Next Article in Journal
Extracellular Matrix is an Important Component of Limbal Stem Cell Niche
Previous Article in Journal / Special Issue
Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord
J. Funct. Biomater. 2012, 3(4), 864-878; doi:10.3390/jfb3040864
Review

Biocompatibility of Bacterial Cellulose Based Biomaterials

1,* , 1,2
 and 1
Received: 26 July 2012; in revised form: 12 October 2012 / Accepted: 22 October 2012 / Published: 5 December 2012
(This article belongs to the Special Issue Biocompatibility of Biomaterials)
View Full-Text   |   Download PDF [690 KB, uploaded 5 December 2012]   |   Browse Figures
Abstract: Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received much attention, because of the possibility of combining the good properties of BC with other materials for specific applications. BC nanocomposites can be processed either in a static or an agitated medium. The fabrication of BC nanocomposites in static media can be carried out while keeping the original mat structure obtained after the synthesis to form the final nanocomposite or by altering the culture media with other components. The present article reviews the issue of biocompatibility of BC and BC nanocomposites. Biomedical aspects, such as surface modification for improving cell adhesion, in vitro and in vivo studies are given along with details concerning the physics of network formation and the changes that occur in the cellulose networks due to the presence of a second phase. The relevance of biocompatibility studies for the development of BC-based materials in bone, skin and cardiovascular tissue engineering is also discussed.
Keywords: bacterial cellulose; biocompatibility; biomedical application; biomaterials bacterial cellulose; biocompatibility; biomedical application; biomaterials
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Torres, F.G.; Commeaux, S.; Troncoso, O.P. Biocompatibility of Bacterial Cellulose Based Biomaterials. J. Funct. Biomater. 2012, 3, 864-878.

AMA Style

Torres FG, Commeaux S, Troncoso OP. Biocompatibility of Bacterial Cellulose Based Biomaterials. Journal of Functional Biomaterials. 2012; 3(4):864-878.

Chicago/Turabian Style

Torres, Fernando G.; Commeaux, Solene; Troncoso, Omar P. 2012. "Biocompatibility of Bacterial Cellulose Based Biomaterials." J. Funct. Biomater. 3, no. 4: 864-878.


J. Funct. Biomater. EISSN 2079-4983 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert