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Abstract: Previous reports indicate that N-acetyl-D-glucosamine oligomers (chitin 

oligosaccharide; NACOS) and D-glucosamine oligomers (chitosan oligosaccharide; COS) 

have various biological activities, especially against cancer and inflammation. In this review, 

we have summarized the findings of previous investigations that have focused on anticancer 

or anti-inflammatory properties of NACOS and COS. Moreover, we have introduced recent 

evaluation of NACOS and COS as functional foods against cancer and inflammatory disease. 
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1. Introduction 

Chitin (β-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most 

abundant polysaccharide after cellulose 1 [1]. Chitin occurs as the major structural component in the 

exoskeleton of crab and shrimp shells and the cell wall of fungi and yeast [2]. As chitin is not readily 

dissolved in common solvents, it is often converted to its more deacetylated derivative, chitosan [3–5]. 

Even though chitin and chitosan are known to have important functional activities, their poor solubility 
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makes them difficult to use in food and biomedical applications [6]. In contrast, the hydrolyzed products 

of chitosan—N-acetyl-D-glucosamine oligomers (chitin oligosaccharide; NACOS) and D-glucosamine 

oligomers (chitosan oligosaccharide; COS) are readily soluble in water because of their shorter chain 

lengths [7]. The low viscosity and greater solubility of COS at neutral pH have attracted the interest of 

many researchers to utilize chitosan in its oligosaccharide form. NACOS and COS are generated by 

depolymerization of chitin or chitosan by using acid hydrolysis, hydrolysis by physical methods, and 

enzymatic degradation [8]. 

Recently, many reports have indicated that NACOS and COS possess numerous biological activities. 

However, most of these studies were performed either in vitro or via intravenous (i.v.) or intraperitoneal 

(i.p.) administration. More recently, the anticancer and anti-inflammatory effects of orally administered 

NACOS or COS have been described. In this review, we focus on these properties of NACOS and COS 

by first summarizing the findings of previous studies and then discussing the potency of NACOS and 

COS as functional foods against cancer and inflammation. 

2. NACOS, COS, and Their Derivatives as Anti-Cancer Agents 

2.1. Anti-Cancer Activities of NACOS and COS 

Nam et al. reported chemo-preventive effects of COS in colon cancer cells [9]. The effects were 

evaluated by measuring the activities of enzymes quinine reductase (QR), ornithine decarboxylase 

(ODC), and glutathione-S-transferase (GST) as well as glutathione (GSH) levels and cyclooxygenase-2 

(COX-2) expression in human colorectal adenocarcinoma cell line, HT-29, treated with COS. These 

results indicate that COS exerts its chemopreventive effect against colon cancer by increasing QR and 

GST activities and GSH levels and by inhibiting ODC activity and COX-2 expression in vitro.  

In another study, Nam et al. also showed that COS pretreatment inhibited pro-inflammatory  

cytokine-mediated nitric oxide (NO) production, inducible NO synthase (iNOS) expression, and 

invasiveness of HT-29 cells [10]. Quan et al. have discovered COS to have antiangiogenic activity 

through an unclear mechanism but hypothesized it to be via inhibition of heparanase [11]. They have 

also shown that MDA-MB-231 cells treated with COS had a concentration-dependent reduction in 

matrix metalloproteinase-9 (MMP-9) secretion and activity as well as inhibition of their invasiveness 

through a matrigel-coated membrane [12]. 

Shen et al. have investigated the antitumor and antimetastatic potential as well as pathways affected 

by COS extracted from fungi, in human hepatocellular carcinoma cell line, HepG2 [13]. They discovered 

that in vitro COS significantly inhibited cell proliferation, reduced the percentage of cells in S-phase, 

and decreased the rate of DNA synthesis in the cells. Further analysis of expression of cell cycle-related 

genes revealed that p21 was upregulated, while proliferating cell nuclear antigen (PCNA), cyclin A, and 

cyclin dependent kinase (CDK)-2 were downregulated. Moreover, they observed that MMP-9, an 

enzyme associated with metastasis, could be inhibited by COS in Lewis lung carcinoma (LLC) cells. 

During animal studies, they discovered that intraperitoneal injections of COS inhibited the growth of 

HepG2 xenografts in severe combined immune deficient (SCID) mice. Furthermore, in an LLC mouse 

model of primary tumor and metastasis, COS administration was found to inhibit tumor growth, decrease 

the number of metastatic colonies in lung, and prolong the survival time of the animals. 
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It has been postulated that the tumor inhibitory effects of NACOS and COS are potentially related  

to their ability to induce lymphocyte cytokines thorough increased T-cell proliferation. Essentially, the 

antitumor mechanisms of NACOS and COS are presumably enhanced by acquired immunity via 

acceleration of T-cell differentiation, which in turn increases cytotoxicity and maintains T-cell 

activity [14]. Park et al. have examined the effects of molecular weight and degree of deacetylation of 

chitosan oligosaccharides on their antitumor activity [15]. They fractionated chitosan oligosaccharide 

(CTS-OS) by gel-filtration chromatography into two major fractions: (1) COS, consisting of glucosamine 

(GlcN)(n), n = 3–5, with a 100% degree of deacetylation (DDA) and (2) COS, consisting of (GlcN)(5) as 

the minimum residues and varying number of N-acetylglucosamine (GlcNAc)(n), n = 1–2, with DDA 

about 87.5% in random order. The cytotoxic potential of these, expressed as EC(50) (the concentration 

needed for 50% cell death), of CTS-OS, COS, and HOS against cancer cell lines—PC3 (human prostate), 

A549 (human lung), and HepG2 (human hepatoma), was determined to be 25 μg/mL, 25 μg/mL, and 

50 μg/mL, respectively. The high molecular weight chitosan (HMWC) was approximately 50% less 

effective as compared to both CTS-OS and COS. This data indicate that the molecular weight and DDA 

of chitosan oligosaccharides are important factors for suppressing cancer cell growth. Table 1 is a 

summary of the literature on these studies. 

Table 1. A summary of anti-cancer activities of NACOS, COS and its derivatives. 

Preparation Cells or Model Major Results Ref. 

COS HT-29 (in vitro) 
Increased QR and GST activities and GSH levels; Inhibited ODC activities and 

COX-2 expression 
[9] 

COS HT-29 (in vitro) Inhibited NO production and iNOS expression [10] 

COS 
MDA-MB-231  

(in vitro) 
Reduced MMP-9 secretion and activities [12] 

COS HepG2 (in vitro) 
Reduced cells in S-phase and decreased the rate of DNA synthesis;  

Upregulated p21 and downregulated PCNA, cyclin A and CDK-2 
[13] 

COS LLC (in vitro) Inhibited MMP-9 [13] 

COS HepG2 (in vivo) Inhibited the tumor growth [13] 

COS LCC (in vivo) Inhibited the tumor growth and decreased the number of metastatic colonies [13] 

NACOS, COS Meth-A (in vivo) Enhanced acquired immunity [14] 

COS PC-3, A549 (in vitro) Suppressed cancer cell growth [15] 

CSO-SA 
MCF-7, A549,  

Bel-7402 (in vitro) 
Discovered anti-cancer activities of podophyllotoxin loaded on CSO-SA micelles  [16] 

CSOSA-g-PEI Hala, MCF-7 (in vitro) CSOSA-g-PEI/plasmid suppressed tumor growth [17] 

CSOAA FaDu (in vitro) Showed cytotoxicity. DOX-loaded CSOAA-based nanoparticle was highly uptake [18] 

Gal-CSO/ATP HepG2 (in vitro) Gal-CSO/ATP nanoparticle showed high cytotoxicity [19] 

FA-PEG-COL OVK18 #2 (in vitro) FA-PEG-COL nanoparticles accumulated in tumors [20] 

FcCOS – The release of drug was enhanced in the oxidative condition and low pH [21] 

2.2. Anti-Cancer Activities of COS Derivatives 

The utility of COS derivatives in targeted drug delivery/gene therapy has also been extensively 

investigated. Huang et al. have studied the derivatives of stearic acid-g-chitosan oligosaccharide  

(CSO-SA) as potential carriers for intracellular delivery of anticancer agents [16]. They compared the 
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cytotoxicity of podophyllotoxin (PPT) in a free state vs. PPT loaded on CSO-SA micelles  

(CSO-SA/PPT) against human cancer cell lines, breast carcinoma (MCF-7), lung cancer (A549), and 

hepatoma (Bel-7402) and discovered better anticancer activity in the micelle-loaded PPT. This higher 

cytotoxicity observed can be attributed to faster PPT transport into tumor cells mediated by CSO-SA 

micelles. Hu et al. have evaluated the low-molecular weight polyethylenimine-conjugated stearic  

acid-g-chitosan oligosaccharide (CSOSA-g-PEI) for gene delivery and therapy [17]. The designed  

CSOSA-g-PEI had notable ion-buffering property and DNA-binding capacity and could form  

positively-charged, nanosized particles (100–150 nm) with plasmid DNA, and in vitro gene transfection 

tests demonstrated that CSOSA-g-PEI presented much lower cytotoxicity than and a transfection 

efficiency comparable to Lipofectamine 2000 in human cancer cell lines, Hela and MCF-7. The 

transfection efficiency of CSOSA-g-PEI/pDNA could be further enhanced in the presence of serum or by 

adding arginine during incubation of CSOSA-g-PEI micelles with plasmid DNA. Further biodistribution 

experiments demonstrated that CSOSA-g-PEI conjugate are highly localized and are increasingly 

accumulated in the tumor tissue. Efficacy evaluation in vivo showed that CSOSA-g-PEI/plasmid 

pigment epithelium-derived factor administered intravenously could effectively suppress tumor growth 

(>60% tumor inhibition) without any systemic toxicity. Termsarasab et al. have tested chitosan 

oligosaccharide-arachidic acid (CSOAA) conjugate for the development of self-assembled nanoparticles 

intended for doxorubicin (DOX) delivery [18]. The DOX-loaded CSOAA-based nanoparticles were 

spherical in shape with mean diameter of 130 nm and were positively charged. Results of in vitro release 

test revealed that DOX-loaded CSOAA-based nanoparticles had a sustained and pH-dependent drug 

release profile. In addition, CSOAA showed negligible cytotoxicity in the human head and neck cancer cell 

line, FaDu and cellular uptake of DOX was higher in the nanoparticle-treated cells in comparison with 

free DOX-treated cells. Zhu et al. have evaluated the characteristics of galactosylated chitosan 

oligosaccharide (Gal-CSO) and adenosine triphosphate (ATP) (Gal-CSO/ATP) nanoparticles [19]. They 

estimated the cytotoxicity of Gal-CSO/ATP nanoparticles in HepG2 cells by using methyl tetrazolium 

(MTT) assay, and calculated the half maximal inhibitory concentration (IC50) values. Their results showed 

that the nanoparticles had low cytotoxicity but were taken up by HepG2 cells owing to expression of 

asialoglycoprotein receptor (ASGP-R) on their surface.  

Li et al. have demonstrated targeted delivery of siRNA to the cancer site following conjugation with 

folic acid-poly (ethylene glycol)-chitosan oligosaccharide lactate (FA-PEG-COL) nanoparticles [20].  

In this study, the efficiency of FA-PEG-COL nanoparticles in localizing in tumors was visualized in 

BALB/c mice bearing OVK18 #2 tumor xenograft by using in vivo imaging, and the researchers discovered 

that FA-PEG-COL nanoparticles accumulated substantially in tumors as compared to non-targeting COL 

nanoparticles. Xu et al. have reported a detailed investigation on the oxidation and pH response of 

ferrocene-modified chitosan oligosaccharide (FcCOS) nanoparticles for 5-fluorouracil (5-FU) 

delivery [21]. The dispersion of FcCOS nanoparticles depends strongly on pH change and in this study, 

the researchers showed that 5-FU, the model drug that was efficiently loaded in FcCOS nanoparticles 

(approximately 238 nm), was released more efficiently with decreasing pH under bubbled N2. 

Interestingly, the cumulative release of sample under bubbled air and pH of 3.8 was higher at 59.64%, 

while under bubbled N2 it was 49.02%. These results suggest a synergistic effect of oxidative conditions 

and low pH in enhancing the disassembly of FcCOS nanoparticles and the release of drug molecules. 

Table 1 is a summary of the literature on these studies. 
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3. Anti-Cancer Effects of NACOS and COS Following Oral Administration 

In most animal studies that have evaluated the anticancer properties of NACOS and COS, the route 

of administration has been either i.v. or i.p., and there is not much reported on the beneficial effects of 

NACOS and COS following oral administration. We recently assessed the anticancer properties of orally 

administered NACOS and COS in a mouse model of colon cancer using the cell line, colon-26 [22]. We 

observed that in animals receiving either COS (2% and 4%) or NACOS (2% and 4%), tumor volumes 

were significantly lower than those in control group (p < 0.05) (Figure 1). Moreover, the active cell 

proliferation seen in control group was markedly suppressed in the NACOS and COS groups, and instead, 

necrotic cells were widely observed in the tumors in these animals. Serum levels of interleukin-12p70 

and interferon-γ were also considerably increased in the NACOS and COS groups (p < 0.01, Table 2). 

Collectively, these results indicate that the anticancer effects of NACOS and COS following oral 

administration could be mediated by enhanced innate immunity. Previous reports have indicated that the 

inhibitory effect of COS on tumor growth was most likely related to its ability to induce lymphocyte 

cytokines by increasing T-cell proliferation. Mainly, adaptive immunity is thought to have enhanced the 

antitumor mechanism of COS by accelerating T-cell differentiation, which in turn increases cytotoxicity 

and maintains T-cell activity [14]. Studies have demonstrated that the antitumor effects of certain low 

molecular weight chitosans, such as water-soluble 21- or 46-kDa molecules that form low viscosity 

solutions, in mice bearing sarcoma (180 tumors) can be attributed to an increase in natural killer (NK) 

cell activity [23,24]. Another separate report stated that a low molecular weight, water-soluble chitosan 

and COS could prevent tumor growth by serving as immunomodulator in enhancing cytotoxic activity 

against tumors [25]. In certain cases of skin disease, low molecular weight, water-soluble chitosan and 

COS have been shown to activate macrophages via the production of cytokines, interferon (IFN)-γ and 

interleukin (IL)-12, in intraepithelial lymphocytes [26]. These observations strongly suggest that oral 

administration of NACOS and COS stimulates the production of IFN-γ and IL-12. 

 

Figure 1. Effect of orally administered NACOS and COS on tumor growth. The effects of orally 

administered NACOS and COS were evaluated using colon 26 bearing mouse model. Mice 

were fed 1%, 2% or 4% NACOS or COS contained diet. Data represent the mean ± standard 

error. n = 8–10 in each groups. ** indicates p < 0.01 and * indicates p < 0.05 as compared 

to the control group (Tukey-Kramer test). Reprinted with permission. Copyright 2014 

Elsevier [22]. 
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Table 2. Effect of orally administered NACOS and COS on serum cytokine levels. Reprinted 

with permission. Copyright 2014 Elsevier [22]. 

Cytokines  Control NACOS 4% COS 4% 

IFN-γ (pg/mL) 0.6 ± 0.2 8.3 ± 0.5 ** 8.4 ± 0.3 ** 
IL-12 (pg/mL) 11.2 ± 1.3 25.3 ± 3.5 ** 23.5 ± 3.0 ** 
TNF-α (pg/mL) 13.9 ± 1.6 13.4 ± 1.3 12.7 ± 0.8 

Mice were fed 1%, 2% or 4% NACOS or COS contained diet. Mean ± Standard error; n = 6 in each group;  

** p < 0.01 as compared to the control group.  

Anticancer effects of orally administered NACOS and COS have also been evaluated in MyD88 

(myeloid differentiation primary response gene 88) knockout mice and were found to be related to 

MyD88-dependent as well as MyD88-independent pathways [27]. Stimulation of innate immunity is 

essential for activation of adaptive immunity [27] and in particular, Toll-like receptors (TLR) on the 

surface of intracellular organelles recognize specific structures on bacteria, viruses, and fungi [28].  

In fact, chitin has been known to activate TLR-2 and Myd-88 in a novel IL-17A/IL-17AR-based innate 

immunity pathway [29] and adapter molecules such as MyD88 and Toll interleukin receptor  

(TIR)-domain-containing adapter-inducing interferon-β (TRIF) play important roles in inducing the 

production of cytokines via TLRs [30,31]. TLR-4 is also a known stimulator of cytokine production via 

MyD88 as well as TRIF signaling pathways [31]. In our previous experiments, we have observed that 

suppression of tumor growth following NACOS and COS treatments, administered orally, was not as 

robust in MyD88 knockout mice as it was in normal mice. These results suggest that in vivo antitumor 

effects of NACOS and COS are mediated not only by MyD88 dependent pathways, but also by MyD88 

independent pathways. 

Kan investigated the therapeutic effect of NACOS, administered through orally route, in patients with 

cancer [32]. A substantial regression of the cancer was observed in most patients, especially in those 

with early stage cancer. In addition, patients who were concomitantly treated with chemotherapy and/or 

surgical operation also showed significant decrease in tumor burden. The anticancer effects observed 

were regardless of the organ treated. These data reveal a potential for orally administered NACOS to be 

used in anti-cancer therapy. However, further detailed studies are required in order to successfully 

evaluate this. 

4. Anti-Inflammatory Activities of COS 

Numerous studies have reported the anti-inflammatory properties of COS. In a study conducted by 

Yoon et al. to investigate the effect of COS on LPS-stimulated RAW 264.7 cells, the researchers 

discovered that COS exposure led to a dose-dependent attenuation of LPS-induced secretion of TNF-α 

and IL-6 in the incubation medium [33]. Moreover, a corresponding decrease in TNF-alpha and IL-6 at 

the mRNA level indicated that COS exposure downregulated the expression of these cytokines at the 

transcription level. COS exposure was also found to decrease the lipopolysaccharide (LPS)-induced 

secretion of nitric oxide (NO) in the medium. Interestingly, the addition of external TNF-α to the medium 

reversed the COS-mediated decrease in IL-6 and NO levels thereby indicating that the anti-inflammatory 

effect of COS was by modulation of TNF-α pathway Yoon et al. have also investigated the protective 

effects of COS against glycerol-induced acute renal failure (a model of renal oxidative stress) [34] and 
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their data indicate that COS mitigates the glycerol-induced inflammatory response, improves renal 

function, and has antioxidant effects in kidney. Fernandes et al. have demonstrated that the  

anti-inflammatory activity of COS in carrageenan-induced paw edema method was not only  

dose-dependent but also molecular weight-dependent at higher doses [35]. Quia et al. reported on the 

protective effect of COS in LPS-induced sepsis [36]. They found that treatment by COS not only 

attenuated organ dysfunction but also improved survival rate after LPS injection. To further dissect the 

mechanism, they examined several pro-inflammatory markers, including neutrophil infiltration in organs 

and TNF-α and IL-1β in serum, and found levels of these cytokines were significantly reduced in  

COS-treated animals. The redox imbalance in LPS-induced sepsis resulting from depletion of 

glutathione (GSH) and catalase (CAT) levels and increase in malondialdehyde (MDA) levels was also 

found to have been reversed by COS exposure. Furthermore, signal pathways activated by LPS, such as 

c-Jun NH(2)-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), were also found 

to have been attenuated by COS treatment. These data demonstrate that the protection afforded by COS 

against LPS challenge in the mouse model could be by virtue of its anti-inflammatory as well as 

antioxidant properties. 

Pangestuti et al. have described the effects of COS in four different molecular weight ranges  

(<1, 1–3, 3–5, and 5–10 kDa) for their ability to modulate inflammatory mediators in LPS-stimulated BV2 

microglial cells [37]. At a concentration of 500 μg/mL, COS was found to attenuate the production of 

NO and prostaglandin E2 (PGE2) by inhibiting iNOS and COX-2 expression. Furthermore, the 

expression levels and release of inflammatory cytokines, including TNF-α, IL-6 andIL-1β, were also 

attenuated by COS. Notably, the inhibitory activity of COS was found to be dependent on its molecular 

weight, and lower molecular weight COS showed higher activity. In addition, this study confirmed the 

suppressive effects of COS on phosphorylation of JNK and p38 MAPK. Chung et al. have investigated 

the effects of COS against allergic reaction and allergy-induced asthma in vivo and in vitro [38]. COS, 

consisting of glucosamine (GlcN)(n), n = 3–5, was shown to be capable of inhibiting antigen-stimulated 

degranulation and cytokine generation in rat basophilic leukemia RBL-2H3 cells. This study also 

examined a protective effect of COS against ovalbumin (OVA)-induced lung inflammation in mouse 

model of asthma. The researchers discovered that animals receiving a daily oral administration of COS 

(16 mg/kg body weight/day) had a significant reduction in the mRNA expression and protein levels of 

IL-4, IL-5, IL-13, and TNF-α in their lung tissue and bronchoalveolar lavage fluid (BALF); protein 

levels of IL-4, IL-13, and TNF-α in BALF were decreased by 5.8-fold, 3.0-fold, and 9.9-fold, 

respectively, in comparison with the OVA-sensitized/challenged asthma control group. Choi et al. have 

demonstrated the effect of COS on body weight gain, adipocyte size, adipokine level, lipid profile, and 

adipose tissue gene expression profile in high-fat (HF) diet-induced obese mice [39]. Compared with the 

HF diet mice, mice fed HF diet supplemented with 3% COS had gained 15% less weight but did not 

display any change in food and energy intake. COS supplementation was also observed to have markedly 

improved the serum and hepatic lipid profiles. Microarray analysis revealed that dietary COS 

supplementation modulated adipogenesis-related genes such as matrix metallopeptidases 3, 12, 13, and 

14, tissue inhibitor of metalloproteinase 1, and cathepsin K in the adipose tissues. Twenty-five percent 

of the COS-responsive genes identified are also involved in immune response, including inflammatory 

response and cytokine production. In a study conducted by Wei et al., it was discovered that pretreatment 

with COS at 50–200 µg/mL could substantially abrogate NO production through the reduction of iNOS 
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expression in LPS-activated L9 microglial cells [40]. In addition, COS was found to markedly decrease 

LPS-induced phosphorylation of p38 MAPK and extracellular signal-related protein kinase ½ and could 

also inhibit activation of NF-κB and activator protein-1 (AP-1) In a rat model of autoimmune anterior 

uveitis, Fang et al. discovered that COS treatment markedly attenuated the clinical scores and infiltration 

of leukocytes in the iris/ciliary body (ICB) in a dose-dependent manner [41]. The expression of 

inflammatory mediators such as TNF-α, iNOS, MCP-1 (Monocyte Chemotactic Protein-1), RANTES 

(CCL-5; regulated on activation normal T cell expressed and secreted), fractalkine, and intercellular 

adhesion molecule (ICAM)-1 was also substantially decreased in animals treated with COS. Moreover, 

in the ICB, COS decreased the degradation of IKB and levels of p65 thereby resulting in inhibition of 

DNA-binding by NF-KB. Under in vitro conditions, sensitized lymphocytes derived from the spleens of 

COS-treated animals had a reduced chemotactic mobility towards the aqueous humor and the levels of 

the previously mentioned inflammatory mediators in culture media was found to be reduced. 

Li et al. have reported a mechanism by which COS attenuates inflammation in endothelial cells [42]. 

Regardless of the endothelial cell type, COS was found to be instrumental in suppressing the  

LPS-induced nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-dependent 

inflammatory gene expression, and this was associated with reduced nuclear translocation of NF-κB. 

LPS enhances O-GlcNAc modification of NF-κB/p65 and activates NF-κB pathway, and this could be 

prevented either by siRNA knockdown of O-GlcNAc transferase (OGT) or pretreatment with COS. 

Inhibition of MAPK or superoxide generation is also known to abolish LPS-induced NF-κB  

O-GlcNAcylation. Consistent with these observations, aortic tissue from LPS-treated mice showed 

enhanced NF-κB/p65 O-GlcNAcylation, and this was absent in tissues from mice that were pretreated 

with COS. Hence, COS-mediated attenuation of inflammatory response in vascular endothelial cells is 

most likely through decreased OGT-dependent O-GlcNAcylation of NF-κB. In a separate report,  

Li et al. stated that in porcine iliac artery endothelial cells (PIECs) treated with COS, the LPS-induced 

mRNA expression of E-selectin and ICAM-1 was reduced through the inhibition of p38 MAPK/ERK1/2 

and NF-κB signal cascade. Inhibition of p38 MAPK and ERK1/2, also resulted in suppression of  

LPS-induced nuclear translocation of NF-κB p65. Both these effects were dose-dependent and ultimately 

inhibited adhesion of U973 cells to PIECs. Based on these results, it can be concluded that inhibition of 

MAPK phosphorylation and NF-κB activation in LPS-treated PIECs by COS results in decrease in 

expression of E-selectin and ICAM-1. Table 3 is a summary of the literature on these studies. 

Table 3. A summary of anti-inflammatory activities of COS. 

Cells or Model Major Results Ref. 

RAW 264.7 cells (in vitro) 
Exposured LPS-induced secration of TNF-α and IL-6; Decreased the LPS-induced  

secretion of NO 
[33] 

Acute renal failure model  

(in vivo) 
Improved renal function and had antioxidant effects [34] 

Paw edema model (in vivo) Sowed the anti-inflammatory effects according to the dose and MW dependent manner [35] 

Spesis model (in vivo) Attenuated organ dysfunction and improved survival rate [36] 

BV2 microglial cells  

(in vitro) 

Attenuated the production of NO and PGE2 by inhibiting iNOS and COX-2 expression; 

Decreased the expression levels of TNF-α, IL-6 and IL-1β. Suppressed the phosphorylations 

of JNK and p38MAPK 

[37] 

Asthma model (in vivo) Reduced the mRNA expression and protein levels of IL-4, IL-5, IL-13 and TNF-α [38] 
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Table 3. Cont. 

Cells or Model Major Results Ref. 

Obese model (in vivo) Reduced the weight gain by involving inflammatory response [39] 

L9 microglial cells (in vitro) 
Abrogated NO production. Decreased the phosphorylation of p38 MAPK and inhibited 

activations of NF-κB and AP-1 
[40] 

Autoimmune anterior  

uveitis model (in vitro) 

Attenuated the clinical score; Decreased the inflammation mediators such as TNF-α, iNOS,  

MCP-1, RANTES 
[41] 

Endothelial cells (in vitro) Suppressed the activation of NF-κB pathways [42] 

Endothelial cells (in vitro) 
Reduced mRNA expression of E-selectin and ICAM-1 through the inhibition of p38 

MAPK/ERK1/2 and NF-κB cascade 
[43] 

5. Anti-Inflammatory Effects of COS for Inflammatory Bowel Disease 

Inflammatory bowel disease (IBD) includes ulcerative colitis (UC), and Crohn’s disease, and is 

characterized by chronic inflammation of the gut [44]. Over the past 40 years, the incidence of IBD has 

steadily increased in some areas of the world [45], possibly due to changes in dietary habits (particularly 

consumption of diets low in fiber content) in these regions [46]. Yousef et al. have reported that in human 

colonic epithelial cell line, T84, subjected to LPS or TNF-α-stimulation, COS treatment prevented LPS 

binding to cells, NF-κB activation, production of TNF-α and IL-6, loss of epithelial barrier integrity, and 

TNF-α and oxidative stress-induced apoptosis [47]. They also discovered that in a mouse model of acute 

colitis, oral administration of COS protected against mortality and intestinal inflammation. In addition, 

NF-κB activation, and levels of TNF-α and IL-6 in colonic tissues were suppressed in mice that received 

COS. Importantly, COS administration after colitis induction was effective in ameliorating intestinal 

inflammation in acute [induced by 5% dextran sulfate sodium (DSS)] as well as chronic (induced by 

cyclic administration of 2.5% DSS) colitis models. These results suggest that COS may be effective in 

the treatment of IBD through inhibition of NF-κB signaling and apoptosis of intestinal epithelial cells. 

Our group has also evaluated the anti-inflammatory effects of orally administered COS in a mouse 

model [48] and discovered that COS improved shortening of colon length and tissue injury (as assessed 

by histology) (Figure 2). In addition, COS inhibited myeloperoxidase activation in inflammatory cells 

as well as activation of NF-κB, COX-2, and iNOS thereby preventing inflammation of colonic mucosa 

(Figures 3 and 4). 

NF-κB occupies a pivotal position in several signaling pathways involved in innate immunity. It 

stimulates expression of COX-2, PGE2, and pro-inflammatory cytokines (IL-6, TNF-α, and MCP-1) [49] 

and is the critical transcription factor needed to express genes associated with pro-inflammatory 

responses [50]. Cyclooxygenases are the enzymes responsible for biosynthesis of prostaglandins  

(from arachidonic acid) and these influence many biological processes, including homeostasis and 

inflammation [51]. In fact, COX-2 expression is increased mainly during inflammatory processes and 

cell transformation [52]. It has become increasingly clear that nitric oxide (NO) over-production by 

iNOS is deleterious to intestinal function [53,54], and iNOS levels are considered to be important 

determinants of colonic damage [55]. Hence, sustained overproduction of NO mediated by iNOS may 

have a role in the pathogenesis of IBD and induction of experimental colitis in the colon [54]. Oral 

administration of COS has been shown to reduce serum levels of pro-inflammatory cytokines (TNF-α 
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and IL-6). Pro-inflammatory cytokines (IL-6, TNF-α, MCP-1) are known to trigger leukocyte activation 

and accumulation in tissues and play a significant role in inflammatory conditions, such as [56]. 

 

Figure 2. Effect of orally administered COS on colon injury in experimental IBD model. 

(A) Sections of colon tissue were stained with hematoxylin and eosin. Data are for one mouse 

per group from the NT, DSS, COS, and GlcN groups. Bar = 200 μm. (B) Data are the  

mean ± S.E. of 30 fields/100× magnification field in each group (Steel-Dwass test).  

** p < 0.01. Reprinted with permission. Copyright 2015 Elsevier [48].  
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Figure 3. Effects of orally administered COS on NF-κB activation in colon in an experimental 

IBD model. (A) Areas stained positive for NF-κB are shown by arrows. Data are for one mouse 

per group from NT, DSS, COS, and GlcN groups. Bar = 100 μm. (B) Data are the mean ± S.E. 

of 30 fields/100× magnification field in each group (Steel-Dwass test). ** p < 0.01. Reprinted 

with permission. Copyright 2015 Elsevier [48].  
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Figure 4. Effects of orally administered COS on iNOS activation in colon in an experimental 

IBD model. The immunohistochemistry of iNOS in the colon is shown. Areas stained positive 

for iNOS are shown by arrows and arrowheads. Data are for one mouse per group from NT, 

DSS, COS and GlcN groups. Bar = 100 μm. Reprinted with permission. Copyright 2015 

Elsevier [48].  

Our results suggest that a possible mechanism for the anti-inflammatory effects of orally administered 

COS is by suppression of inflammatory processes, including expression of NF-κB, COX-2, iNOS, and 

pro-inflammatory cytokines. Moreover, COS was found to prolong survival time in mice in an 

experimental model. 

6. Next Step to Use NACOS, COS and Its Derivatives for Patient 

A schema of this review is shown in Figure 5. An irrefutable amount of evidence has already established 

the anticancer and anti-inflammatory properties of NACOS and COS in experimental models. More 

recently, it has been shown that the beneficial traits are retained when NACOS and COS are administered 

by the oral route. To our knowledge, one article reported the safety of oral administration of COS by 

short-term study [57].  

However, the exact mechanisms behind the actions of NACOS and COS are not yet fully dissected, and 

further mechanistic studies will be required to harness the benefits of NACOS and COS in therapeutics. 

More recently, beneficial effects of nanomaterials based on chitin and chitosan are also reporting [2,58–63]. 

Effective usage including combination of nanomaterials from chitin and chitosan with NACOS and COS 

is must be researched. 
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Figure 5. A schema of this review. 
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