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Abstract: A graphene–cadmium sulfide (Gr–CdS) nanocomposite was prepared by a chemical solution
method, and its material properties were characterized by several analysis techniques. The synthesized
pure CdS nanoparticles (NPs) and Gr–CdS nanocomposites were confirmed to have a stoichiometric
atomic ratio (Cd/S = 1:1). The Cd 3d and S 2p peaks of the Gr–CdS nanocomposite appeared at
lower binding energies compared to those of the pure CdS NPs according to X-ray photoelectron
spectroscopy analyses. The formation of the Gr–CdS nanocomposite was also evidenced by the
structural analysis using Raman spectroscopy and X-ray diffraction. Transmission electron microscopy
confirmed that CdS NPs were uniformly distributed on the graphene sheets. The absorption spectra
of both the Gr–CdS nanocomposite and pure CdS NPs thin films showed an absorption edge at 550
nm related to the energy band gap of CdS (~2.42 eV). The Cu(In,Ga)Se2 thin film photovoltaic device
with Gr–CdS nanocomposite buffer layer showed a higher electrical conversion efficiency than that
with pure CdS NPs thin film buffer layer. In addition, the water splitting efficiency of the Gr–CdS
nanocomposite was almost three times higher than that of pure CdS NPs.
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1. Introduction

In recent years, cadmium sulfide (CdS) semiconductor has attracted attention for various
applications because of its wide energy band gap (~2.42 eV), high transparency, high stability,
n-type conductivity, emission tunability, high extinction coefficient, large dipole moment, and potential
sensitization [1–4]. CdS thin films have been widely used as n-type buffer layers in high-efficiency Cu(In,
Ga)Se2 (CIGS) thin film solar cells with the structure of glass/Mo/CIGS/CdS/i-ZnO/ZnO:Al(AZO) [5–7],
where the p-n junction is formed at the interface of CIGS/CdS. In addition, CdS has attracted great
attention as a photoanode for photocatalytic water splitting application [8,9], where it can absorb
visible light and promote the separation of photogenerated carriers [8].

Conventionally, the optoelectronic properties of CdS can be tailored by two approaches, i.e., doping
and compositing. In the doping process, the various dopants such as aluminum [10], copper [11],
nickel [12], sodium [13], and gallium [14] have been employed, where the lattice of the host (CdS) can
be changed by the dopant atoms [15]. In compositing, CdS is combined with one or more materials to
obtain unique and improved material properties. For example, the intrinsic properties of graphene (Gr)
and CdS nanoparticles (NPs) have been combined in nanocomposites to produce a photocurrent from
the visible light. Furthermore, because graphene involves π conjugation, it exhibits unique emergent
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electrical, mechanical, and thermal properties. It possesses high mobility, flexibility, and stability.
The electrons in graphene behave as massless fermions due to the linear relationship between the
energy and the momentum, where the electronic properties are determined by the Dirac equation;
consequently, it has potential for use in optoelectronic applications [16–18].

Recently, graphene and its derivatives have been applied to a variety of solar cells as a front/back
electrode and other functional layer, as summarized in Table 1.

Table 1. Applications of graphene or its derivatives in solar cells and reported device performance.

Photovoltaic ParametersSolar Cell
Type

Graphene
Type

Graphene
Deposition Method

Role of
Graphene Jsc(mA/cm2) Voc(V) FF(%) Efficiency(%) Ref.

CdTe
Gr CVD Front electrode 22.9 0.430 42.0 4.17 [19]

B:Gr Solution method
Back electrode

22.0 0.685 52.2 7.86 [20]

Bi:RGO Hummers method 26.2 0.787 63.7 13.2 [21]

CIGS
Au:Gr

CVD
Front electrode 32.4 0.601 69.1 13.5 [22]

Gr
Back electrode 28.8 0.531 64.7 9.91 [23]

Mo/Gr back
electrode - - - - [24]

PSC
GO Hummers method Buffer layer 20.9 1.04 66.0 14.4 [25]

Gr
CVD

Front electrode 18.6 1.04 59.4 11.5 [26]

Gr Blocking layer 21.1 1.09 68.2 15.7 [27]

n-Si
N-doped Gr Front electrode 30.9 0.490 41.2 6.24 [28]

GO Hummers method Antireflection 38.4 0.512 53.0 10.6 [29]

DSSC
Gr CVD Front electrode 7.80 0.630 40.0 2.0 [30]

SnS@RGO Solution method Counter
electrode 18.9 0.705 57.9 8.21 [31]

OSC

Gr doped with
GQDs and Ag

NWs CVD Front electrode
10.4 0.592 59.3 3.66 [32]

Gr 4.73 0.480 52.0 1.18 [33]

GaAs Gr Simulation
Formation of

Schottky
junction

2.14 0.350 69.7 5.3 [34]

(*) Note: CVD (chemical vapor deposition), RGO (reduced graphene oxide), CIGS (Cu(In, Ga)Se2), GO (graphene
oxide), PSC (perovskite solar cell), DSSC (dye-sensitized solar cell), and OSC (organic solar cell).

In addition, these unique properties of graphene make it compatible with host CdS NPs,
which decorate the surface of graphene in graphene-cadmium sulfide (Gr–CdS) nanocomposites.
Compared to the pure CdS NPs, the electrical properties of Gr–CdS were reported to be greatly
enhanced [35–37]. There were many reports on the photoelectrochemical and photocatalytic applications
of Gr-CdS [35,38]. However, Gr–CdS composites have not yet been employed as a buffer layer in CIGS
photovoltaic devices.

Therefore, in this work, the Gr–CdS composite and CdS NPs were fabricated by chemical solution
method, and their properties were investigated for CIGS photovoltaic device as well as photocatalytic
application. The performance of CIGS photovoltaic devices with the Gr–CdS composite as a buffer
layer was compared with that of CIGS photovoltaic devices with a conventional CdS buffer layer.
Furthermore, the photoelectrocatalytic (PEC) water splitting efficiency of the Gr-CdS composite was
compared to that of pure CdS NPs.

2. Materials and Methods

2.1. Synthesis of CdS NPs and Gr–CdS Nanocomposite

To prepare the CdS NPs and Gr–CdS nanocomposite using a cost-effective chemical precipitation
method, 0.1 M cadmium sulfate (CdSO4), 0.02 M thiourea [SC(NH2)2], and 100 mL of a graphene
aqueous solution were used. Graphene aqueous solution was prepared by dispersing 0.2 g of graphene
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sheets in 100 mL of deionized (DI) water and subjecting this to ultrasonication. The 7~8 layer graphene
sheets (ILJIN Nano Tech, Seoul, South Korea) with a mean length of 500 nm were used. First, CdS NPs
were synthesized by mixing 0.1 M cadmium sulfate and 0.02 M thiourea at a constant pH of 10 (which
was maintained using NH4OH). Next, the Gr–CdS nanocomposite was synthesized by adding 0.1 M
cadmium sulfate and 0.02 M thiourea to 100 mL of the graphene aqueous solution at a constant pH
of 10 (which was maintained as described above). Both the CdS NPs and Gr–CdS nanocomposites
were synthesized at room temperature for a reaction time of 2 h. Furthermore, the obtained CdS NPs
and Gr–CdS nanocomposites were centrifuged and rinsed several times using DI water and ethanol.
Finally, the CdS NPs and Gr–CdS nanocomposites were dried in a convection oven at 60 ◦C for 24 h.

2.2. Film Preparation Using CdS NPs and Gr–CdS Nanocomposite

Two substrates, bare soda-lime glass (SLG) and molybdenum sandwiched between SLG and
CIGS (which is referred to as a CIGS-coated substrate) were used to prepare the CdS NPs and
Gr–CdS nanocomposite films. The SLG substrates were used to study the optical properties, structural
properties, and chemical state of the NPs, and the CIGS-coated substrates were used to prepare the
photovoltaic device. Prior to the deposition of CdS NPs and Gr–CdS nanocomposite films, a seed
layer consisting of a CdS thin film was coated by chemical bath deposition (CBD) to enhance the
deposition of the CdS NPs and Gr–CdS nanocomposite films by spin-coating. Details on the deposition
of the CdS films by CBD are given in our previous report [14]. To spin-coat the pure CdS NPs and
Gr–CdS nanocomposite films, inks consisting of pure CdS NPs and the Gr–CdS nanocomposite were
prepared by dissolving 0.05 g of pure CdS NPs or the Gr–CdS nanocomposite in 10 mL of absolute
ethanol and sonicating the solution for 15 min to obtain homogenous deposition. The prepared ink
was spin-coated on the substrates at 3000 rpm. The entire experimental procedure is schematically
illustrated in Figure 1.
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Figure 1. Schematic of the deposition of CdS nanoparticles (NPs) and Gr–CdS nanocomposite films.

2.3. CIGS Device Fabrication

Photovoltaic devices with a structure of glass/Mo/CIGS/CdS NPs (or Gr–CdS)/i-ZnO/AZO/Ni:Al
were used, where the i-ZnO/AZO transparent conducting oxide layers were deposited by sputtering
method and the Ni/Ag front grids were added by electron-beam (E-beam) evaporation.



Nanomaterials 2020, 10, 245 5 of 16

2.4. Characterization

2.4.1. Material Characterization

The crystal structures and phases were analyzed using X-ray diffraction (XRD) (X’Pert
PRO-Multipurpose Diffractor, PANalytical, The Netherlands) using Cu Kα radiation (λ = 0.15406 nm).
The microstructure was observed by transmission electron microscopy (TEM) (Tecnai G2 F20 S-TWIN,
Thermo Fisher Scientific, The Netherlands) at an accelerating voltage of 200 kV. Selected-area electron
diffraction (SAED) analysis was also conducted using TEM to determine the interplanar distance and
crystalline phase of the Gr–CdS nanocomposite. Raman spectroscopy (XploRA Plus, Horiba, Japan)
with 532nm laser source was performed to further confirm the phase and structure. The elemental
composition was obtained by energy-dispersive spectrometry (EDS) (S-4200, HITACHI, Japan). X-ray
photoelectron spectroscopy (XPS) (K-Alpha, Thermo Fisher Scientific, UK) was employed to investigate
the chemical state of the CdS NPs and Gr–CdS nanocomposite. The optical properties were examined
by UV–vis–NIR spectroscopy (Cary 5000, Agilent, USA).

2.4.2. Solar Cell Characterization

To evaluate the photovoltaic performance of the fabricated CIGS solar cells, the illuminated
current density–voltage (J–V) characteristics under AM 1.5 one-sun conditions were measured using
an AAA-class solar simulator (K201, LAB 55, McScience, South Korea).

2.4.3. PEC Measurement

To investigate the photoelectrochemical properties of the prepared materials, a three-electrode
PEC cell with a quartz window was used. In the PEC cell, 0.5 M of Na2SO4 purged with nitrogen
was employed as electrolyte. Aqueous slurries of pure CdS NPs or Gr–CdS (50 µL) were spread
over a cleaned fluorine-doped tin oxide glass substrate to prepare the photoanodes. The prepared
photoanodes, Pt flag and Ag/AgCl were used as working, counter, and reference electrodes, respectively.
The suspension was prepared by dispersing pure CdS NPs or Gr–CdS (20 mg) with a Nafion solution in
ethanol (1 wt%, 2 mL). In order to illuminate the working electrodes with visible light, a solar simulator
light (Abet-10500, 150 W) with an intensity of 100 mW/cm2 was used. All the PEC measurements as
linear sweep voltammetry (LSV), chronoamperometry, and electrochemical impedance spectroscopy
(EIS) were performed using an electrochemical potentiostat (PGSTAT 302N, Autolab, The Netherlands)
connected to the PEC cell. The measured potential vs. the Ag/AgCl reference electrode was converted
to the reversible hydrogen electrode (RHE) by the Nernst equation

ERHE = EAg/AgCl + 0.0591 × pH + 0.1976 (1)

3. Results

3.1. Properties of CdS NPs and Gr–CdS Nanocomposite

3.1.1. EDS Analysis

Table 2 shows the elemental composition determined by EDS for the pure CdS NPs and Gr–CdS
nanocomposite. The composition ratio of Cd/S in the pure CdS NPs and Gr–CdS is 0.91–0.93. However,
in the Gr–CdS nanocomposite, 77.8 at% of carbon was detected due to the presence of graphene.

Table 2. Elemental composition of pure CdS and Gr–CdS nanocomposite powders measured by EDS.

Material Cd (at%) S (at%) C (at%) Cd/S (-)

Pure CdS 47.6 52.4 0.0 0.91
Gr-CdS 10.7 11.5 77.8 0.93
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3.1.2. XPS Analysis

To confirm the formation of Gr–CdS nanocomposite, XPS analysis was adopted. Figures 2 and 3
show the XPS of the pure CdS NPs and Gr–CdS nanocomposite. As seen from the survey spectra of
Figure 2, the characteristic Cd 3d, S 2p, C 1s, and O 1s peaks are confirmed. The high-resolution spectra
in Figure 3a show two peaks at 405 and 412 eV which are assigned to the 3d5/2 and 3d3/2 of Cd2+ in
CdS [14]. The binding energy difference between the Cd 3d5/2 and 3d3/2 peaks is approximately 7 eV
for the pure CdS and Gr–CdS nanocomposite, which further confirms that Cd has the +2 oxidation
state [39,40]. Figure 3b shows peaks at 162.22 and 161.98 eV corresponding to the S2- peak of CdS [39,40].
As shown in Figure 2a,b, the Cd 3d and S 2p peak intensities of the Gr–CdS nanocomposite are lower
than those of the pure CdS NPs; this result indicates a decrease in the atomic composition of Cd and S
after the formation of Gr–CdS nanocomposite, which is consistent with the results of EDS analysis in
Table 2. As shown in Figure 3c, the Gr–CdS nanocomposite exhibited a strong C 1s peak at a binding
energy of 284.46 eV, which corresponds to sp2 hybridized carbon in graphene, whereas the CdS NPs
exhibited a relatively weak C 1s peak at 285.15 eV, which corresponds to C–O [41,42].
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3.1.3. XRD Analysis

Figure 4 shows the XRD patterns of the pristine graphene, pure CdS NPs, and Gr–CdS
nanocomposite. Pristine graphene powder was used as a reference for the XRD analysis of the
Gr–CdS nanocomposite. The diffraction peaks of the pristine graphene at 2θ ~ 26◦ and 54◦ matched
well those of graphene with hexagonal crystal structure (JCPDS No. 00-008-0415) and were indexed
as the (002) and (004) facets, respectively [39,43]. In addition, all the XRD peaks of the pure CdS
NPs matched well those of CdS with hexagonal crystal structure (JCPDS No. 00-001-0780) and were
identified as the (100), (002), (101), (102), (110), (102), and (112) planes of the hexagonal structure [44].
Interestingly, the XRD pattern of the Gr–CdS nanocomposite appears to be a simple combination of the
reflection patterns of the pristine graphene and pure CdS, where no significant changes appear in the
relative intensity of each peak. It is believed that the most intense peak, at 2θ ~ 26◦, corresponds to
both carbon (002) and CdS (002), which appear at nearly identical positions. Overall, the XRD results
suggest that the Gr–CdS nanocomposite is formed by physical mixing rather than by chemical bonding
between the graphene and CdS NPs.
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3.1.4. Raman Analysis

Raman spectra for both the pure CdS NPs and Gr–CdS nanocomposite are shown in Figure 5.
For the pure CdS NPs, the two peaks at 300 and 600 cm−1 were related to the longitudinal optical
(LO) phonon modes of CdS. The vibrational mode at 300 cm−1 is the fundamental band (1LO),
and that at 600 cm−1 is the overtone (2LO) [45]. For the Gr–CdS nanocomposite, three additional
characteristic bands located at 1573, 1345, and 2711 cm−1 were observed, which correspond to
the conventional G, D, and 2D peaks of graphene, respectively. The presence of the 2D band at
approximately 2711 cm−1 indicates the multilayer nature of graphene, which was observed by other
groups [46,47]. Furthermore, the very low intensity of the D peak indicates low disorder in the
graphene structure [48,49]. However, the LO and 1LO peaks of the Gr–CdS nanocomposite were lower
because of the lower CdS concentration compared to the pure CdS NPs. The above results confirmed
the formation of the Gr–CdS nanocomposite.
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3.1.5. TEM Analysis

The morphological features and lattice parameters of the samples were determined by TEM,
high-resolution TEM (HR-TEM), and SAED. Figure 6a,b clearly show that the graphene sheets are
decorated by scattered CdS NPs. The corrugations in the Gr–CdS composite are a characteristic feature
of graphene under the positional stress of the NPs [50,51]. In addition, aggregation of CdS NPs on the
graphene sheet was also identified in Figure 6c. Furthermore, the average size of the CdS crystals was
measured to be approximately 20–30 nm, as representatively shown in Figure 6d, whereas Figure 6e
shows clear lattice fringes of CdS with a spacing of approximately 0.336 nm related to (002) plane of
the hexagonal CdS, in agreement with the XRD analysis. In addition, a set of rings appears in Figure 6f,
indicating that the Gr–CdS composite is polycrystalline.
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3.1.6. Optical Analysis

Figure 7 shows the optical transmittance and corresponding (αhν)2 vs. hν plots of the SLG/CdS
and SLG/Gr–CdS films measured by UV–vis–NIR spectrometry. The Gr–CdS film exhibited a slight
improvement (~5%) in transmittance and a decrease in absorbance, particularly at long wavelengths
(greater than ~800 nm) owing to the presence of graphene. It is well known that graphene is
highly transparent; thus, it was proposed as a front electrode in photovoltaic applications [22,30].
Similar optical behavior was reported for Pt NP/Gr thin films [52]. However, in the visible region,
the transmittance of the Gr–CdS film was almost the same as that of the pure CdS thin film, which can
probably be attributed to absorption of light by CdS NPs dispersed on the surface of the graphene
sheets. Both films had an absorption edge near 550 nm, which agrees with the band gap of CdS
(~2.42 eV) [14].
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3.2. Applications of Pure CdS and SLG/Gr–CdS

3.2.1. CIGS Photovoltaic Devices

Using the pure CdS NPs and Gr–CdS nanocomposite as the buffer layer, CIGS photovoltaic
devices were fabricated. The J–V characteristics of corresponding devices are compared in Figure 8.
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The CIGS device prepared with the Gr–CdS nanocomposite buffer layer showed better efficiency
(with higher short-circuit current (JSC), and higher open-circuit voltage (VOC)) than that with the
pure CdS NPs buffer layer, which may be partly due to the high electron mobility of the Gr–CdS
nanocomposite. However, the fill factor (FF) of the CIGS photovoltaic device fabricated with the
Gr–CdS buffer layer was slightly lower, presumably because of pinholes or surface inhomogeneities in
the Gr–CdS nanocomposite films [53].

The enhanced device performance of the Gr–CdS-nanocomposite-based CIGS cell was driven by
the high electron mobility of graphene and high photocurrent generation in the Gr–CdS nanocomposite
thin film. Owing to the high electron mobility, the electrons generated in the CIGS absorber can be
rapidly transported to the CIGS/Gr–CdS junction and then to the front contact without recombination,
resulting in high current collection. It has been widely reported that the performance of semiconductor
devices was enhanced significantly when graphene was combined with a semiconductor material.
For example, Bell et al. showed that TiO2/rGO nanocomposite has a higher efficiency than pristine TiO2.
This is because RGO plays an important role as a highly conductive intraparticle charge transport
network within the film, leading to a fourfold increase in the electron lifetime [54]. Another report
showed that the incorporation of RGO with TiO2 as a photoanode in a dye-sensitized solar cell (DSSC)
improved the electron transport and reduced the charge recombination, yielding better performance
compared with that of a device with a pure TiO2 photoanode [55]. Sookhakian et al. reported that
ZnS–RGO composites showed an improvement in photocurrent generation with reduction of charge
transfer resistance and charge recombination compared to pure ZnS NPs [56]. Moreover, Lei et al.
found that the electron capture and transfer ability of graphene could enhance the photoelectric
characteristics of the nanocomposites via a comparison between Gr–CdS nanocomposites and pure
CdS NPs [57]. Similarly, the performance of the CIGS device could be further enhanced using the
Gr–CdS nanocomposite. Enhanced photocurrent density for the Gr–CdS composite compared with the
pure CdS was also confirmed by the water splitting study reported in Section 3.2.2.
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3.2.2. Water Splitting

To evaluate the PEC water splitting efficiency of the CdS NPs and Gr–CdS nanocomposite,
the photocurrent density was recorded under an applied potential in 0.5 M Na2SO4 electrolyte,
as shown in Figure 9a. The polarization curve of the photoanodes showed that the photocurrent
density of the Gr–CdS sample was threefold higher than the pure CdS NPs, which ultimately resulted
in more efficient water splitting. These results also agree well with the enhanced JSC of the CIGS solar
cell with the Gr–CdS composite compared to the cell with pure CdS NPs. The improved PEC activity
of the Gr–CdS nanocomposite is due to the interfacial charge transfer process, in which graphene plays
the important role of accepting the produced electrons from the conduction band of CdS, ultimately
reducing the recombination rate between holes and electrons [58]. The PEC performance of the Gr–CdS
nanocomposite and pure CdS NPs photoanodes was then monitored by conducting time-dependent
chronoamperometry measurements, in which multiple visible light on–off cycles were applied to
the photoanodes. The photocurrent densities of the pure CdS NPs and Gr–CdS nanocomposite
photoanodes at a bias potential (1 V vs. RHE) during on–off illumination cycles with an interval time
of 20 s are shown in Figure 9b. The background currents of the photoanodes are almost zero under the
dark condition. When they are illuminated, a photocurrent is instantly generated; the photocurrent
exhibits a spike resulting from the rapid photoresponse upon light excitation and then enters a steady
state. The photocurrent decays to zero once the light is switched off [59]. The current density of the
device with the Gr–CdS nanocomposite anode was three times higher than that of the device with the
pure CdS NPs film. In Table 3, we compare our photocurrent density results with recent results in
the literature.

The solar-to-hydrogen (STH) conversion efficiency (η) was calculated using the following equation:

η = JP

(
1.23− Vapp

I0

)
× 100% (2)

where Jp is the photocurrent density (mA/cm2) at the applied bias and I0 is the incident light intensity.
The Vapp is defined as Vmea − Vaoc in which Vaoc is the electrode potential (vs. SHE) of the working
electrode under an open bias condition, and Vmea is the potential (vs. RHE) of the same working
electrode [60]. Figure 9c shows the plot of the photoconversion efficiency vs. the applied potential (V vs.
RHE). The STH efficiency of the Gr–CdS composite reached a maximum of 0.01% at an applied potential
of 0.625 V (vs. RHE), which is remarkably higher than the STH efficiency of the pure CdS NPs under
this low-bias condition. The improved charge transport in the Gr–CdS nanocomposite photoanodes
is further demonstrated by the EIS results. Nyquist plots of the prepared Gr-CdS composite and
pure CdS NPs photoanodes are presented in Figure 9d, where the impedance spectrum consists of a
semicircular arc. A semicircle with a smaller diameter indicates better charge transport behavior [61].
The impedance spectrum of the Gr–CdS nanocomposite photoanodes showed a typical semicircle
with a smaller radius compared with that of the CdS electrode, indicating enhanced separation and
transport of the generated carriers, and resulting in a higher photocurrent response. As listed in
Table 3, the prepared material exhibited a relatively high photocurrent response compared to similar
photoanodes in a neutral electrolyte under low bias conditions.
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Table 3. Comparison of our photocurrent density results with recently reported results.

Material Structure Preparation Method Experiment Condition Electrolyte Current Density (µA/cm2) Ref.

Gr–CdS

Hydrothermal 180 ◦C, 40 h 0.5 M Na2SO4 55 [62]

Hydrothermal 140 ◦C, 24 h 0.2 M Na2SO4 12 [35]

Chemical
precipitation 25 ◦C, 48 h

0.25 M Na2S
and 0.35 M

Na2SO3

120 [63]

Hydrothermal 200 ◦C, 6 h
0.24 M Na2S
and 0.35 M

Na2SO3

45 [64]

Hydrothermal 120 ◦C, 12 h 0.1 M H2SO4 15 [57]

Hydrothermal 180 ◦C, 12 h 0.1 M Na2SO4 0.01 [65]

N-graphene/CdS Hydrothermal 25 ◦C, 48 h 0.5 M Na2SO4 40 [66]

RGO–CdS Hydrothermal 120 ◦C, 48 h – 9 [67]

ITO/Gr–CdS:Mn Hydrothermal 200 ◦C, 12 h 0.1 M Na2SO4 15 [68]

Gr–CdS–PANI-6 Hydrothermal 70 ◦C, 6 h 0.1 M KCl 0.4 [69]

Gr—CdS Chemical
precipitation 25 ◦C, 2 h 0.5 M Na2SO4 40 This

work

4. Conclusions

A Gr–CdS nanocomposite was successfully prepared using a simple chemical solution method,
and its formation and primary material properties were precisely characterized by several analysis
techniques including EDS, XPS, XRD, Raman spectroscopy, and TEM. It was also demonstrated
that a CIGS solar cell using the Gr–CdS nanocomposite as a buffer layer showed higher JSC values,
VOC values, and efficiency than a cell using pure CdS NPs. Furthermore, the Gr–CdS composite
exhibited excellent performance in the production of hydrogen as a clean and storable source of energy
via photoelectrochemical water splitting.
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