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Abstract: Short interfering RNA (siRNA) targeted against anti-apoptotic Bcl-2 protein 

proved to knockdown its expression and trigger cancer cell death. We used degradable, 

pH-sensitive, comb-like [P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA)] polymer 

to condense anti-Bcl-2 siRNA into “smart” particles, which proved to shuttle their cargo 

past the endosomal membrane and into the cytoplasm of HeLa and UM-SCC-17B cancer 

cells. HeLa and UM-SCC-17B cancer cells were treated with anti-Bcl-2 particles followed 

by quantifying Bcl-2 mRNA and protein levels using qRT-PCR and western blotting, 

respectively. “Smart” anti-Bcl-2 particles selectively suppress Bcl-2 mRNA and protein 

levels in HeLa cells by 50%–60% and 79%–81%, respectively. Similarly, “smart”  

anti-Bcl-2 particles inhibited Bcl-2 mRNA levels by 30%, 40%, and 20% upon incubation 

with UM-SCC-17B cancer cells for 48, 72, and 96 h, respectively. Bcl-2 protein expression 

in UM-SCC-17B cancer cells was inhibited by 30% after treatment for 72 h. Results show 

that pH-sensitive comb-like polymer complex anti-Bcl-2 siRNA forming “smart” 

OPEN ACCESS



J. Funct. Biomater. 2014, 5 168 

 

 

nanoparticles that deliver their cargo into the cytoplasm of HeLa and UM-SCC-17B cancer 

cells causing Bcl-2 knockdown at the mRNA and protein levels. 

Keywords: pH-sensitive comb-like polymers; smart particles; endosomal escape; 

cytoplasmic siRNA delivery; Bcl-2 knockdown 

 

1. Introduction 

B-cell lymphoma 2 (Bcl-2) is a family of proteins that includes more than 20 apoptotic regulators 

with opposing functions but share at least one conserved Bcl-2 homology (BH) domain [1–3].  

Anti-apoptotic proteins such as Bcl-2, Bcl-XL, and Bcl-w appear to inhibit apoptotic cell death through 

their binding to the pro-apoptotic proteins [1–3]. Pro-apoptotic proteins are sub-grouped into the “Bax” 

family proteins, which have several domains that are homologous to the domains of anti-apoptotic 

proteins [1–3]. The “BH3-only” family proteins have the BH3 domain that is conserved in anti-apoptotic 

proteins [1–3]. In response to the death signal, “Bax” family proteins such as Bax and Bak form  

homo-oligomers on the mitochondrial membrane, which result in the cytoplasmic release of 

cytochrome c and initiating the caspase cascade that eventually leads to apoptotic cell death [1–3]. In 

comparison, Bcl-2 is a pro-survival protein that is over-expressed in multiple human cancer cells 

including head and neck cancer, which prevents cancer cell death [4,5]. 

The anti-apoptotic activity of Bcl-2 protein is attributed to its ability to stabilize the mitochondrial 

membrane and inhibit the cytoplasmic release of cytochrome c, which prevents the activation of 

caspases and initiation of cell apoptosis [5,6]. Overexpression of anti-apoptotic Bcl-2 protein in head 

and neck cancer cells has been linked to increased resistance to radio- and chemotherapy and is 

considered a viable therapeutic target [7,8]. Antisense oligodeoxynucleotides (ASODN) and short 

interfering RNA (siRNA) molecules have been used to silence the expression of anti-apoptotic Bcl-2 

protein in head and neck cancer cells, which proved to successfully induce cancer cell death in 

response to chemotherapy both in vitro and in vivo [9,10]. However, transforming ASODN and siRNA 

molecules into effective therapies remains a significant challenge due to the lack of efficient and 

biocompatible carriers that can shuttle a large dose of the nucleic acid drug past the endosome 

membrane and into the cytoplasm of targeted cancer cells. 

We reported the design and synthesis of a new degradable, comb-like, pH-sensitive, and  

membrane-destabilizing polymer namely P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA), 

which incorporates two blocks in the backbone [11]. The first block is composed of pH-sensitive ethyl 

acrylic acid (EAA) monomers and hydrophobic butyl methacrylate (BMA) monomers whereas the 

second block incorporates N-acryloxy succinimide (NASI) monomers, which allows controlled 

grafting of hydrophobic hexyl methacrylate (HMA) and cationic N,N,N-trimethyl aminoethyl 

methacrylate (TMAEMA) copolymers via acid-labile hydrazone linkages (Scheme ΙA). At physiologic 

pH, this polymer retains its comb-like architecture and successfully complex siRNA molecules through 

electrostatic interactions with the cationic grafts forming “smart” pH-sensitive particles (Scheme ΙB) 

that are taken up into the cell by adsorptive endocytosis (Scheme ΙC). In the endosome, the comb-like 

polymer “senses” the drop in environment pH, which results in hydrolysis of the acid-labile hydrazone 



J. Funct. Biomater. 2014, 5 169 

 

 

linkage and release of the hydrophobic/cationic grafts that rupture the endosomal membrane and 

release the siRNA cargo into the cytoplasm (Scheme ΙD). We report the ability of P(EAA-co-BMA)- 

b-PNASI-g-P(HMA-co-TMAEMA) polymer to condense anti-Bcl-2 siRNA into “smart” particles that 

deliver their cargo past the endosomal membrane and into the cytoplasm of HeLa cervical cancer and 

UM-SCC-17B head and neck cancer cells to knockdown the expression of anti-apoptotic Bcl-2 protein 

at the mRNA and protein levels. 

Scheme Ι. A schematic drawing showing (A) the chemical structure of a degradable,  

pH-sensitive, membrane-destabilizing, comb-like polymer. The first block in the diblock 

polymer backbone incorporates pH-sensitive EAA and hydrophobic BMA monomers.  

The second block incorporates N-acryloxy succinimide (NASI) monomers, which are 

functionalized to allow controlled grafting of hydrophobic HMA and cationic TMAEMA 

monomers via acid-labile hydrazone linkages. Comb-like polymer (A) condenses siRNA 

molecules forming “smart” particles (B); after internalization into target cells through 

adsorptive endocytosis (C); the acid-labile hydrazone linkages get hydrolysed releasing the 

membrane-active fragments that rupture the endosomal membrane (D) and release the 

encapsulated cargo into the cytoplasm. Image in panel B (right) shows a 1% w/V agarose 

gel stained with ethidium bromide to visualize the electrophoretic mobility of free siRNA and 

the particles prepared by complexing P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) 

comb-like polymer with 0.7 µg of anti-Bcl-2 siRNA at different N/P (+/−) ratios. 
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Scheme Ι. Cont. 

 

2. Results and Discussion 

2.1. Formulation and Characterization of “Smart” Particles  

The ability of P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA)comb-like polymer to condense 

anti-Bcl-2 siRNA molecules into pH-sensitive particles was analyzed using the standard gel retardation 

assay. Comb-like polymer was mixed with a fixed amount (0.7 µg) of anti-Bcl-2 siRNA molecules at 

different N/P (+/−) ratios. The loaded RNA molecules were encapsulated into stable particles as a 

result of the electrostatic interaction between the cationic quaternary amine (N/+) groups of the 

TMAEMA monomers and the anionic phosphate (P/−) groups of the RNA molecules. Results showed 

that P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) comb-like polymer successfully complexed 

the loaded siRNA molecules at all N/P ratios, which is indicated by their retention in the loading wells, 

while free siRNA molecules migrate towards the positive electrode (Scheme ΙB). 

Results show that the polymer can condense siRNA molecules at lower N/P ratios compared to 

those of other acrylic acid-based polymers [12,13], thus reducing the amount of comb-like polymer 

needed to complex a given dose of therapeutic nucleic acids and consequently minimizing the toxicity 

commonly associated with excess cationic carriers [14,15]. Size and surface charge of the particles 

prepared at N/P ratios of 2.5/1, 4/1, and 5/1 were measured using dynamic light scattering and zeta 



J. Funct. Biomater. 2014, 5 171 

 

 

potential measurements, respectively. Results show that particles prepared at N/P ratios of 2.5/1, 4/1, 

and 5/1 have an average size of 245, 373, and 313 nm, respectively (Figure 1). These particles carry 

positive surface charges of 22.4, 24.9, and 32.3 mV at N/P ratios of 2.5/1, 4/1, and 5/1, respectively. 

siPORT amine, which is a commercial polymer-based transfection reagent was used a positive control 

in our studies. Results show that the size of “smart” particles is slightly larger than siPORT  

amine-based complexes, while the surface charges are relatively similar. The size of “smart” particles 

proved to fall below the size cut off size of 400–600 nm for tumor vasculature [16], which when 

coupled with their cationic nature will facilitate particle’s interaction and internalization into target 

cells via adsorptive endocytosis. 

Figure 1. The size and zeta potential of siPORT amine-based complexes and “smart” 

particles prepared by complexation of P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) 

comb-like polymer with 1.14 µg of anti-GAPDH siRNA at N/P (+/−) ratios of 2.5/1, 4/1, 

and 5/1. The plotted results are the average ± the standard error of the mean of two 

independent experiments each carried out in triplicates. 

 

2.2. Uptake of “Smart” Particles by HeLa and UM-SCC-17B Cells 

We evaluated the internalization of fluorescently-labeled “smart” particles prepared at different N/P 

ratios into HeLa cervical carcinoma and UM-SCC-17B head and neck squamous cell carcinoma using 

flow cytometry. Complexes prepared using commercial siPORT amine transfection agents were used 

as positive controls. Figure 2 shows that “smart” particles are efficiently (>97%) taken up into HeLa 

and UM-SCC-17B cells at N/P ratios higher than 2.5/1, and siPORT amine-based complexes also 

showed high internalization (~100%) into both cell types. The relatively lower uptake into HeLa cells 

using particles prepared at N/P of 1.5/1 could be due to the different cell membrane compositions 

between HeLa and UM-SCC-17B cancer cells [17]. These results indicate that our “smart” particles 

can be successfully internalized by HeLa and UM-SCC-17B cancer cells through adsorptive 

endocytosis due to the positive surface charge of these particles. Earlier research showed that the 
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increase of particle’s positive surface charge is typically associated with toxicity or low transfection 

efficiency due to poor decomplexation of the loaded DNA/RNA molecules [18–20]. Consequently, we 

decided to evaluate the transfection efficiency of the particles prepared at N/P ratios of 2.5/1, 4/1 and 

6/1, which will have a sufficient number of cationic TMAEMA residues to complex the loaded siRNA 

molecules, while eliminating cellular toxicity without preventing cytoplasmic decomplexation of the 

loaded siRNA molecules.  

Figure 2. Percentage of HeLa and UM-SCC-17B cancer cells that internalize siPORT 

amine-based complexes and “smart” nanoparticles prepared by complexation of  

P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) comb-like polymer with 1.14 µg of 

fluorescently-labeled anti-GAPDH siRNA at different N/P (+/−) ratios upon incubation for 

6 h in a serum-free culture medium. Results are the average + the standard error of the 

mean of three replicates. 

 

2.3. Effect of “Smart” Particles on GAPDH Expression 

The ability of “smart” particles to achieve functional delivery of complexed siRNA molecules into 

the cytoplasm of HeLa and UM-SCC-17B cancer cells was evaluated based on their ability to 

selectively knockdown GAPDH gene expression at the mRNA and protein levels. We utilized the 

KDalert GAPDH assay kit to measure the changes in GAPDH protein level upon incubation with 

particles that encapsulate the anti-GAPDH siRNA molecules. These particles were compared to those 

encapsulating a scrambled siRNA sequence. We utilized siPORT amine-based complexes 

encapsulating an equal dose of anti-GAPDH siRNA molecules as a positive control to determine the 

maximum level of knockdown that can be achieved using robust commercial transfection agents. As 

shown in Figure 3A, particles prepared at N/P ratios of 2.5/1 and 4/1 induced 30% and 39% 

knockdown in GAPDH protein expression in HeLa cells, respectively. This knockdown is better than 

siPORT amine-based complexes, which inhibited GAPDH protein expression by only 21% with 

toxicity, since scrambled siRNA molecules also induced 53% GAPDH reduction compared to 

untreated cells. “Smart” particles prepared at an N/P ratio of 6/1 also induced 39% knockdown in 
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GAPDH protein expression, which was associated with non-specific toxicity possibly due to the use of 

excess cationic carrier. To eliminate their toxicity, we decided to use particles prepared at 2.5/1 and 4/1 

ratios for the rest of the experiments in HeLa cells. We further utilized qRT-PCR to evaluate the 

changes in GAPDH mRNA level upon incubation with particles that encapsulated the anti-GAPDH 

siRNA molecules. As can be seen in Figure 3B, particles prepared at N/P ratios of 2.5/1 and 4/1 

induced 40% and 60% knockdown in GAPDH mRNA expression in HeLa cells, respectively, while 

siPORT amine-based complexes induced 50% knockdown. 

Figure 3. Effect of siPORT amine-based complexes and “smart” nanoparticles prepared by 

complexation of P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) comb-like polymer 

with 1.14 µg of the anti-GAPDH siRNA (+) or scrambled siRNA (−) at N/P (+/−) ratios of 

2.5/1, 4/1, and 6/1 (A,B) or 5/1 (C,D) on GAPDH protein (A,C) and mRNA levels (B,D) 

in HeLa cervical cancer cells (A,B) and in UM-SCC-17B head and neck cancer cells 

(C,D). Levels of GAPDH mRNA are normalized to the levels of β-actin. Results are the 

average + the standard error of the mean of five replicates. Statistical difference between 

particles encapsulating anti-GAPDH siRNA (+) and scrambled siRNA (−) was evaluated using 

paired t test where * denotes p ≤ 0.05, ** denotes p ≤ 0.01, and *** denotes p ≤ 0.005. 
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neck cells [21]. Therefore, we evaluated the transfection efficiency of particles prepared at an N/P ratio of 

5/1, which induced 14% knockdown in GAPDH protein expression in UM-SCC-17B cells without 

toxicity while siPORT amine-based complexes induce 36% GAPDH protein knockdown with toxicity 

(Figure 3C). The low transfection efficiency of “smart” particles in UM-SCC-17B cells is perhaps a 

result of poor decomplexation of siRNA from the carrier after endosomal escape since a higher amount 

of polymer was used at an N/P ratio of 5/1 than 2.5/1 and 4/1. Figure 3D shows that particles prepared 

at 5/1 ratio induced 38% knockdown in GAPDH mRNA expression in UM-SCC-17B cells, compared 

to siPORT amine-based complexes that induced 54% knockdown. These particles proved to transfect 

HeLa and UM-SCC-17B cells more effectively than the commercial transfection agent without toxicity. 

The observed difference in GAPDH knockdown induced by “smart” particles loaded with anti-GAPDH 

siRNA in HeLa and UM-SCC-17B cells can be explained by the difference in intracellular pH between 

these cells lines. The literature shows that normal cells generally have neutral cytosolic (pH 7.2) and acidic 

endosomal (pH 6.0) and lysosomal (pH 5.0) environment [21–23]. Whereas, many tumor cells have an 

acidified cytosol and more alkaline endosomes/lysosomes with both pH values is around 6.7 [21–23]. 

Although the reason for alkalinization of the endosomal and lysosomal compartments remains elusive, 

the elevated organelle pH in tumor cells has been confirmed in many reports [21,23–25] and proved to 

dramatically reduce the transfection efficiency of non-viral vectors in tumor cells [26]. Similarly, low 

GAPDH knockdown in UM-SCC-17B cancer cells can be attributed to endosomal alkalinization, 

which will reduce the hydrolysis of the hydrazone linkages connecting the membrane-active  

P(HMA-co-TMAEMA) grafts to the polymer backbone. Incomplete release of P(HMA-co-TMAEMA) 

grafts will reduce the net disruption of the endosomal membrane, which will limit the delivery of the 

loaded anti-GAPDH siRNA into the cytoplasm and diminish the associated GAPDH knockdown. This 

explains lower GAPDH knockdown observed in UM-SCC-17B cancer cells compared to that observed 

with HeLa cells. Nevertheless, our results collectively show that “smart” comb-like polymers can 

function as an effective carrier for enhancing the cytoplasmic delivery of siRNA molecules. 

2.4. Effect of “Smart” Particles on Bcl-2 Expression 

The therapeutic activity of “smart” particles was evaluated based on their ability to selectively 

knockdown Bcl-2 gene expression at both the mRNA and protein levels. We utilized qRT-PCR to 

measure the changes in Bcl-2 mRNA level upon incubation with particles that encapsulate the  

anti-Bcl-2 siRNA and compare to those encapsulating a scrambled siRNA sequence. We utilized 

siPORT amine-based complexes encapsulating an equal dose of anti-Bcl-2 siRNA as a positive control 

to determine the maximum level of knockdown that can be achieved using robust commercial 

transfection agents. As shown in Figure 4A, particles prepared at N/P ratios of 2.5/1 and 4/1 selectively 

induced 50% and 60% knockdown in Bcl-2 mRNA expression in HeLa cells, respectively. This 

knockdown is better than siPORT amine-based complexes which only inhibited Bcl-2 mRNA 

expression by 40% accompanied with toxicity. In Figure 4B, particles prepared at N/P ratios of 2.5/1 

and 4/1 induced 79% and 81% knockdown in Bcl-2 protein expression in HeLa cells, respectively, 

while siPORT amine-based complexes induced only 64% knockdown. For UM-SCC-17B cells, in 

order to exclude the issue of poor decomplexation of particles prepared at an N/P ratio of 5/1, we 

decreased the N/P ratio to 2.5/1 but increased the incubation time to solve the possible problem of 



J. Funct. Biomater. 2014, 5 175 

 

 

delayed endosomal pH drop. As shown in Figure 5A, Bcl-2 mRNA expression was inhibited by 30%, 

40%, and 20% after treatment with particles for 48, 72, and 96 h, respectively. Inhibition of Bcl-2 

protein expression was only shown after treatment for 72 h by 30% knockdown (Figure 5B). The 

results suggested that the therapeutic effects of anti-Bcl-2 siRNA delivered by using comb-like 

polymer is most effective after treatment for 72 h in UM-SCC-17B cancer cells, which matches earlier 

studies [27] and suggests the transfection condition should be optimized in different cell types. In 

summary, these results prove our “smart” comb-like polymer can be utilized as effective carriers for 

the delivery of therapeutic siRNA molecules into multiple mammalian epithelial cells. 

Figure 4. Effect of siPORT amine-based complexes and “smart” nanoparticles prepared by 

complexation of P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) comb-like polymer 

with 1.14 µg of the anti-Bcl-2 siRNA (+) or scrambled siRNA (−) at N/P (+/−) ratios of 

2.5/1 and 4/1 on Bcl-2 mRNA (A) and protein (B) levels after treatment for 48 h in HeLa 

cervical cancer cells. Levels for Bcl-2 mRNA are normalized to the levels of 18S rRNA. 

Results are the average + the standard error of the mean of five replicates. Statistical 

difference between particles encapsulating anti-Bcl-2 siRNA (+) and scrambled siRNA (−) 

was evaluated using paired t test where ** denotes p ≤ 0.01 and *** denotes p ≤ 0.005. 

Levels for Bcl-2 protein are quantified by Image J software (NIH, Bethesda, MD, USA) 

and normalized to the levels of β-actin. 
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Figure 5. Effect of “smart” nanoparticles prepared by complexation of P(EAA-co-BMA)- 

b-PNASI-g-P(HMA-co-TMAEMA) comb-like polymer with 1.14 µg of the anti-Bcl-2 

siRNA (+) or scrambled siRNA (−) at an N/P (+/−) ratio of 2.5/1 on Bcl-2 mRNA (A) and 

protein (B) levels at 48, 72, and 96 h in UM-SCC-17B head and neck cancer cells. Levels 

for Bcl-2 mRNA are normalized to the levels of 18S rRNA. Results are the average + the 

standard error of the mean of five replicates. Statistical difference between particles 

encapsulating anti-Bcl-2 siRNA (+) and scrambled siRNA (−) was evaluated using paired  

t test where * denotes p ≤ 0.05. Levels for Bcl-2 protein are quantified by Image J software 

(NIH, Bethesda, MD, USA) and normalized to the levels of β-actin. 
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synthesized following published procedures [28,29]. Human anti-GAPDH siRNA, FAM-labeled  

anti-GAPDH siRNA, negative siRNA sequence, KDalert GAPDH assay kit, and siPORT-NH2 

transfection reagent were purchased from Ambion Inc. (Austin, TX, USA). The anti-Bcl-2 siRNA 

sequence (5'-GCCCUGAUUGUGUAUAUUCA-3') was synthesized by Integrated DNA Technologies, 

Inc. (Coralville, IA, USA). The RNeasy Mini Kit and Omniscript reverse transcriptase kit were 

purchased from Qiagen (Valencia, CA, USA). The TaqMan universal PCR master mix and TaqMan 

gene expression assays for human GAPDH, human Bcl-2, β-actin, and 18S rRNA genes were 

purchased from Applied Biosystems (Foster, CA, USA). The anti-human β-actin monoclonal antibody 

and anti-human Bcl-2 monoclonal antibody were purchased from Santa Cruz Biotechnology  

(Santa Cruz, CA, USA) and BD Biosciences (San Jose, CA, USA), respectively. 

3.2. Synthesis of pH-Sensitive Comb-Like Polymer 

P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) comb-like polymer was synthesized following 

our established protocol [11]. Basically, the first block of the polymer backbone was synthesized by 

reversible addition-fragmentation chain transfer (RAFT) polymerization (Scheme ΙΙA). We mixed EAA 

monomers (1.0 g, 10 mmol) with BMA monomers (0.47 g, 3.3 mmol), DMP (33 mg, 9.15 × 10−2 mmol), 

and AIBN (3 mg, 1.83 × 10−2 mmol) in a 50 mL round bottom Schlenk tube. The reaction mixture was 

degassed by purging with nitrogen for 20 min and placed in an oil bath at 60 °C for 17 h. The resulting 

crude polymer was dissolved in dimethyl formamide (DMF), precipitated in diethyl ether, and dried 

under vacuum to yield pure P(EAA-co-BMA) polymer. Then P(EAA-co-BMA) polymer, was dissolved 

in dioxane and mixed with N-acryloxy succinimide (NASI) monomers at a 1:56 molar ratio in a round 

bottom Schlenk tube followed by purging with nitrogen for 15 min. The AIBN initiator (5 mg,  

3.0 × 10−2 mmol) was added to the reaction mixture before placing the tube in an oil bath at 65 °C for 

24 h (Scheme ΙΙB). The crude polymer was dissolved in DMF, precipitated in diethyl ether, and dried 

under vacuum to yield pure P(EAA-co-BMA)-b-PNASI copolymer. 

Scheme ΙΙ. Scheme for synthesis of P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) 

comb-like polymer. 
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Scheme ΙΙ. Cont. 

 

The diblock polymer backbone with NASI blocks was used to synthesize macroinitiators for graft 

polymerization of HMA and TMAEMA monomers (Scheme ΙΙC). The polymer was dissolved in 

dimethyl sulfoxide (DMSO), mixed with anhydrous hydrazine in a flask, and allowed to react at 40 °C 

for 24 h. The crude product was dissolved in DMF, precipitated in diethyl ether, and dried under 

vacuum to yield pure polymer-hydrazine conjugates, which was dissolved in DMSO and allowed to 

react with bromomalonaldehyde at a hydrazine-to-bromomalonaldehyde molar ratio of 1:1.5 for 24 h 

at room temperature. The pure macroinitiator was precipitated in acetone, filtered, and dried overnight 

under vacuum. The selected macroinitiator was dissolved in DMF and equimolar concentrations of 

HMA and TMAEMA monomers were added to the solution. 1/1 molar ratio of [Cu(I)Br]/HMTETA 

ligand addition followed by three freeze-vacuum-thaw cycles before placing the reaction mixture in an 

oil bath at 60 °C for 48 h while stirring. The molar ratio of the macroinitiator, HMA, and TMAEMA 

were controlled to prepare P(HMA-co-TMAEMA) grafts with a number average molecular weight 

(Mn) of 20 KDa equally split between the HMA and TMAEMA units. The final product  

P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) comb-like polymer was precipitated in diethyl 

ether, dried under vacuum, and further purified by dialysis against NaOH solution (pH = 10) for 24 h 

followed by lyophilization for 48 h. Figure S1 shows the 1H-NMR spectra of P(EAA-co-BMA), 

P(EAA-co-BMA)-b-PNASI, and P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) copolymers. 

3.3. Formulation and Characterization of “Smart” Particles 

P(EAA-co-BMA)-b-PNASI-g-P(HMA-co-TMAEMA) comb-like polymer was dissolved in RNase-free 

water and mixed with 0.7 μg of anti-Bcl-2 siRNA molecules dissolved in 1 μL of RNase-free water at 
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different nitrogen/phosphate (N/P) ratios. Each mixture was vortexed and allowed to stand at room 

temperature for 20 min before loading onto a 1% w/V agarose gel containing ethidium bromide (EtBr). 

The gel was immersed in a Tris-acetate-EDTA (TAE) buffer and run at 60 V for 45 min and visualized 

under UV (Fotodyne Incorporated, Hartland, WI, USA). Size and zeta potential of the particles 

prepared at N/P ratios of 2.5/1, 4/1, and 5/1 were measured using 90Plus particle size analyzer with 

ZetaPALS capability (Brookhaven Instruments Corporation, Holtsville, NY, USA). 

3.4. Culture of HeLa and UM-SCC-17B Cells 

HeLa cervical cancer and UM-SCC-17B head and neck cancer cells were generously provided by 

Nör and cultured following established protocols. Briefly, HeLa and UM-SCC-17B cells were 

maintained in DMEM supplemented with 10% fetal bovine serum, 10,000 units/mL penicillin,  

10,000 μg/mL streptomycin and regularly changing the growth medium every 2 days. Cells were 

incubated at 37 °C, 5% CO2, 95% relative humidity, and passaged upon reaching 70%–90% 

confluency using 0.25% trypsin/EDTA mixture. 

3.5. Cellular Uptake of “Smart” Particles 

Comb-like polymer and commercial siPORT-NH2 were dissolved in OPTI-MEM solution and 

mixed with 0.57 µg of FAM-labeled anti-GAPDH siRNA molecules at N/P ratios of 1.5/1, 2.5/1, 4/1, 

8/1, and 12/1 to prepare different particles that were incubated with HeLa and UM-SCC-17B cells for 

6 h at 37 °C, 5% CO2 and 95% relative humidity. HeLa and UM-SCC-17B cells were washed with 

PBS, treated with 0.25% trypsin/EDTA solution for 10 min, harvested, and centrifuged to remove the 

supernatant and form a cell pellet. Cell pellets were suspended in PBS and analyzed using Biosciences 

FACSCalibur (Becton Dickinson, Franklin Lakes, NJ, USA) to determine the percentage of 

fluorescently-labeled HeLa and UM-SCC-17B cells for each treatment. HeLa and UM-SCC-17B cells 

were gated by forward/side scatter and 10,000 gated events were collected per sample to discriminate 

between live and dead cells and account for live cells only. 

3.6. In Vitro Evaluation of GAPDH Knockdown in HeLa and UM-SCC-17B Cells 

HeLa and UM-SCC-17B cells were plated in 24-well plates at a seeding density of 20,000 cells/well 

and allowed to adhere for 18 h. The “smart” particles and siPORT-NH2 complexes incorporating 1.14 µg 

of anti-GAPDH siRNA or control siRNA molecules were incubated with HeLa and UM-SCC-17B 

cells at a final siRNA concentration of 200 nM for 6 h followed by addition of 500 μL of fresh culture 

medium and incubation for a total of 48 h. The effect of different treatments on GAPDH expression 

was quantified based on mRNA and protein levels. The amount of GAPDH protein expressed by HeLa 

and UM-SCC-17B cancer cells was measured using the KDalert GAPDH assay following 

manufacturer’s specifications. The level of GAPDH protein expression in response to different 

treatments was normalized to that of untreated control cells. For quantification of GAPDH mRNA, 

total RNA was isolated from HeLa and UM-SCC-17B cells using the RNeasy Mini Kit and 0.25 μg of 

total RNA was reverse transcribed using Omniscript reverse transcriptase kit following manufacturer’s 

protocols. Real-time PCR was performed in a final volume of 20 μL containing 2 μL of cDNA 
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(corresponding to 10 ng of total RNA for GAPDH and β-actin amplification), 1 μL of each primer, and 

10 μL of the qPCR MasterMix in the 7500 Fast Real-Time PCR system. 

3.7. In Vitro Evaluation of Bcl-2 Knockdown in HeLa and UM-SCC-17B Cells 

HeLa and UM-SCC-17B cells were plated in 24-well plates at a seeding density of 20,000 cells/well 

and allowed to adhere for 18 h. The “smart” particles and siPORT-NH2 complexes incorporating 1.14 µg 

of anti-Bcl-2 siRNA or control siRNA molecules were incubated with HeLa and UM-SCC-17B cells at 

a final siRNA concentration of 200 nM for 6 h followed by addition of 500 μL of fresh culture medium 

and incubation for a total of 48, 72, or 96 h. The amount of Bcl-2 protein expressed by HeLa and  

UM-SCC-17B cells was analyzed using the western blot technique following established protocol [30]. 

Briefly, whole cell lysates were resolved by SDS-PAGE and membranes were probed overnight at 4 °C 

with anti-human β-actin monoclonal antibody (1:1,000,000) and anti-human Bcl-2 monoclonal 

antibody (1:1000), and proteins were visualized with SuperSignal West Pico Chemiluminescent 

Substrate (Pierce, Rockford, IL, USA). The knockdown of Bcl-2 protein expression in response to 

different treatments was quantified by Image J software (NIH, Bethesda, MD, USA) and normalized to that 

of untreated cells. For quantification of mRNA, total RNA was isolated from HeLa and UM-SCC-17B 

cells using the RNeasy Mini Kit and 0.25 μg of total RNA was reverse transcribed using Omniscript 

reverse transcriptase kit following manufacturer’s protocols. Real-time PCR was performed in a final 

volume of 20 μL containing 2 μL of cDNA (corresponding to 10 ng of total RNA for Bcl-2 and  

18S rRNA amplification), 1 μL of each primer, and 10 μL of the qPCR MasterMix in the 7500 Fast  

Real-Time PCR system. 

4. Conclusions 

In summary, we proved that our “smart” pH-sensitive, membrane-destabilizing, comb-like polymer 

could successfully complex model siRNA molecules into stable nanoparticles at low N/P ratios, which 

indicates their ability to encapsulate large doses of therapeutic nucleic acids with minimum toxicity. 

These particles proved to be efficiently internalized by cancer cells and selectively knockdown 

GAPDH and Bcl-2 expression at both the protein and mRNA levels. The results collectively indicate 

the potential of these particles to serve as a carrier for silencing Bcl-2 expression in cancer cells.  
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