelectronic and
photovoltaic applications. In microelectronic devices and systems, the metal oxide deposition
temperatures need to be below 500 ◦C because capacitors are expected to be deposited after the formation
of transistors [41]. The same caution is required for the insulator/oxide deposition temperature in
photovoltaic cells since temperatures above 300 ◦C cause degradation in these devices related to
one order vacancy compound (OVC) [42]. The PEALD technique fits the requirements for both
aforementioned devices, as it offers excellent uniformity, conformability and atomic level control of the
growing oxide layer [43]. Moreover, as previously stressed, TiO2 growth can be conducted at lower
process temperatures and under atmospheres with shorter purge pulses in PEALD reactors than in
standard thermal ALD [44].

In our previous study [45], the effects of O2 plasma power, titanium precursor chemistry and
plasma exposure mode on the growth mechanism, structure and morphology of PEALD TiO2 films
were investigated. Herein, we extend this study with the focus on the fabrication and characterization
of TiO2/p-Si MOS capacitors for potential applications in microelectronic and photovoltaic devices. J-V,
C-V and G-V characteristics of the MOS capacitors at room temperature were investigated in function
of the following PEALD process parameters: (i) RF power, (ii) plasma exposure mode and (iii) Al2O3

partial monolayer insertion (generating a nanolaminate structure). In addition, we also discuss how
the plasma exposure affects or causes surface modifications and changes in electrical parameters of
TiO2 films. There is a lack of available literature on the electrical characteristics of MOS capacitors
formed by PEALD TiO2-based films on p-type Si substrates grown under different conditions.

2. Materials and Methods

2.1. Film Preparation

PEALD processes were performed in a Beneq TFS 200 ALD system (Beneq Oy, Espoo, Finland)
equipped with a capacitively coupled plasma reactor, as illustrated in the schematic diagram shown in
Figure 1. The reactor consists of a cylindrical chamber, with a 200 mm diameter, composed by two
zones: (i) the upper plasma generation zone, where the plasma is generated by capacitive coupling of
the upper plate with a 13.56 MHz RF power supply (Cesar, Advanced Energy Inc., Fort Collins, CO,
USA) and grounding the bottom grid electrode plus radial reactor walls; and (ii) the lower process
zone (sample stage), where there is no plasma generation. As the plasma generation zone is located
at a distance from the process zone, the ion damage should be significantly suppressed [46]. In our
experiments, the spacing between the top plate and the grid was 30 mm, whereas between the grid and
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the substrate holder, it was 12 mm (Figure 1a). In the second plasma exposure configuration shown in
Figure 1b, we removed the grid, and the sample was exposed to the plasma generation zone. Thus, the
damage caused by the ion impact on the substrate surface must be higher [46]. These PEALD reactor
configurations schematized in Figure 1a,b are named remote plasma mode and direct plasma mode,
respectively [38].
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Figure 1. Schematic diagram of the capacitively coupled plasma reactor used for plasma-enhanced
atomic layer deposition (PEALD) processes: (a) remote plasma mode and (b) direct plasma mode.

The substrates used for TiO2 thin-film deposition were three-inch p-type <100> silicon wafers
(UniversityWafer Inc., South Boston, MA, USA) chemically cleaned, using a modified RCA recipe
described in [47]. Between each bath, the Si wafers were washed in deionized (DI) water for 5 min.
Subsequently, they were dipped in diluted hydrofluoridric acid, in the proportion 80:1 (80 H2O + 1 HF
(49%)), at room temperature, for 100 s, and were rinsed in DI water for 3 min.

TiO2 thin films were grown using titanium (IV) isopropoxide (TTIP, 97.0%, Sigma-Aldrich, São
Paulo, Brazil) as a metallic precursor and O2 gas (99.99%, White Martins, Jacareí, Brazil) to generate
the O2 plasma (oxidant precursor). Here, the TTIP precursor was heated at 70 ◦C to obtain a high
vapor pressure, and nitrogen (99.999%, White Martins, Jacareí, Brazil) was used as the gas of purge.
The vapor delivery line of the TTIP was also heated to 70 ◦C, to prevent precursor condensation. The
insertion of the oxygen gas was through the upper plate of the plasma generation zone at a flow rate
of 50 sccm. Before the deposition process, the reactor chamber was evacuated at a pressure of 10−2

mbar, and the N2 gas purge was maintained around 1.0 mbar through the insertion of 250 sccm. The
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reactor temperature was fixed at 250 ◦C for all processes, and its variation during the film growth
did not exceed 3 ◦C. For PEALD TiO2 processes, the reaction cycle number was maintained at 1000.
The self-bias voltage varied by approximately 70–100 V during the 100–150 W O2 plasma pulse. This
voltage drop value in the plasma sheath (see Figure 1b) is sufficient to supply energy to the ions,
to induce chemical reactions in growing film during PEALD [48].

The experimental procedure for the deposition of TiO2 thin films was divided into three sets of
experiments. In the first set, the RF power was varied between 100 to 150 W. Concomitantly, in the
second set the plasma exposure mode was varied to study the impact of direct plasma exposition
during the ligand pulse. In the third set, Al2O3 partial-monolayers were grown with TiO2 by alternating
cycles of TiO2 and Al2O3 in supercycles, in order to form a TiO2/Al2O3 nanolaminate. For this latter,
the experimental parameters are detailed in the next subsection.

2.2. Nanolaminate Preparation

TiO2/Al2O3 nanolaminate structure was prepared, using the design proposed by Testoni et al. [49],
i.e., alternatively depositing a TiO2 sublayer and Al2O3 partial-monolayer, respectively, in “n”
supercycles. The Al2O3 is formed by a single cycle of trimethylaluminum (TMA)–O2 plasma,
so it is a partial-monolayer because of steric hindrance of the precursors, while the TiO2 sublayer
is formed by repeating 60 cycles of TTIP–O2 plasma. This condition is in the interface of the TiO2

crystallization disruption [49]. Here, the Al2O3 partial-monolayers were grown, using TMA (97%,
Sigma-Aldrich, São Paulo, Brazil) at 21 ◦C and O2 plasma. TiO2 sublayers were deposited, using TTIP
at 70 ◦C and O2 plasma. High purity N2 was used as purge and carrier gas for both TMA and TTIP
precursors. The base pressure of the reactor was below 10−2 mbar, and, during the deposition, the
gas pressure was maintained around 1.0 mbar through the insertion of 300 sccm of nitrogen. The
TiO2/Al2O3 films were grown under the following conditions of supercycle: 1 cycle of TMA–O2 plasma
per 60 cycles of TTIP–O2 plasma. The supercycle was repeated until 2700 cycles of TTIP–O2 plasma,
resulting in 45 layers of TiO2/Al2O3. The temperature and RF power were fixed at 250 ◦C and 100 W,
respectively, and the PEALD reactor was operated in remote mode.

2.3. Thin-Film Characterization

Rutherford backscattering spectroscopy (RBS) was used to determine the film thickness and film
elemental composition (in at. %). The measurements were performed in a Pelletron-type accelerator,
using a 2.2 MeV 4He+ beam, and the particle detector was positioned at an angle of 170◦ to the
incident beam. The detection sensibility of RBS in relation to Ti, O, Al and Si is approximately
5%. The RBS data were analyzed, using the computer code MultiSIMNRA [50,51]. The theoretical
density considering the TiO2 crystal structure was applied to convert the RBS density values (1015

atoms.cm−2) into the thickness (nm) of the layer. Raman scattering measurements were used for
microstructural analysis of the samples. The Raman spectra were recorded at room temperature, with
a Raman microspectrometer (Horiba, Evolution, Kyoto, Japan) equipped with a thermoelectrically
cooled multichannel charge-coupled device detector. The spectral resolution was better than 1 cm−1

over the range from 100 to 900 cm−1, and the power of the incident laser beam on the samples was
<10 mW, with an excitation wavelength of 532 nm. Phonons modes were then analyzed by fitting
Raman peaks with a Voigt profile, fixing the Gaussian linewidth (1.6 cm−1) to the experimental setup
resolution. In order to characterize the crystalline structure, the grazing incidence X-ray diffraction
(GIXRD) method was used. GIXRD patterns were obtained at room temperature, in a Shimadzu XRD
6000 goniometer, using cooper target (CuKα radiation 1.5418Å), 2θ from 20◦ to 80◦, at a scanning speed
of 0.02◦/s, a voltage of 40 kV and a current of 30 mA. Moreover, the GIXRD studies were carried out at
an incidence angle of 0.29◦. The morphology of the samples was evaluated in a Tescan Mira (TESCAN
Brno, s.r.o., Kohoutovice, Czech Republic) field emission scanning electronic microscopy (FESEM),
coupled with an AZtec 3.1 energy-dispersive X-ray spectrometer (EDS).
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2.4. Fabrication and Characterization of the MOS Structures

Aluminum (Al) was evaporated on the PEALD TiO2 films through a mechanical mask, to form Al
gates with area of 4.3 × 10−3 cm2 and thickness of approximately 200 nm. Subsequently, aluminum
layers with a thickness of approximately 200 nm were evaporated on the backside of Si substrate.
Thus, the MOS structure of the PEALD TiO2/p-Si capacitors were formed. This fabrication process is
illustrated in Figure 2.
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Figure 2. Schematic representation of the fabrication process of the PEALD TiO2/p-type Si capacitors.

The dark current density-voltage (J-V) characteristics of the PEALD TiO2/p-Si capacitors were
measured at room temperature by an Agilent 4146 C source measurement unit (Keysight Technologies,
São Paulo, Brazil) programmed to apply potentials on the metal gate between −10 V and +10 V in
steps of 0.1 V/s. The capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics of the
capacitors were evaluated at 1 MHz and at room temperature, using an HP 4280A C meter/C-V plotter
(Hewlett-Packard Inc., Palo Alto, CA, USA). Both types of equipment mentioned above are highly
accurate with a low noise ground unit.

3. Results and Discussion

3.1. Film Characterization

3.1.1. Chemical Composition

Studies of stoichiometry throughout the TiO2 and TiO2/Al2O3 films’ thickness were done, using
RBS. Figure 3 shows the experimental and simulated RBS spectra for TiO2 films deposited under
different conditions of RF power, plasma mode and Al2O3 partial-monolayer insertion.

The backscattered signal from the TiO2 film on the Si substrate is characterized by well-defined
peaks of Ti and O. These peaks depend on the backscattering cross-section, and the areas below the
peaks represent the areal density of the atom. Most of the time, the peak position is not matched with
the exact energy position of the atom. The Si substrate in the spectra is correlated with the pattern
similar to a shoulder. Note that, in the case of TiO2/Al2O3 nanolaminate, the Al peak is not evident;
however, it is necessary to consider 9% of its elemental composition during the simulation of the
experimental RBS spectrum, as shown in Figure 3e. This behavior occurs because (a) Si and Al have
very close atomic numbers that cause an overlapping of their respective peaks, and (b) the amount of
Al in the film is low due to the nature of the nanolaminate PEALD process that used a single cycle of
TMA-O2 plasma, while repeating 60 cycles of TTIP-O2 plasma during each super-cycle. This results
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in a low amount of Al in the film (9%), along with the reduced peak intensity in the RBS spectrum.
The plasma mode, under the same RF power, does not significantly influence the film thickness. On the
other hand, if the RF power is increased, the film thickness is reduced for both plasma modes. This
behavior for the TTIP precursor was demonstrated in our previous study [45], where it was observed
that the growth per cycle (GPC) decreases when RF power is increased. The leading cause is related to
the increase of the density of O2 radicals that fragments the TTIP-ligands, hindering the formation of
Ti-O bonds due decreasing of the free path.

Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 22 

 

The plasma mode, under the same RF power, does not significantly influence the film thickness. On 
the other hand, if the RF power is increased, the film thickness is reduced for both plasma modes. 
This behavior for the TTIP precursor was demonstrated in our previous study [45], where it was 
observed that the growth per cycle (GPC) decreases when RF power is increased. The leading cause 
is related to the increase of the density of O2 radicals that fragments the TTIP-ligands, hindering the 
formation of Ti-O bonds due decreasing of the free path. 

The insertion of Al2O3 partial-monolayers in TiO2 using the nanolaminate design proposed by 
Testoni et al. [49] showed that a considerable increase of number of cycles (2700 cycles) was necessary 
for obtaining a film thickness near to pure TiO2 condition (1000 cycles). This is due to the poisoning 
effect promoted by the TMA pulse, affecting the growth kinetics of subsequent TiO2 layers, and 
thereby altering the overall growth per cycle (GPC) of TiO2/Al2O3 nanolaminate [49]. 

The elemental chemical composition of the samples is shown, together with the RBS spectra, in 
Figure 3. The TiOx films show an excess of oxygen, i.e., x values ranging from 2.13 ± 0.01 to 2.33 ± 
0.01, as can be seen in Figure 3. These results differ from those described for thermal ALD TiO2 films, 
in which either stoichometric or oxygen-deficient films are obtained [52]. The increase of oxygen 
content in PEALD TiO2 films may be related to the higher reactivity of O2 plasma compared to the 
water precursor used in thermal ALD. In a recent study, Wei et al. [5] showed the influence of 
temperatures on the PEALD process applied to the growth of TiO2 films in Si for the manufacture of 
MOS capacitors, where they used O2 plasma at 400 W of RF power. They varied the temperature from 
100 to 300 °C, with steps of 50 °C. Using the X-ray photoelectron spectroscopy (XPS) technique, they 
verified that the TiO2 films had O/Ti stoichiometry ranging from 2.08 to 2.32. These results are in 
agreement with our O/Ti stoichiometry RBS data. Raztsch et al. [35] found a slight increase in the 
oxygen content in TiO2 films grown on Si by PEALD with O2 plasma at 300 W. These TiO2 films consist 
of large crystallites embedded in the amorphous layer, and, through RBS, they determined the O/Ti 
stoichiometry of 2.00 ± 0.04. Moreover, Bousoulas et al. verified that by increasing the oxygen content 
in TiO2 films, the size of vacancy-based filaments is reduced, resulting in the more stable operation 
of resistive switching memory devices [53]. This can be an interesting application for the materials 
and devices reported in this study, especially for conditions of 100 W RF power and with the insertion 
of Al2O3. A more detailed explanation of the excess oxygen in the films is given in Section 3.1.2. 

400 600 800 1000 1200 1400
0

500

1000

1500

2000

 

 Experimental
 MultiSIMNRA Simulation

RB
S 

yi
el

d 
(c

ou
nt

s)

Energy (keV)

Si

O

Ti
TiO2 – 100 W remote mode

Elemental Composition:
- titanium = (32 ± 1)%
- oxygen = (68 ± 3)%

thickness = (73 ± 1) nm

Error bands
(a)

O/Ti = 2.13 ± 0.01

400 600 800 1000 1200 1400
0

500

1000

1500

2000

O/Ti = 2.23 ± 0.01

 

 

 Experimental
 MultiSIMNRA Simulation

RB
S 

yi
el

d 
(c

ou
nt

s)

Energy (keV)

Si

O

Ti
TiO2 – 100 W direct mode

Elemental Composition:
- titanium = (31 ± 1)%
- oxygen = (69 ± 3)%

thickness = (74 ± 2) nm

Error bands
(b)

 

400 600 800 1000 1200 1400
0

500

1000

1500

2000

O/Ti = 2.23 ± 0.03

 

 Experimental
 MultiSIMNRA Simulation

RB
S 

yi
el

d 
(c

ou
nt

s)

Energy (keV)

Si

O

TiTiO2 – 150 W remote mode

Elemental Composition:
- titanium = (31 ± 1)%
- oxygen = (69 ± 4)%

thickness = (60 ± 2) nm

Error bands
(c)

400 600 800 1000 1200 1400
0

500

1000

1500

2000

O/Ti = 2.33 ± 0.01

 

 Experimental
 MultiSIMNRA Simulation

RB
S 

yi
el

d 
(c

ou
nt

s)

Energy (keV)

Si

O

Ti

TiO2 – 150 W direct mode

Elemental Composition:
- titanium = (30 ± 1) %
- oxygen = (70 ± 3)%

thickness = (62 ± 2) nm

Error bands
(d)

 
Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 22 

 

400 600 800 1000 1200 1400
0

500

1000

1500

2000

O/Ti = 2.25 ± 0.01

 

 Experimental
 MultiSIMNRA Simulation

RB
S 

yi
el

d 
(c

ou
nt

s)

Energy (keV)

Si

O

Ti

Al

Elemental Composition:
- titanium = (28 ± 1) %
- oxygen = (63  ± 3)%
- aluminum = (9 ± 1) %

thickness = (72 ± 1) nm

TiO2/Al2O3 – 100 W remote mode

Error bands
(e)

 
Figure 3. Experimental, simulated RBS spectra and data error bands for PEALD TiO2 films deposited 
under different conditions: (a) 100 W in remote mode, (b) 100 W in direct mode, (c) 150 W in remote 
mode, (d) 150 W in direct mode and (e) 100 W in remote mode (TiO2/Al2O3 nanolaminate). The 
precision was fixed in the MultiSIMNRA, at 10−7, with the error bars in the simulated RBS spectra 
being smaller than the line size. 

3.1.2. Structure and Morphology 

Micro-Raman spectra are shown in Figure 4a. Four Raman-active modes associated with anatase 
structure can be observed: A1g (519 cm−1), B1g (397 cm−1) and Eg (144 and 636 cm−1) with a strong peak 
at 144 cm−1 [28,54]. The crystalline condition of pure TiO2 thin films due to the strong peak at 144 cm−1 
is clearly evidenced. On the other hand, for the TiO2/Al2O3 nanolaminate, the main peaks of the 
anatase phase were not observed, and the rutile phase is formed above 500 °C for silicon substrate 
[28,37,52,53], which suggests that the film is amorphous or partially crystalline. Figure 4b shows the 
micro-Raman spectra evidencing the shift and the full width at half maximum (FWHM) of the Eg 
peak at 144 cm−1. According to Parker et al. [55] and Bassi et al. [56], the shift of the Eg peak and 
bandwidth are related to non-stoichiometry, while the latter also influences the crystal size of anatase 
TiO2. Ratzsch et al. showed a slight excess in oxygen (O/Ti > 2) in high-density TiO2 with large 
crystallites embedded in the amorphous layer [35]. They observed the same behavior for the Eg peak 
at 144 cm−1, i.e., a shift and a broadband. Thus, the shift in the Eg peak and the bandwidth observed 
in Figure 4b for all PEALD TiO2 films can be attributed to the increase in the oxygen content, 
corroborating with RBS results. It is noteworthy that all characterizations of the thin films were 
performed in different positions of the samples. Therefore, the oxygen excess is not localized. 

To confirm the Raman results, GIXRD measurements were performed, using the same 0.29° 
incident angle for all films. This angle was used to reduce the reflections from the Si substrate [45]. 
Based on the powder diffraction file (JCPDS: 21–1272) [57], all diffraction peaks are identified for the 
TiO2 films studied here, as shown in Figure 5. 

Figure 3. Experimental, simulated RBS spectra and data error bands for PEALD TiO2 films deposited
under different conditions: (a) 100 W in remote mode, (b) 100 W in direct mode, (c) 150 W in remote
mode, (d) 150 W in direct mode and (e) 100 W in remote mode (TiO2/Al2O3 nanolaminate). The
precision was fixed in the MultiSIMNRA, at 10−7, with the error bars in the simulated RBS spectra
being smaller than the line size.

The insertion of Al2O3 partial-monolayers in TiO2 using the nanolaminate design proposed by
Testoni et al. [49] showed that a considerable increase of number of cycles (2700 cycles) was necessary
for obtaining a film thickness near to pure TiO2 condition (1000 cycles). This is due to the poisoning
effect promoted by the TMA pulse, affecting the growth kinetics of subsequent TiO2 layers, and thereby
altering the overall growth per cycle (GPC) of TiO2/Al2O3 nanolaminate [49].
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The elemental chemical composition of the samples is shown, together with the RBS spectra,
in Figure 3. The TiOx films show an excess of oxygen, i.e., x values ranging from 2.13 ± 0.01 to
2.33 ± 0.01, as can be seen in Figure 3. These results differ from those described for thermal ALD
TiO2 films, in which either stoichometric or oxygen-deficient films are obtained [52]. The increase of
oxygen content in PEALD TiO2 films may be related to the higher reactivity of O2 plasma compared
to the water precursor used in thermal ALD. In a recent study, Wei et al. [5] showed the influence of
temperatures on the PEALD process applied to the growth of TiO2 films in Si for the manufacture
of MOS capacitors, where they used O2 plasma at 400 W of RF power. They varied the temperature
from 100 to 300 ◦C, with steps of 50 ◦C. Using the X-ray photoelectron spectroscopy (XPS) technique,
they verified that the TiO2 films had O/Ti stoichiometry ranging from 2.08 to 2.32. These results are
in agreement with our O/Ti stoichiometry RBS data. Raztsch et al. [35] found a slight increase in the
oxygen content in TiO2 films grown on Si by PEALD with O2 plasma at 300 W. These TiO2 films consist
of large crystallites embedded in the amorphous layer, and, through RBS, they determined the O/Ti
stoichiometry of 2.00 ± 0.04. Moreover, Bousoulas et al. verified that by increasing the oxygen content
in TiO2 films, the size of vacancy-based filaments is reduced, resulting in the more stable operation of
resistive switching memory devices [53]. This can be an interesting application for the materials and
devices reported in this study, especially for conditions of 100 W RF power and with the insertion of
Al2O3. A more detailed explanation of the excess oxygen in the films is given in Section 3.1.2.

3.1.2. Structure and Morphology

Micro-Raman spectra are shown in Figure 4a. Four Raman-active modes associated with anatase
structure can be observed: A1g (519 cm−1), B1g (397 cm−1) and Eg (144 and 636 cm−1) with a strong
peak at 144 cm−1 [28,54]. The crystalline condition of pure TiO2 thin films due to the strong peak
at 144 cm−1 is clearly evidenced. On the other hand, for the TiO2/Al2O3 nanolaminate, the main
peaks of the anatase phase were not observed, and the rutile phase is formed above 500 ◦C for silicon
substrate [28,37,52,53], which suggests that the film is amorphous or partially crystalline. Figure 4b
shows the micro-Raman spectra evidencing the shift and the full width at half maximum (FWHM) of
the Eg peak at 144 cm−1. According to Parker et al. [55] and Bassi et al. [56], the shift of the Eg peak
and bandwidth are related to non-stoichiometry, while the latter also influences the crystal size of
anatase TiO2. Ratzsch et al. showed a slight excess in oxygen (O/Ti > 2) in high-density TiO2 with
large crystallites embedded in the amorphous layer [35]. They observed the same behavior for the
Eg peak at 144 cm−1, i.e., a shift and a broadband. Thus, the shift in the Eg peak and the bandwidth
observed in Figure 4b for all PEALD TiO2 films can be attributed to the increase in the oxygen content,
corroborating with RBS results. It is noteworthy that all characterizations of the thin films were
performed in different positions of the samples. Therefore, the oxygen excess is not localized.

To confirm the Raman results, GIXRD measurements were performed, using the same 0.29◦

incident angle for all films. This angle was used to reduce the reflections from the Si substrate [45].
Based on the powder diffraction file (JCPDS: 21–1272) [57], all diffraction peaks are identified for the
TiO2 films studied here, as shown in Figure 5.
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plasma mode and Al2O3 partial-monolayer insertion and (b) micro-Raman spectra evidencing the shift
and the FWHM of the Eg peak at 144 cm−1.

The grain size was calculated by using the Scherrer equation [59]; all the peaks of the anatase
phase were considered in the calculations (Figure 5), with the values in the following order: (17.8 ± 0.7)
nm to 150 W—direct mode, (19.2 ± 0.9) nm to 150 W—remote mode, (15.9 ± 0.8) nm to 100 W—direct
mode and (16.2 ± 0.7) nm. These crystal sizes influence the broadband in Raman peaks [56]; however,
when comparing the grain size found in the GIXRD diffractograms with the FWHM of the Eg peak
found by the Raman spectrum, it is observed that the larger the grain size is, the smaller the FWHM is.
Therefore, the film grown in 150 W—remote mode has the largest grain size with the smallest FWHM.
On the other hand, the film grown with 100 W—direct mode has the largest FWHM and the smallest
grain size. The results are in agreement with Parker et al. [55] and Bassi et al. [56]. Bearing in mind
that there is no Eg peak for the TiO2/Al2O3 film, and the error associated with the grain size is higher
than the grain value, we could not find these parameters for this film.

Figure 6 shows FESEM images of the surface of the TiO2 films grown at different PEALD process
conditions. These images show that the grain size slight decreases with RF power for both plasma
modes. The effect of the electrode grid was evidenced by the reduction of the action of the plasma
ions during the capacitively coupled PEALD process [45]. As can be seen for both power values
investigated, the change from remote to direct mode caused a slight reduction in grain size, probably
due to the higher action of the species from plasma impinging on the substrate. An interesting result is
presented in Figure 6e, where the insertion of Al2O3 partial-monolayers into TiO2 film disrupts the
growth of crystalline grains, creating only a few nanocrystalline grains in amorphous matrix [49].
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3.2. Electrical Characterization of TiO2/p-Si MOS Capacitors

3.2.1. Current Density-Voltage Measurements

Electrical characterization was performed on the five PEALD TiO2/p-type Si MOS structures
fabricated at different values of RF power, substrate exposure mode and Al2O3 partial-monolayer
insertion. Two sets of MOS current density were analyzed and presented in Figure 7: (i) one for
TiO2 samples with RF powers at 100 W and 150 W for remote and direct plasma modes (Figure 7a),
and (ii) another for TiO2/Al2O3 nanolaminate (Figure 7b). Figure 7d shows the dark J-V curve in
semi-logarithmic scale under positive and negative biases at room temperature. As can be seen, the
leakage current density at −2 V is in the order of 10−5~10−4 A/cm2, which is in the same order of
magnitude reported by Wei et al. [5] and Baek et al. [1] that used PEALD and tetrakis dimethylamino
titanium (TDMAT) as precursor to growth TiO2 (20 nm) on Si.

To study the diode ideality factor (n), we used the dark J-V-adapted Ortiz-Conde model [60],
which considers the equivalent circuit model, consisting of a single exponential type ideal junction,
a series parasitic resistance (Rs) and a parallel parasitic conductance (Gp), as shown in Figure 7c. The
J(V) function of the equivalent circuit model is given by the following equation:

J = J0

(
exp

(
V − JRs

nVth

)
− 1

)
+ (V − JRs)Gp (1)
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where J is the current density, V is the terminal voltage, J0 is the reverse saturation current density and
Vth = kT

q is the thermal voltage.
This implicit transcendental function cannot be explicitly resolved by using a standard elementary

function. The solution depends on a particular function known as the Lambert W function [61].
By definition, this function is defined as the solution of the Lambert W (x) exp (Lambert W(x)) = x,
where the solutions for each variable, J and V, are an explicit function of the other. Using the auxiliary
Equation (1), we obtain the parameters a, b, c and d as a function of the equivalent circuit model:

a =
1 + RsGp

J0
(2)

b =
J0 −V.Gp

J0
, (3)

c =
−Rs

nVth
, (4)

d =
V

nVth
, (5)

The general solution is as follows:

J =
nVth
Rs

LambertW

 J0Rs

nVth
(
1 + RsGp

) exp

 V + J0Rs

nVth
(
1 + RsGp

) 
+ VGp − J0(

1 + RsGp
) (6)

This explicit analytic expression can be used to extract model parameters (Table 1) directly from
the fit of experimental data, as shown in Figure 7c.

Table 1. Series parasitic resistance (Rs), parallel parasitic conductance (Gp) and the ideality factor
calculated by the adjusting the J-V curves by the Ortiz-Conde model.

Sample Rs (Ω) Gp (µS) n (Ideality Factor)

TiO2-100 W remote mode 70 36 1.79
TiO2/Al2O3-100 W remote mode 1110 6.8 1.59

TiO2-100 W direct mode 180 256 1.93
TiO2-150 W direct mode 47 89 1.99

TiO2-150 W remote mode 50 84 1.99

Table 1 presents the diode ideality factor for all dark J-V curves fitted by Equation (6). As can be
seen in Table 1, the ideality factor values occur between 1 and 2. Second, in the Shockley diffusion
theory, which is based on the minority carrier diffusion predicted, n should be equal to 1 (next to
an ideal junction) [62]. Sah et al. analyzed the generation and recombination in the space charge
layer and predicted that n ≤ 2 [63]. Faulkner and Buckingham [64] proposed a theory based in traps
situated in depletion layer where the values of diode ideality factor occur between 1 and 2, which was
experimentally verified by Nussbaum [65]. According to the aforementioned theories, the Ortiz-Conde
model adjusted the experimental curves with good precision.

For 100 W RF power, ideality factor values decreased when the exposure mode changed from
direct to remote. As the physical, chemical and morphological properties of the TiO2 films synthesized
in direct or remote mode are close, it is believed that the variation of n occurred because of changes in
the sample’s electrical properties, as reported in Table 1. Indeed, the mode change, as well as the RF
power change, modified the Rs and Gp values of the films, where for 100 W RF power/direct mode,
the series parasitic resistance achieved 180 Ω. On the other hand, for TiO2/Al2O3 nanolaminate, the
ideality factor was of 1.59, which suggests that the insertion of Al2O3 partial-monolayers can be used
to adjust the n parameter. According to Jain and Kappor [66] and Shockley [62], n closer to 1 is more
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efficient for DRAM capacitors and solar cell devices. In addition, Table 1 shows that this sample has a
higher series parasitic resistance of 1100 Ω.
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Figure 7. Dark J-V curves for the fabricated MOS capacitors: (a) TiO2 films grown in remote and direct 
mode at 100 W and 150 W, (b) TiO2/Al2O3 nanolaminate growth at 100 W, (c) adjustment of the curve 

Figure 7. Dark J-V curves for the fabricated MOS capacitors: (a) TiO2 films grown in remote and direct
mode at 100 W and 150 W, (b) TiO2/Al2O3 nanolaminate growth at 100 W, (c) adjustment of the curve
(TiO2-150 W/remote mode) through Ortiz-Conde model [60] and (d) dark J-V curves in semi-logarithmic
scale, to show the leakage current density. The value of 0.995 was used for the determination coefficient
(R-squared) to fit the J-V curve, using the Ortiz-Conde model. That is, 99.5% of the dependent variable
was considered, with the error bars in the simulated J-V curves being smaller than the line size.

3.2.2. Capacitance-Voltage and Conductance-Voltage Measurements

C-V and G-V measurements were also performed to evaluate the electrical characteristics of the
fabricated MOS capacitors. All the samples have presented a leakage current process through the
TiO2 layer.

Figure 8 shows the C-V and G-V curves for samples deposited in remote mode. The C-V curves
showed a deep depletion region for all investigated cases, indicating the absence of an inversion
layer due to the high leakage current through the TiO2 films. By comparing the behavior of the C-V
curve with the G-V curve for TiO2 grown at 100 W in remote mode (Figure 8a,b), it can be seen that
capacitance does not stabilize on a plateau, because of increased conductance in the same region.
The leakage increasing in conductance with negative voltage (Figure 8b) is related to the effect of the
rise of the capacitance in this region, being an order of magnitude smaller compared to the curves
in Figure 8d,f, suggesting a reduction of the series resistance in the area of accumulation [67]. The
sample with Al2O3 partial-monolayer grown at 100 W (Figure 8c,d) presented a high leakage current
that decreased the accumulation capacitance. This higher leakage current in the accumulation region
occurs due to a negative gate bias applied to the silicon p-type substrate. The majority carriers are
attracted to the interface Si/TiO2/Al2O3 with simultaneously accumulated minority carriers at the gate
side flow through the TiO2/Al2O3 layer, thus reducing the majority carriers’ density at the interface
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of Si/TiO2/Al2O3. With the increase of gate bias, the accumulated majority carriers disappear, and a
negative depletion region is formed in the silicon, which promotes a decrease of the leakage current
and an increase of the capacitance, as shown by the peak in C-V curve (Figure 8c). In Figure 8e,
an elongation in the C-V curve can be observed, which can be attributed to the existence of surface
states in the TiO2 thin films [68]. This behavior may be associated with increased ion damage due to
the RF power at 150 W. For TiO2 film growth at 150 W in remote mode, the C-V curve does not show
any evidence of a decrease of the accumulation capacitance that allows to infer a drastic reduction of
the leakage current. This reduction can be attributed to a structural rearrangement of the growth of the
films at 150 W that reduced the series parasitic resistance (as shown in Table 1).
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Figure 8. C-V and G-V curves for the fabricated MOS capacitors: (a) C-V curve for TiO2 film grown in 
remote mode at 100 W, (b) G-V curve for TiO2 film grown in remote mode at 100 W, (c) C-V curve for 
TiO2 film grown in remote mode at 100 W, (d) G-V curve for TiO2/Al2O3 film grown in remote mode 
at 100 W, (e) C-V curve for TiO2 film grown in remote mode at 150 W and (f) G-V curve for TiO2 film 
grown in remote mode at 150 W. 

Figure 8. C-V and G-V curves for the fabricated MOS capacitors: (a) C-V curve for TiO2 film grown in
remote mode at 100 W, (b) G-V curve for TiO2 film grown in remote mode at 100 W, (c) C-V curve for
TiO2 film grown in remote mode at 100 W, (d) G-V curve for TiO2/Al2O3 film grown in remote mode at
100 W, (e) C-V curve for TiO2 film grown in remote mode at 150 W and (f) G-V curve for TiO2 film
grown in remote mode at 150 W.
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C-V and G-V curve characteristics for the samples deposited under direct exposure mode are
shown in Figure 9. For capacitors with TiO2 films grown at 150 W in direct mode, the C-V and G-V
curves were only possible to be obtained in the range of −2 V to +2 V. The C-V curves (Figure 9a,c)
showed a deep depletion region for both cases, as the behaviors for PEALD TiO2/Si MOS capacitors
with TiO2 films grown in direct mode indicated a current leakage through the TiO2 films. The sample
with TiO2 grown at 100 W in direct mode (Figure 9a) presented a low leakage current that raised the
accumulation capacitance. This low leakage current in the accumulation region occurs due to an abrupt
decreasing in conductance in the same negative bias region of the gate (Figure 9b). When the gate
bias increase, the accumulation of the majority carriers disappears, and a negative depletion region is
formed on the silicon, promoting a decrease in leakage current and an expansion of the capacitance,
as shown by the peak in the C-V curve (Figure 9a).
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Figure 9. C-V and G-V curves for the fabricated MOS capacitors: (a) C-V curve for TiO2 film grown in 
direct mode at 100 W, (b) G-V curve for TiO2 film grown in direct mode at 100 W, (c) C-V curve for 
TiO2 film grown in direct mode at 150 W and (d) G-V curve for TiO2 film grown in direct mode at 150 
W. 

Compared to the 100 W TiO2 thin film grown in remote mode, an increase in conductance by 
one order of magnitude occurs, probably due to the high ion bombardment caused by the direct 
exposure mode (Figure 9b). The insertion of Al2O3 partial-monolayers in TiO2 film modulated the 
conductance (Figure 8d), with the maximum value of conductance at the ~2000 µS being between the 
values of TiO2-100 W in remote mode (~400 µS) and TiO2-100 W in direct mode (~4000 µS). It is 
noteworthy that for the sample grown at 150 W, in the direct mode, the same behavior in curves C-V 
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direct mode at 100 W, (b) G-V curve for TiO2 film grown in direct mode at 100 W, (c) C-V curve for TiO2

film grown in direct mode at 150 W and (d) G-V curve for TiO2 film grown in direct mode at 150 W.

Compared to the 100 W TiO2 thin film grown in remote mode, an increase in conductance by one
order of magnitude occurs, probably due to the high ion bombardment caused by the direct exposure
mode (Figure 9b). The insertion of Al2O3 partial-monolayers in TiO2 film modulated the conductance
(Figure 8d), with the maximum value of conductance at the ~2000 µS being between the values of
TiO2-100 W in remote mode (~400 µS) and TiO2-100 W in direct mode (~4000 µS). It is noteworthy
that for the sample grown at 150 W, in the direct mode, the same behavior in curves C-V and G-V was
observed in relation to nanolaminate.
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To better understand the electrical properties, we estimated another two parameters: (i) fixed
insulator (TiO2 and TiO2/Al2O3) charges, Qf; and (ii) the interface defects density, Dit, in the Si/insulator
interface. We used Equation (7) to calculate Qf, and to obtain the Vfb, we used the graphical method,
which is shown in Figure 10 [66].

Q f =
Cin

(
Φms −V f b

)
A.q

(7)

where Cin is the capacitance of the insulator, A (4.3 × 10−3 cm2) is the front metal contact area, q is
the elementary charge, Vfb is the flat-band voltage, Φms is the work function difference between the
work function of metal (Al) and the work function of the semiconductor (Si) that was calculated from
Equation (8) [69].

Φms = −0.6−
kT
q

ln
(

NA
ni

)
, (8)

where NA is the doping concentration in the silicon (NA = 1.0 × 1015 cm−3), and ni is the intrinsic
concentration at room temperature (ni = 1.45 × 1010 cm−3) [68,70]. To use Equation (7), it was assumed,
but not yet proved, that other charges have a reduced influence on Qf measurements, and the interface
traps are negligible [71–74]. The graphical method was used to find the Qf values, taking into account
the average of Vfb and Cin.
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flat-band voltage (Vfb) and fixed insulator charges (Qf). (a) C-V curve showing the extract region of the
Cin value, and (b) shows the typical Vfb extraction through the intercept of the fitted slope.

As can be seen in Figure 10a, the insulator capacitance value was extracted from the strong
accumulation region in the C-V curve at negative bias due to the conductivity nature p-type of the
silicon. To construct Figure 10b and extract the flat-band voltage, the following equation was used:(Cin

Cm

)2
− 1 = 0, (9)

where Cm is the experimentally measured capacitance. To calculate Cin and, consequently, Qf, in the
strong leakage processes from the capacitance lowering at the accumulation region of the C-V curves
(Figures 7c and 8a,c), the Rajab Model was used [67]. To observe the leakage process, the Rajab model
proposed a simplified electrical model, as shown in Figure 11a, where YC is an admittance which
represents the leakage process, and RS is the series resistance associated with the silicon substrate.
Gm,max and Cm,max in Figure 11b are the accumulation conductance and capacitance, respectively, shown
from a C-V meter.
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leakage process, and RS is the series resistance associated with the silicon substrate; and (b) measured
Gm,max and Cm,max, which are the accumulation conductance and capacitance, respectively.

Using the impedance equality of the electrical circuits shown in Figure 10a,b, we derived the
equations for the leakage admittance YC and Cin, which are shown below [67]:

YC =

√
ωCin

−ωCin +ωCm, max

1 +
Gm, max2

(ωCm, max)
2

, (10)

and

Cin =
Cm, max

(
(ωCm, max)

2 + Gm, max
2
)

(ωCm, max)
2 +

(
Gm, max −RS

(
(ωCm, max)

2 + Gm, max2
)) . (11)

Table 2 shows the Vfb and Qf values of all samples with the front contact area of 4.3 × 10−3 cm2.
As shown in the literature, TiO2 grown on Si generates negative Qf being more appropriate for rear
passivation in solar cells, basically due to field-effect passivation [45]. Recently, Liao et al. [73] showed
that TiOx thin-film (63 nm) growth by ALD is also capable of providing passivation of c-Si substrates at
the same level of thermal silicon oxide (SiO2), silicon nitride (SiNx) and aluminum oxide (Al2O3). This
negative polarity corroborates with the best passivation performance in solar cells because negative Qf
repels minority carriers (electrons), resulting in an increased level of field-effect passivation [74].

Table 2. Vfb and Qf calculated by using Nicollian and Brews method and the Rajab model.

Sample Vfb (V) Qf (cm−2)

TiO2-100 W remote mode −0.5 −3.54 × 1011

TiO2/Al2O3-100 W remote mode −0.4 −8.41 × 1011

TiO2-100 W direct mode −0.2 −2.41 × 1012

TiO2-150 W direct mode −0.4 −2.10 × 1012

TiO2-150 W remote mode −0.3 −8.80 × 1011

As can also be seen in Table 2, the exposure mode influences the values of the fixed charges but did
not change the polarity. The increase in leakage in conductance with the negative voltage (Figure 7b) is
related to the effect of the rise of the capacitance in this region of conductance that causes a reduced
value in Qf around 1 × 1011 cm−2 for the TiO2-100 W in remote mode. The higher values were of
the samples that grown in direct mode around 1 × 1012 cm−2 for both RF powers values. For the
samples that grew at 100 W, a behavior similar to that of J-V curves was observed where the Al2O3

partial-monolayer modulated the values of the ideality factor. In this case, the Al2O3 partial-monolayer
obtained a magnitude above the Qf value obtained for TiO2-100 W in remote mode and one order of
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magnitude below the value obtained for the TiO2-100 W in direct mode (as shown in Table 2), acting as
a modulator between the two cases. As can be seen in Table 2, this analysis indicates that the fixed
insulator charge values are not intrinsic to each insulator, and its concentration can be modified by
exposure mode and plasma power.

Another critical parameter for the interface is the density of interface defects (Dit). For this, it was
used the Hill–Coleman model [74], a single-frequency approximation for interface defects density
determination, as shown below:

Dit =
2

A.q

Gm, max
ω(Gm,max

ω.Cin

)2
+

(
1− Cm,max

Cin

)2 , (12)

where Gm,max is the maximum experimentally conductance, Cm,max is the maximum experimentally
capacitance and ω = 2πf (f = 1 MHz).

The advantage of this model is that only three measured values (Gm,max, Cm,max and Cin) and a
single frequency are needed. Therefore, the approximation is realized from the need of C-V and G-V
plots. Table 3 summarizes the Dit values extracted with the help of Equation (12).

Table 3. Density of interface defects (Dit) calculated by Hill–Coleman model.

Sample Dit (eV−1.cm−2)

TiO2/Al2O3-100 W remote mode 5.52 × 1011

TiO2-100 W direct mode 7.08 × 1011

TiO2-100 W remote mode 2.44 × 1011

TiO2-150 W direct mode 3.48 × 1011

TiO2-150 W remote mode 6.74 × 1011

Most of the samples show Dit values within the same order of magnitude, being the exception of
the TiO2-100 W in remote mode. This exception probably occurs due to the approximation technique
for Dit is within 25–30% of the Nicollian–Brews peak Dit’s value between the flat band and mid-gap [71].
Since Dit is known to change by order of magnitude or more in the region between the flat band and
mid-gap, this approximation is reasonable [74]. As suggested by Hill–Coleman, the frequency is into
the MHz region. The results listed in Tables 2 and 3 show that the samples exhibit a density of interface
defects (~1011–1013 cm−2) and a high density of negative fixed charges (~1011 eV−1.cm−2), which make
them potential candidates for application in solar cells and DRAM technology. For example, TiO2-100
W and TiO2-150 W growth by the direct mode presents higher Qf and lower Dit. These combined
characteristics show the quality of these films to act as a passivation layer in solar cells. Cunha et al. [42]
and Kotipali et al. [72] showed values in the same order of magnitude for Qf (~1011–1012 cm−2) and Dit
(~1010–1012 eV−1 cm−2) for other thin films, namely Al2O3, Si3Nx and SiOx. In both works, the films
were grown on Si and CIGS.

To improve the discussion, we compared our results with works that used chemical and thermal
treatments to enhance the electrical properties of the following structures Al2O3/Si and TiO2/Al2O3/Si.
Yoshitsugu et al. [76] deposited Al2O3 (25.2 nm) on Si by PEALD at a fixed temperature of the 100 ◦C
and RF power at 400 W. They used high-pressure deuterium oxide annealing (HPDOA) treatment and
reduced the leakage current density to an order of 10−7 A/cm2. This result is two orders of magnitude
lower than our results. Zougar et al. [77] deposited Al2O3 (~1 nm) on Si by the ultrasonic spray method.
They used post-deposition annealing and post-metallization annealing as surface treatment. They
showed values of for Qf (~1010–1011 cm−2) and Dit (~1011–1012 eV−1 cm−2). Both results show a lower
quality of these films in comparison with our films. Baek et al. [1] grew Al2O3 (50 nm), TiO2 (50 nm)
and Al2O3/TiO2 (50 nm) on Si by PEALD at 100 ◦C and with RF power fixed at 200 W. They used
several chemical treatments to modify the surface. The leakage current density values of Al2O3 and
Al2O3/TiO2 are, respectively, 10−8 and 10−9 A/cm2. These values are lower than our results, but they
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showed a leakage current density of the TiO2 of the order of magnitude of 10−3 A/cm2, which is two
orders of magnitude higher than our values. Even without thermal or chemical treatment, our films
have a high electrical quality, as shown in this brief comparison.

4. Conclusions

TiO2 thin films were deposited on p-type Si substrates under different conditions by PEALD
technique. Structural, chemical and morphological properties of the as-grown films were studied as
a function of the following deposition parameters: RF power, substrate exposure mode and Al2O3

partial-monolayer insertion. Chemical composition determined by RBS analysis showed that the TiOx

films have an excess of oxygen content, with x values ranging from 2.13 ± 0.01 to 2.33 ± 0.01, which
can be related to the higher reactivity of O2 plasma. It was also observed that, with the insertion
of Al2O3 partial-monolayers in TiO2 to form the nanolaminate structure, an increase in the number
of cycles to 2700 is necessary to obtain a film thickness close to pure TiO2. GIXRD diffractograms
showed a crystalline structure for all pure TiO2 thin films with a crystalline degree of 87.1% to 95.9%.
The Al2O3 partial-monolayer reduced TiO2 crystallinity degree to 34.2%. Raman spectra allow us to
observe that the shift in the signal peak at 144 cm−1 and its bandwidth is related to the increase of
oxygen content in PEALD TiO2 films. FESEM study evidenced the effect of the electrode grid on the
reduction of the action of the plasma ions during the capacitively coupled PEALD process. It can
be seen, for both power values investigated, that the change from remote to direct mode caused a
slight reduction in grain size, probably due to the more significant action of species impinging from
plasma to substrate. The insertion of Al2O3 partial-monolayers into TiO2 film disrupts the growth
of crystalline grains, creating only a few nanocrystalline grains in the amorphous matrix. PEALD
TiO2/p-type Si MOS capacitors were fabricated by depositing of Al electrical contacts. J-V, C-V and
G-V measurements of these capacitors were performed. The Ortiz-Conde model was used to fit the
experimental dark J-V curves and values between 1.59 to 1.99 were obtained for the ideality factor.
For TiO2 thin-film growth at RF power of 150 W, the values did not change with the exposure mode,
and this behavior suggests that the power effect is predominant in the process. For the sample TiO2-100
W, different values of the ideality factor were found: 1.93 (direct mode) and 1.79 (remote mode). For
the TiO2/Al2O3 nanolaminate, the ideality factor was 1.59, suggesting that the insertion of Al2O3

partial-monolayers can tune the ideality factor. C-V and G-V curves showed a deep depletion region
for all cases, which indicates the absence of a layer of inversion because of the high leakage of electrons
through the TiO2 films. It was noted that Al2O3 partial-monolayer, grown at 100 W, modulated the
conductance with the maximum value of ~2000 µS, whereas a value of ~400 µS and ~4000 µS were
found for TiO2-100 W in remote mode and TiO2-100 W in direct mode, respectively. The fixed insulator
charges (Qf) and the interface defects density (Dit) were also estimated. In summary, the fabricated
PEALD TiO2/p-type Si MOS capacitors exhibit electrical characteristics suitable for microelectronics
and photovoltaics applications.
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