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Abstract: This computational study investigates the sensing and actuating behavior of
a pH-sensitive hydrogel-based microfluidic flow controller. This hydrogel-based flow
controller has inherent advantage in its unique stimuli-sensitive properties, removing the
need for an external power supply. The predicted swelling behavior the hydrogel is
validated with steady-state and transient experiments. We then demonstrate how the model
is implemented to study the sensing and actuating behavior of hydrogels for different
microfluidic flow channel/hydrogel configurations: e.g., for flow in a T-junction with single
and multiple hydrogels. In short, the results suggest that the response of the hydrogel-based
flow controller is slow. Therefore, two strategies to improve the response rate of the
hydrogels are proposed and demonstrated. Finally, we highlight that the model can be
extended to include other stimuli-responsive hydrogels such as thermo-, electric-, and
glucose-sensitive hydrogels.
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1. Introduction

As a relatively new branch of science and technology, microfluidics, which emerged in the early
1990s [1–3], has attracted much attention for its diverse applications, ranging from ink-jet printers and
fuel injection [4], over surface processing and biological assay [5], to control system, heat management
and display technology [6]. Other fields where microfluidic systems are considered and employed
include micromixing [7,8], biology and biochemical analysis [9–12]. For several of these applications,
the ability to manipulate the fluid flow within the microchannels is essential [12]; therefore, considerable
effort has been devoted to develop microfluidic flow controllers. The majority of flow controllers in
microfluidics systems are miniaturized version of their conventional macroscale counterparts [13], which
are generally integrated devices comprising electrical, mechanical and optical elements with individual
functions. These conventional microfluidic flow controllers have two major drawbacks: the inherent
difficulty in assembling the various components into a single system and the requirement of an external
power supply, both of which limit their implementation in numerous applications [14,15].

In contrast to conventional microfluidic flow controllers, stimuli-sensitive hydrogels can be employed
without external power supply. Moreover, hydrogels offer significant reduction in the complexity of a
microsystem due to their unique stimuli-sensitive ability; that is, stimuli-sensitive hydrogels can sense
changes in its environment—temperature, pH, glucose, electric field and pressure—and then swell or
shrink correspondingly [16,17]. During swelling, certain hydrogels are able to absorb large amounts of
water leading to a large swelling ratio [18–20]. Hydrogels could therefore replace the major components
in microfluidics flow controllers such as sensors, signal processors, regulators and actuators [21].
Moreover, their high water content and soft consistencies lend them excellent biocompatibility, allowing
application of this hydrogel-based system in biomedical and biotechnical fields. Due to their potential
for active flow control, numerous experimental designs and studies of hydrogels as flow controller in
microfluidic systems have been conducted [15,21–27]. In contrast, few studies concerning mathematical
modeling and simulation have been reported [28–30]; hence, it is of interest to develop mathematical
models which can aid in the synthesis and design of hydrogels as microfluidic flow controllers.

This paper addresses the sensing and actuating behavior of hydrogels as microfluidic flow controller
with the aim to derive and analyze a simple mathematical model for a pH-sensitive hydrogel that can
be integrated with the external flow in a microfluidic flow system; e.g., in a T-junction, as illustrated
in Figure 1. The mathematical model, which takes into account conservation of momentum, mass and
ions for laminar incompressible flow and the sensing/deformation of a pH-sensitive hydrogel, is derived,
analyzed and presented in Section 2. Details of the numerical procedure are outlined in Section 3.
Calibration and validation with steady-state and transient experiments [31] is then carried out for the
deformation of the hydrogel as a function of pH, after which we demonstrate how the model can be
employed to study the sensing and actuating behavior of the hydrogel as microfluidic flow controller.
The flow configurations considered in this paper are (i) a T-junction with hydrogels in one branch and
(ii) a T-junction with hydrogels in each branch; the latter has two hydrogels with opposite behavior:
a positive pH-responsive hydrogel, which swells as the pH increases, and a negative pH-responsive
hydrogel, which shrinks as the pH increases. We finish with conclusions, in which we highlight how the
model can be generalized for other types of stimuli-responsive hydrogels.
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Figure 1. Schematic representation of (a) a flow configuration with hydrogels act as
autonomous valves; (b) an axially constrained hydrogel subject to alteration in pH; and
(c) a hydrogel.

Fig. 1.

1

2. Mathematical Formulation

In this section, we derive a mathematical model that incorporates the conservation of momentum,
mass and species for a laminar incompressible flow as well as the sensing and deformation of the
hydrogel. The hydrogel considered in this paper is pHEMA (polyhydroxylethylmethacrylate), which is a
pH-sensitive hydrogel [31]. The hydrogel is embedded as microfluidic flow controller in a microchannel
(see Figure 1); as the hydrogel shrinks and swells depending on the pH of the solution in the system
(sensing), it affects (controls) the overall flow in the system. The solution is aqueous with protons (H+),
sodium ions (Na+), hydroxide ions (OH−), and chloride ions (Cl−) at ambient temperature.

2.1. Governing Equations

For laminar, incompressible flow inside the microchannel, conservation of mass and momentum are
given by the Navier–Stokes equation:

∇ · v(f) = 0, (1)

ρ
(f)
0

∂v(f)

∂t
+ ρ

(f)
0

(
v(f)·∇

)
v(f) = −∇p+ µ(f)∇2v(f) (2)

where ρ(f)
0 is the true density of fluid, µ(f) is the dynamic viscosity of the fluid, p is the fluid pressure

and v(f) is the fluid velocity.
We account for ion transfer inside the channel and the hydrogel with the Nernst–Planck equation and

electroneutrality condition [32–34], which can be expressed as
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∂ck
∂t+∇·(ckv(f))=Dk∇2ck+

zkFDk
RT

∇(ck∇ψ)

zfcf +
N∑
k

zkck = 0(3)where F is Faraday’s constant, R is the universal gas constant, ψ is the electric

potential, Dk is the diffusive coefficient, zk and ck are valence and concentration of the ion species k
(= H+, Na+, OH− and Cl−) respectively; ε0 is the permittivity for vacuum, ε is the dielectric constant
of medium relative to vacuum, zf is the valence of fixed charge and cf is the fixed charge concentration
inside the hydrogel.

For the hydrogel, conservation of mass is solved for a biphasic mixture comprising the solid and fluid
phase, whereas conservation of momentum for the hydrogel is considered in terms of Navier’s equation
with infinitesimal deformations and generalized Darcy’s law for a moving porous medium [35–37];
that is

∇ · v(p)=− 1

ρ
(f)
0

∇ · q

∇p = − µ(f)

κ(p)ρ
(f)
0

q

∇ · σ=0(4)where q =ρ(f)v(r) is the Eulerian relative flow vector of the fluid phase with respect to the
polymer phase, v(r) = v(f) − v(p) is the velocity of fluid relative to the solid phase velocity, v(i) is the
intrinsic velocity of phase i (solid and fluid), κ(p) is the permeability of polymer phase, σ is the mixture
stress tensor, and ρ(i) = φ(i)ρ

(i)
0 is the density of phase i, where ρ(i)

0 is the true density of each phase. The
velocity of the solid phase can be defined as the rate of deformation; that is, v(p) = ∂u(p)/∂t, where u is
the deformation of the hydrogel.

2.2. Constitutive Relations

The mixture stress tensor for the hydrogel is given by [35]

σ = −pI + σ
(p)
eff (5)

where σ(p)
eff is the elastic stress tensor of the polymer phase in the hydrogel. We treat the polymer phase

as an isotropic elastic material, whence the elastic stress tensor [32,38] of the polymer phase can be
expressed as

σ
(p)
eff = λs(E : I)I + 2µsE (6)

here, the Lamé coefficients, λs and µs and the elastic strain tensor of the solid phase, E are defined
as [39] respectively; E0 is Young’s modulus and ν is the Poisson ratio.

λs =
νE0

(1 + ν)(1− 2ν)
(7)

µs =
E0

2(1 + ν)
(8)

E =
1

2

[
∇u + (∇u)T

]
(9)
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The osmotic pressure inside the hydrogel comprises the mixing and ionic contributions, which can be
expressed as

p(osm) = −kBT
Vm

(
φ(p) + χφ(p)2 + ln

(
1− φ(p)

))
︸ ︷︷ ︸

mixing

+ RT
N∑
k

(ck − c∗k)︸ ︷︷ ︸
ionic

(10)

where kB is Boltzmann’s constant, Vm is the equivalent volume occupied by one monomer, Nx is the
degree of polymerization, χ is the polymer-solvent interaction parameter, and c∗k is the concentration in
the fluid channel (outside hydrogels) of the ion species k. The polymer-solvent interaction parameter,
χ(T, φ(p)), is generally expressed as a function of temperature and polymer volume fraction [40–42]; i.e.,

χ = −∆s

kB
+

∆h

kBT
+ χ2φ

(p) (11)

where ∆h and ∆s denote the changes in enthalpy and entropy, and χ2 is a parameter to express the
polymer volume fraction dependence of the interaction parameter.

The fixed charge concentration is given by [31]

cf =

 1
H

c0fKa

(Ka+cH+)
, inside the hydrogel,

0, outside the hydrogel
(12)

where c0f and cH+ are the initial fixed charge and hydrogen ion concentrations, respectively, Ka is the
dissociation constant of the fixed charge group and H is the hydration state of the hydrogel, which is
defined as the ratio of the volume of the fluid phase to the volume of the polymer phase inside the
hydrogel, H = Vf/V0. For axially restrained cylindrical hydrogels, hydration can be related to the strain
of hydrogel as

H = Err + Eθθ (13)

where Err and Eθθ are the radial and tangential strains, given by [43]

Err =
∂ur
∂r

(14)

Eθθ =
ur
r

(15)

respectively. Note that—compared to De et al. [31]—an additional term for hydration has been included:
viz., tangential strain, since the deformation in the radial direction will trigger strain in the tangential
direction [44]; hence, hydration should take into account total strain in radial and tangential direction.

The dynamic viscosity of the fluid phase can be expressed as [35]

µ(f) = a1(T + a2)
a3 (16)

and the permeability of the polymer network is given by [45]

κ(p) = κ
(p)
0

(
φ(f)

φ(p)

)n

(17)

where ai, κ
(p)
0 and n are constants summarized in Table 1.
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The effective diffusivity of ion inside the hydrogel is taken into account by Bruggeman equation [46]:

D
(eff)
k =

(
φ(f)

)3/2
Dk (18)

where Dk is the diffusive coefficient of ion species in water.
Here, pH and pKa are the negative logarithm of hydrogen ion concentration and dissociation constant

given by

pH = − log10(c1 × cH+) (19)

pKa = − log10(c1 ×Ka) (20)

respectively; c1 is a constant presented in Table 1.

2.3. Boundary and Initial Conditions

The boundary conditions can be summarized as follows:

• At the inlet of the channel, we prescribe

ck = ck,in, ψ = ψin, p = pin (21)

• At the outlet of the channel, we prescribe

∇ck · n = ∇ψ · n = 0, p = pout (22)

• At the walls of the channel, we prescribe

∇ck · n = ∇ψ · n = 0, v(f) = 0 (23)

• In the centre of hydrogel, we prescribe
u = 0 (24)

• At the hydrogels/fluid interface, the fluid velocity and fluid pressure are prescribed as

v(f)
∣∣
− = v(f)

∣∣
+ , p|− = p|+ + p(osm) (25)

Initial conditions invoked are

ck = ck,0, ψ = ψ0, p = pout, u = c2x (26)

Here, n is a unit vector normal to the given surface, |− and |+ denote condition inside and outside the
hydrogel, and c2 is a constant presented in Table 1. The boundary condition in the centre of hydrogel
is necessary in order to prevent translational movement of the hydrogel and corresponds to the way the
hydrogel is attached to the flow channel; see e.g., [14,15].
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Table 1. Base-case parameters.

Parameter Value Unit Reference

E0


0.29 for pH < 5.5
(−0.03pH + 0.455) for 5.5 < pH < 7.5
0.23 for pH > 7.5

MPa [31]

ν 0.409 - [31]
kB 1.38054× 10−23 J K−1 [35]
Vm 3.3× 10−28 m3 [35]
F 9.648× 104 C mol−1 [32]
R 8.314 J K−1 mol−1 [32]
κ0 2.8× 10−21 m2 calibrated
n −2.5 - -
Ka 10−2 mol m−3 [31]
c0f 1800 mol m−3 [31]
c∗
Na+ 300 mol m−3 [31]
ψ∗ 0 V prescribed
DH+ 9.311× 10−9 m2 s−1 [47]
DNa+ 1.334× 10−9 m2 s−1 [47]
DCl− 2.032× 10−9 m2 s−1 [47]
a1 0.6612 kg m−1 s−1 K1.562 [48]
a2 −229 K [48]
a3 −1.562 - [48]
c1 10−3 m3 mol−1 -

c2


0.15 for pH = 3
0.93 for pH = 6
1.12 for pH = 7

- equilibrium model

ρ
(f)
0 103 kg m−3 [49]

∆h −1.38× 10−20 J calibrated
∆s −4.8× 10−23 J K−1 calibrated
χ2 1.34 - calibrated
pin 0.02 Pa -
pout 0.00 Pa -
T 298 K -
L 1.5× 10−3 m -
W 6.0× 10−4 m -
H 1.8× 10−4 m -

3. Numerical Methodology

The mathematical model is solved with the commercial finite-element solver, Comsol Multiphysics
3.5a. Two geometries—hydrogels and channel—are solved simultaneously. Overall, the mathematical
model for the hydrogels and flow inside the channel consist of eight dependent variables: ur, c1, c2,
c3, u(f), v(f), w(f), and p(f). The geometries are resolved with around 1600–1800 elements to ensure
mesh-independent solutions, amounting to around 2.6 × 104–4.4 × 104 degrees of freedom; a finer
mesh is chosen at the interface between a hydrogel and the surrounding fluid in the microchannel. The
computations were carried out on a computer with a 2.66 GHz dual processor and 4 GB RAM and took
around 10–30 min.
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4. Results and Discussions

4.1. Calibration and Validation of the Hydrogel Model

Before we study the behavior of a hydrogel and its effect on the overall fluid flow in a microfluidic
T-junction, we calibrate ∆h, ∆s, and χ2 with the steady-state swelling curve for a diameter of 300 µm
(training set) from the experiments by De et al. [31], as shown in Figure 2, and validate the deformation
of the pH-sensitive hydrogel HEMA with experimental hydrogels with a diameter of 500 and 700 µm
(test set). Overall, good agreement is achieved between the model prediction and the experiments.
Clearly, the pHEMA hydrogel collapses at low pH and swells at high pH: This pH-induced swelling
behavior can be attributed to the presence of acidic groups bound to the polymer chains, which become
highly ionized at certain pH value [16,50]. The acidic group inside the hydrogel is only slightly ionized
when the pH drops below the pKa of the hydrogel—in this case the pKa is 5. As a result, swelling
of the hydrogel at pH changes below pKa is marginal, which is mirrored by the slight increase in the
hydrogel radius for pH . 4 in Figure 2. As the pH increases and approaches the pKa value, the acidic
functional group becomes near to fully ionized by deprotonation, which results in an increase in the
fixed charge density, cf . The increase in the fixed charge density, in turn, appears in the osmotic pressure
(driving force) and causes a swelling, as depicted in Figure 2 for the pH range 4–6. When the ionization
process reaches its saturation point, an increase in pH does not affect swelling behavior of the pHEMA
hydrogel [51]. This can be observed in Figure 2 where the hydrogel stops swelling at leading order when
pH > 7.

Figure 2. Diameters of hydrogels with respect to pH. The experimentally measured values
are [31] (H) 300 µm, (•) 500 µm, and (�) 700 µm. The solids lines are the corresponding
model predictions.
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Turning our attention towards the deformation kinetics of the hydrogel, we first calibrate the
permeability constant, κ0, for the shrinking of a 300 µm hydrogel when subjected to pH changes from
6 to 3 (training set), as illustrated in Figure 3a. We then validate the deformation kinetics with the
corresponding swelling (see Figure 3b) with reasonably good agreement. Overall, we note that the
shrinking is approximately ten times faster than the swelling: shrinking and swelling require around
1500 s and 18, 000 s respectively in order to reach the new steady state.
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Aside from calibration and validation purposes, it is of interest to study equilibrium swelling behavior
and deformation kinetics of a hydrogel since these are two important key factors in designing hydrogels
for microfluidic flow control: From the equilibrium swelling behavior, we can identify and modify the
properties of hydrogels that affect the swelling ratio and synthesize a hydrogel with the desired swelling
ratio for flow control purposes; and from the deformation kinetic behavior, we can estimate the response
time of the hydrogel when it is employed as microfluidic flow controller, after which we can design or
synthesize a hydrogel with a sufficiently fast response for any given microfluidic flow control system.

Figure 3. (a) Shrinking and (b) swelling kinetics for a 300 µm hydrogel for pH change
between 3 and 6. The experimentally measured values are for (H) shrinking and (•)
swelling [31,52].
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4.2. Flow Behavior Inside a T-Junction with One or Several Hydrogels in One Branch

We proceed further by examining the sensing and actuating behavior of a 300 µm hydrogel in a
T-junction when the solution pH is changed between 3 and 7, as illustrated in Figure 4. This configuration
represents a simple microfluidic flow controller based on a stimuli-responsive hydrogel—also commonly
referred to as resistance-based flow control [15]. Initially, at low pH, the hydrogel is in its shrunken state
and thus allows fluid flow (Figure 4a) between itself and the walls of the microchannel. A step change
in pH from 3 to 7 is then applied to the system, for which the hydrogel starts to swell towards the new
equilibrium and block the channel, as depicted in Figure 4b–d. The mass flow rate of the fluid at the
inlet and outlets of the channel as the hydrogel deforms is presented in Figure 5. When the hydrogels
reach new equilibrium at t ∼ 200 min, a step change in pH from 7 to 3 is applied; thus, the hydrogel
starts to shrink towards the initial condition. Here, several features are apparent: First, the mass flow
rate at the inlet of the channel decrease as the hydrogel swells, similar to that at the left outlet; second,
the response of the hydrogel is rather slow—it takes around 120 min for the hydrogel to fully close the
channel—which can defeat the purpose of flow control. The reason for the first observation is simple:
as the hydrogel swells, it obstructs the flow and creates high resistance for the fluid to flow because of
its low permeability. The second observation suggests that we should modify the hydrogel microfluidic
system to obtain higher response rates.
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In light of the second observation, we demonstrate two strategies in improving a hydrogel’s response
rate: first, by replacing a single larger hydrogel with multiple smaller hydrogels, and second, by
employing a hydrogel with higher permeability (macroporous hydrogel).

For the first strategy, we implement two hydrogels with the size of 150 µm and three hydrogels with
the size of 100 µm to replace the 300 µm, as shown in Figure 6. In doing so, we find that the response
time is approximately 3 times faster (for 150 µm hydrogels) and 6 times faster (for 100 µm hydrogels)
compared to the corresponding case with a single 300 µm hydrogel, as depicted in Figure 5. The reason
for this response time enhancement is the fact that by reducing the size of hydrogel, we shorten the
diffusion path of the penetrating fluid, which, in turn, leads to a faster response by the hydrogel. It
should be noted, however, that by reducing the size of the hydrogels, we may reduce the mechanical
strength and stability, which are necessary for a microfluidic flow controller [16,27]; therefore, careful
consideration has to be taken to ensure an optimum design.

Figure 4. Streamlines and velocity distribution (m s−1) for laminar flow in a T-junction with
one 300 µm hydrogel for pH changes between 3 and 7 at (a) t = 0 min; (b) t = 10 min;
(c) t = 50 min; and (d) t = 200 min.

Fig. 4.

4
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Figure 5. Response of the fluid flow during swelling and shrinking in a T-junction with (−)
one 300 µm hydrogel, (−·) two 150 µm hydrogels, and (· · ·) three 100 µm hydrogels. Mass
flow rates of the fluid are for pH changes between 3 and 7 at (a) the inlet; (b) the left outlet;
and (c) the right outlet.

0 50 100 150 200 250
0

0.5

1

1.5

2
x 10 9

   
/k

g 
s1

 t /min

(a)

(b)

(c)

Fig. 5.

5

The second strategy is achieved by implementing a 300 µm hydrogel with 10 and 100 times higher
permeability than the base-case hydrogel, which can be realized by utilizing macroporous hydrogels;
see, e.g., [53,54]. With this approach, we find that the response times are around 10 and 95 times faster
compared to the flow control system with a lower permeability, as presented in Figure 7. The faster
response can intuitively be explained by the fact that swelling and shrinking kinetics mainly depend
on the permeability of the hydrogel: on one hand, a low permeability induces a high resistance to the
penetrating fluid flowing into the hydrogels, which in turn result in slow deformation response; on the
other hand, a hydrogel with a high permeability allows for easier fluid penetration [35]. The utilized
macroporous hydrogels, however, should possess a sufficiently low permeability, because hydrogels
with too high permeability might allow a non-negligible amount of fluid to flow through them, which
would defeat the purpose of flow control.

4.3. Flow Behavior Inside a T-Junction with a Hydrogel in Each Branch

In this configuration, two hydrogels with 10 times higher permeability than the base-case hydrogel
with opposite behavior are introduced in the microchannel: a positive pH-responsive hydrogel, which
swells as the pH increases, and a negative pH-responsive hydrogel, which shrinks as the pH increases.
The fluid flow is thus either directed to the left or the right channel depending on the pH, as illustrated
in Figure 8. Recalling that the shrinking is approximately ten times faster than the swelling for the
conditions and HEMA hydrogel considered in this study, we expect that the switching between the
positive and negative response hydrogels will not be symmetric. This is indeed the case, as during the
first few minutes, the left channel starts to open before the right channel is fully closed. This, in turn,
leads to fluid flow through both branches and causes an increase in the mass flow rate at the inlet, as
shown in Figure 9. Clearly, one has to be careful when designing a flow sorter with hydrogels since the
latter may still allow fluid flow through an undesired channel during the first few minutes (depending on
response rate).
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Figure 6. Streamlines and velocity distribution (m s−1) for laminar flow in a T-junction
with (a) two 150 µm hydrogels in a shrunken state; (b) two 150 µm hydrogels in a swollen
state; (c) three 100 µm hydrogels in a shrunken state, and d) three 100 µm hydrogels in a
swollen state.

Fig. 6.

6

As the pH-positive hydrogel swells further, the right branch starts to be blocked; therefore, we
see a decrease in mass flow rate at the inlet. When the positive pH-sensitive hydrogel reaches a new
equilibrium (t ∼25 min), the entire right branch has been blocked, forcing all the fluid through the left
branch (Figure 8d), for which we observe that the mass flow rate at the inlet is equal to that of the left
branch. A step change in pH from 7 to 3 is then applied for which the positive pH-sensitive hydrogel
shrinks whereas the negative pH-sensitive hydrogels swells towards the new equilibrium conditions.

In this configuration, each hydrogel plays the role of a sensor, regulator and an actuator for the
fluid flow commonly handled by three different components. This particular configuration could be
implemented in chemical or biochemical applications, where precise pH control is required; for example,
in sequence determination of protein and DNA analysis [21].
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Figure 7. Response of the fluid flow during swelling and shrinking in a T-junction with one
300 µm hydrogel which has (−) a base-case permeability; (−), 10 times higher permeability,
and (−) 100 times higher permeability. Mass flow rates of the fluid are for pH changes
between 3 and 7 at (a) the inlet; (b) the left outlet; and (c) the right outlet.
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5. Conclusions

A mathematical model for hydrogels embedded in a microfluidic T-junction that takes into
account conservation of mass, momentum and ions for laminar, incompressible flow and for the
sensing/deformation of a pH-sensitive hydrogel has been derived and presented. The predicted swelling
behavior of a pH-sensitive hydrogel was validated with steady-state and transient experiments and
achieved good agreement. The model was then employed to study the deformation behavior of hydrogels
at various pH values and their impact on the fluid flow inside the microchannel where they act as
autonomous valves. Two configurations were considered: a T-junction with hydrogels in one branch
and a T-junction with hydrogels in each branch. Overall, the model could provide an insight into the
swelling/shrinking behavior of hydrogels, which act as autonomous microvalves at various pH values.

From the numerical investigation, it was found that the response rate of hydrogels subject to pH
changes is slow, which could defeat the flow control purposes. As such, two strategies to improve the
response rate of the hydrogels were proposed and demonstrated: First, by using smaller hydrogels and,
second, by employing hydrogels with higher permeability. It was found that the response rate improved
9 times when the hydrogel’s size was reduced to 100 µm from 300 µm, and it could be further improved
(up to 95 times) when macroporous hydrogels with 100 times higher permeability were implemented.
It should be noted, however, that smaller hydrogels tend to have weaker mechanical strength while
macroporous hydrogel may allow fluid to flow through them, which would defeat the purpose of flow
control. Therefore, careful consideration is required when designing and synthesizing hydrogels for
microfluidic flow control applications.

Finally, we would like to highlight that the model is not limited to pH-sensitive hydrogels;
it can be extended to other stimuli-responsive hydrogels such as thermo-, electric-, alcohol-, and
glucose-sensitive hydrogels.
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Figure 8. Streamlines and velocity distribution (m s−1) for laminar flow in a T-junction with
two 300 µm hydrogel for pH change between 3 and 7 at (a) t = 0 min; (b) t = 1 min;
(c) t = 5 min; and (d) t = 25 min.

Fig. 8.

8

Figure 9. Response of the fluid flow during swelling and shrinking in a T-junction with two
300 µm hydrogels in each branch. The mass flow rate of the fluid for pH changes between 3
and 7 are at (−) the inlet, (−·) the left outlet, and (· · ·) the right outlet.
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