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Abstract: The human body comprises various tubular structures that have essential functions in
different bodily systems. These structures are responsible for transporting food, liquids, waste,
and other substances throughout the body. However, factors such as inflammation, tumors, stones,
infections, or the accumulation of substances can lead to the narrowing or blockage of these tubular
structures, which can impair the normal function of the corresponding organs or tissues. To address
luminal obstructions, stenting is a commonly used treatment. However, to minimize complications
associated with the long-term implantation of permanent stents, there is an increasing demand for
biodegradable stents (BDS). Magnesium (Mg) metal is an exceptional choice for creating BDS due
to its degradability, good mechanical properties, and biocompatibility. Currently, the Magmaris®

coronary stents and UNITY-BTM biliary stent have obtained Conformité Européene (CE) certification.
Moreover, there are several other types of stents undergoing research and development as well as
clinical trials. In this review, we discuss the required degradation cycle and the specific properties
(anti-inflammatory effect, antibacterial effect, etc.) of BDS in different lumen areas based on the
biocompatibility and degradability of currently available magnesium-based scaffolds. We also offer
potential insights into the future development of BDS.

Keywords: Mg; Mg-based stent; biodegradable stents; luminal cavities applications; clinical translation

1. Introduction

The human body comprises a diverse range of organs that play a crucial role in main-
taining regular physiological functions [1]. These organs can be broadly categorized into
two groups based on their structure: parenchymal organs and hollow organs. Parenchymal
organs refer to organs that have parenchymal tissues, such as the heart, liver, and lungs,
which are usually composed of dense tissues. Hollow organs, on the other hand, refer
to organs that have hollow spaces and are able to accommodate other substances. For
example, organs like the blood vessels, intestines, and bile ducts belong to the category
of hollow organs, as they have hollow structures that can contain food, liquids, waste,
and other substances [2]. When the lumen of hollow organs is damaged, infected, or
obstructed by tumors, it can lead to a reduction in luminal patency, further resulting in
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luminal obstruction and causing varying degrees of organ damage [3]. In severe cases, it
can lead to organ necrosis and even death.

The implantation of stents is widely regarded as the most effective method for treating
the stenosis of hollow organs in clinical practice [4]. Stents, as commonly used intracorpo-
real implants, perform an essential function in supporting and restoring luminal patency.
Figure 1 illustrates that commonly used stents in clinical practice encompass a wide range
according to the service environment, such as coronary stents [5], vascular stents [6], bil-
iary stents [7], tracheal stents [8], esophageal stents [9], intestinal stents [10], and urethral
stents [11]. Each location of the lumen has specific requirements for stents, but regardless
of the location, good mechanical properties and biocompatibility are fundamental pre-
requisites. Conventional stent systems encompass (Table 1) both non-degradable organic
and metal materials. The organic stents are typically fabricated from various materials
such as polyethylene (PE), polyurethane (PU), and polytetrafluoroethylene (PTFE) and
are typically used in treating benign luminal stenosis conditions. The plastic stents are
more cost-effective and easier to implant; however, the strength and stiffness of plastic
stents are generally lower, which limits the diameter of the stent, resulting in frequent
stent obstructions necessitating replacement. Metallic stents are predominantly composed
of stainless steel and nickel–titanium alloys. They are generally deployed for luminal
obstructive conditions demanding extended support (beyond 6 months). Metal stents
possess a wider lumen and superior patency; however, they come at a higher cost and are
predisposed to luminal adhesion, making their removal considerably more challenging
once obstruction occurs. During long-term implantation, permanent material stents can
potentially result in complications such as displacement, re-obstruction, and inflammation.
Additionally, the removal of these stents often necessitates a second surgery, which can
impose additional financial and psychological burdens on the patient.
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Table 1. Comparison of conventional and biodegradable stents.

Classifications Materials Advantages Disadvantages Brand

Non-biodegradable
organic stent

Polyethylene (PE)
Polyurethane (PU)

Polytetrafluoroethylene
(PTFE)

1. Low cost
2. Simple operation

1. Low strength
2. Vulnerability to

obstruction
3. Ease of displacement
4. Short life cycle

(3–6 months)

Percuflex™/Biliary stent
Zaontz/Ureteral stent

Firlit-Kluge/Ureteral stent

Non-biodegradable
metal stent

Stainless steel
Nickel–titanium alloys

1. Long life cycle
(>6 months)

2. Less prone to
in-stent obstruction

1. High costs
2. Difficulty in

secondary removal

EUROLIMUS™/Coronary stent
Rontis

Medical-Abrax™/Coronary stent
EndoMAXX®/Oesophageal stent

Biodegradable
organic stents

Polycaprolactone (PCL)
Polylactic acid (PLA)

1. No need for a
second surgery

2. Good biocompatibility
3. Elasticity and

flexibility

1. Uncontrollable
degradation rate

2. Risk of displacement
and obstruction

3. Mechanical
performance limitation

ARCHIMEDES™/Biliary stent
Igaki–Tamai/Coronary stent

ReZolve/Coronary stent

Biodegradable
metal stents

Magnesium (Mg)
Iron (Fe)
Zinc (Zn)

1. No need for a
second surgery

2. Superior mechanical
properties for a wide
range of applications.

3. Good biocompatibility.

1. High cost
2. Uncontrollable

degrada-tion rate
Magmaris®/Coronary stent

UNITY-B™/Biliary stent

The stents listed in the table represent only a selection, not the complete set.

Consequently, research into biodegradable stents has assumed paramount importance.
Such stents can gradually degrade and be absorbed, circumventing the issues associated
with long-term retention and secondary surgical removal, thus presenting significant po-
tential in stent selection and research direction. Biodegradable materials are classified
into two categories: biodegradable organic materials and biodegradable metallic materials.
Biodegradable organic materials include polylactic acid (PLA), polycaprolactone (PCL),
and others. These materials exhibit good biocompatibility in the surrounding tissues fol-
lowing implantation. Nonetheless, in general, the mechanical properties of absorbable
polymers are insufficient to meet the radial strength required for luminal support, neces-
sitating an increase in the strut thickness of the stent to enhance its support capabilities.
Furthermore, their applicability within the lumen is constrained, and they are prone to
scaffold displacement, mirroring the characteristics of plastic scaffolds. The biodegradable
metallic materials encompass magnesium, iron, and zinc metals. This paper, in particu-
lar, emphasizes biodegradable magnesium. Owing to its impressive mechanical strength,
magnesium-based stents feature relatively thin strut thicknesses, resulting in larger inner
diameters and an expanded range of applications. Additionally, magnesium’s degradation
product is Mg2+, a trace element within the body known for its exceptional biocompatibility.
However, the manufacturing of magnesium-based scaffolds comes at a higher cost and
exhibits rapid degradation; therefore, surface modification of magnesium-based scaffolds
is imperative to prolong their degradation cycle. However, some retrospective studies
have shown that these permanent implants can cause adverse reactions, including tissue
hyperplasia, inflammation, and adhesion during long-term treatment, which require a
second surgery to remove or replace the stent [12,13], increasing medical costs and surgi-
cal risks. Therefore, there is an increasing demand for the next generation of innovative
biodegradable stents, which fully degrade within a certain period to maintain luminal sup-
port with good biocompatibility as well as good bioactive ability. Among the biodegradable
materials, magnesium (Mg) metal is considered an ideal material for bioresorbable stents
due to its degradability, good mechanical properties, and biocompatibility [14–16].

Mg is an essential element in the body [17,18]. According to the recommendations of
the National Institutes of Health (NIH) in the United States, adults need to consume over
300 mg of Mg ions per day to be involved in over 300 enzyme-catalyzed reactions, maintain-
ing membrane stability, energy metabolism [19], protein synthesis, DNA replication, and
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cell skeleton activation. The mechanical properties and density of Mg metals are similar to
those of human skeletal tissue, meeting the mechanical requirements for supporting the
human body effectively, reducing foreign body sensation, and improving biomechanics.
Extensive in vivo and clinical studies have shown that Mg implants react with the body flu-
ids and completely degrade in the body. Excess Mg ions can be excreted through urine and
feces, avoiding the potential for biotoxicity and allergic reactions during the implantation
process. Interestingly, Mg implantations and their degradation products have demonstrated
a range of biological functions, such as promoting bone formation, inhibiting inflammation,
and exhibiting anti-tumor properties [20,21]. To date, eight Mg-based medical devices have
been certified, including Magmaris® coronary stents and UNITY-BTM biliary stents [22–24].
The development and application of various types of Mg stents present significant op-
portunities but also pose several challenges. As previously discussed, different types of
hollow organs have distinct mechanical, degradation, and biological activity requirements
for stents due to the variations in cavity diameter, fluid environment, and surrounding
tissue composition. Consequently, this review aims to outline the performance criteria,
current research progress, and future trends in the field of stents, encompassing vascular,
coronary, biliary, tracheal, esophagus, urethral, and intestinal stents.

2. Types of Mg-Based Supports
2.1. Vascular Stents
2.1.1. Cardiovascular Stents

The vascular system in the human body is primarily composed of arteries, veins, and
capillaries, which are extensively distributed throughout the human body. Its primary role
is to facilitate the transportation of oxygen, transfer nutrients, and eliminate metabolic
waste [25]. The cardiovascular system, a vital subsystem of the vascular system, is responsi-
ble for circulating oxygenated blood to all parts of the body. When blood vessels narrow, it
can result in cardiovascular disease. Since the invention of coronary stents in 1980 [26], they
have emerged as an effective method for treating cardiovascular diseases [27]. Vascular
scaffolds mainly come into contact with the blood, and the pH value of blood is generally
maintained between 7.35 and 7.45, being slightly alkaline (Figure 2). Initially, vascular
stents were predominantly made from non-degradable inert materials [28]. However,
once implanted in the human body, they function as a permanent foreign body, constantly
stimulating the inner wall of the blood vessels and triggering inflammation [29–31]. In
theory, stents can achieve cardiovascular remodeling and restore their normal physiological
function after a period of 6 months following implantation. Therefore, for biodegrad-
able cardiovascular stents, the mechanical support duration of the stents needs to exceed
6 months. The Mg alloy, as one of the ideal biodegradable metal materials, has a degrada-
tion cycle that essentially meets the clinical requirements [32]. Additionally, the Mg alloy
exhibits good anti-platelet adhesion and a low probability of thrombus re-formation [33,34].
These characteristics make it the ideal biomaterial for the preparation of vascular scaffolds.

2.1.2. Coronary Stents

Coronary atherosclerotic heart disease, also known as “coronary heart disease”, occurs
when atherosclerotic lesions develop in the coronary arteries, causing the narrowing or
blockage of the blood vessels, which leads to myocardial ischemia, hypoxia, or necrosis
and results in heart disease. With the aging population and lifestyle changes, coronary
heart disease is one of the most common cardiovascular diseases worldwide. Millions of
people are diagnosed with coronary heart disease each year, including different types such
as angina and myocardial infarction. Since Andreas Gruntzig first performed percutaneous
transluminal coronary angioplasty (PCI) in 1977, PCI technology has gradually evolved and
its indications have expanded [35]. In 1986, Puel and Sigwart successfully implanted the
first coronary stent in the human body [26]. Nowadays, the implantation of coronary stents
has become a milestone in coronary interventional therapy to reduce the occurrence of
restenosis and stenosis stenting. They work in narrowed coronary arteries to restore blood
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flow and alleviate myocardial ischemic symptoms. In recent decades, there has been an
increasing demand for coronary stents. In 2003, drug-eluting stents (DES) were introduced
in clinical applications. These stents are loaded with drugs such as sirolimus, everolimus,
and zotarolimus, which are primarily immunosuppressive and antiproliferative drugs [36].
By inhibiting neoplastic endothelial proliferation, DES significantly reduces the incidence of
stent restenosis and the need for re-intervention [37]. DES releases drugs locally at the site
of the vascular injury, achieving effective drug concentration over a specific period while
minimizing systemic drug toxicity. However, DES implantation requires dual antiplatelet
therapy, with a lifelong anticoagulant intake thereafter [38–40]. Late in-stent thrombosis
remains a concern [41]. A large number of studies have indicated that permanent coronary
stents alter hemodynamics, reduce vascular response, and limit coronary vessels’ diastolic
force [42,43]. In addition, some side effects, such as thrombosis, long-term endothelial
stimulation, endothelial dysfunction, and local chronic inflammatory response have been
performed. To address these issues, a biodegradable coronary stent, especially Mg alloy
stents, represents an optimal alternative, which offers adequate mechanical properties,
completely absorbs within a specific timeframe, and exhibits bioactive ability. The Mg
alloy coronary stent promotes vascular healing, restores normal vascular function, re-
duces platelet adhesion, prevents thrombosis, and serves as a drug carrier without severe
inflammatory reactions during degradation [44,45].
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Heublein et al. [46] fabricated coating on the AZ21 (Mg-Al-Zn-Mn) Mg alloy coronary
stent to enhance corrosion property, which completes the degradation within 56 days
in vivo, with the stent structure already being destroyed within 35 days. HE staining
revealed significant endothelial hyperplasia at the site of the stent implantation, indicating
a vascular inflammation reaction induced by the degradation products of the Mg metal
stent. Ron Waksman et al. [47] prepared a bioabsorbable WE43 (Mg-Y-RE-Zr, exhibiting
high strength and hardness and exceptional corrosion resistance, but it comes with a high
manufacturing cost and relatively complex processing) Mg alloy stent, which also required
56 days for complete in vivo degradation. Similar to the AZ21 Mg alloy, the implantation
of the Mg alloy vascular stent in animal blood vessels showed a loss of stent continuity and
integrity within 28 days. However, compared to the control group with stainless steel stents,
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the Mg alloy stent reduced endothelial damage and inflammatory response. After 3 months
of placement, the Mg stent demonstrated a significantly smaller area of stenosis compared
to the stainless-steel stent group, which is attributed to Mg’s inhibition of endothelial
proliferation. Upon complete degradation of the Mg alloy stents, it was observed that
the area of the vessels with Mg alloy stents was significantly improved compared to
the structure-destroyed stents at 28 days. This proved that the long-term (>3 months)
implantation of Mg alloy stents could promote coronary vascular remodeling. Thus, the
requirements for Mg alloys in coronary stent implantation include a prolonged degradation
period of at least >3 months, good biocompatibility, and reduced stimulation of endothelial
damage. While drug-eluting stents (DES) significantly reduce the incidence of restenosis
compared to bare stents, they still have limitations, such as permanent vessel stimulation
and late thrombosis [48,49]. Therefore, drug-eluting bioresorbable scaffolds (BRS) have
emerged as an alternative to DES. Zhu et al. [50] developed a novel Mg-based scaffold
(Figure 3) using a newly patented Mg-Nd-Zn-Zr alloy (JDBM). The scaffold’s surface was
coated with rapamycin-coated poly (D, L-lactic acid) (PDLLA/RAPA), which extended
the degradation cycle of JDBM. Animal experiments demonstrated that the degradation
cycle of JDBM BRS scaffolds exceeded 6 months, with partial degradation observed at
3 months of implantation while maintaining the main structure intact. At 6 months,
degradation intensified but the scaffold still maintained intact mechanical properties. These
results confirmed the effective prolongation of the JDBM BRS degradation cycle via the
PDLLA/RAPA coating. Cellular experiments also indicated that the coating reduced
epithelial–smooth muscle cell proliferation and mitigated inflammatory stimulation caused
by the stent on the vessel.

In the comparison of various Mg alloy coronary stents presented in Table 2, it is evident
that the current requirements for biodegradable coronary stents include a degradation
cycle of >6 months, a maintenance of mechanical strength, good biocompatibility, and
a reduction in damage to the vascular endothelium. Mg alloys and their degradation
products can partially reduce endothelial proliferation, and bioresorbable Mg stents exhibit
negative charges during degradation [51], which may possess potential antithrombotic
properties. Studies have also demonstrated that Mg can attenuate ischemia–reperfusion
injury [52], and its inhibition of endothelin-1 production can prevent endothelin-mediated
vasoconstriction [53,54]. Bioresorbable Mg scaffolds in the field of coronary stents are still
undergoing advancements. These scaffolds not only exhibit visible benefits in mitigating
coronary inflammatory response and late thrombosis but also hold potential for loaded
drug coatings that further reduce in-stent restenosis and prolong the lifespan of Mg-based
scaffolds. These findings underscore the suitability of the Mg alloy as a promising material
for medical applications.

Table 2. Summary of degradable Mg alloy stents.

Material Composition Experimental
Animal Parenting Type Implant Part

Time of Stent
Integrity

Failure (d)

Degradation
Cycle (d)

AZ21 Mg-Al-Zn-Mn Pig Coronary stent Coronary artery 35 56
WE43 Mg-Y-RE-Zr Pig Coronary stent Coronary artery 28 56
JDBM Mg-Nd-Zn-Zr Pig Coronary stent Coronary artery 90 180
AZ31 Mg-Al-Zn-Mn Rabbit Intravascular stent Carotid artery 60–90 120
JDBM Mg-Nd-Zn-Zr Rabbit Intravascular stent Carotid artery 90 180
JDBM Mg-Nd-Zn-Zr Dog Biliary stent Biliary tract 30 60
AZ31B Mg-Al-Zn-Mn Dog Biliary stent Biliary tract 60 90
AZ31 Mg-Al-Zn-Mn Rabbit Biliary stent Biliary tract 90 180
JDBM Mg-Nd-Zn-Zr Rabbit Tracheal stent Trachea / 60
JDBM Mg-Nd-Zn-Zr Rabbit Esophageal stent Esophagus / 84
AZ31 Mg-Al-Zn-Mn Rabbit Esophageal stent Esophagus / >70
ZJ41 Mg-Zn-Sr Pig Urethral stent Urethra 49 84

WE42 Mg-Zn-Y-Nd Rabbit Intestinal stent Intestinum tenue 8 14
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Figure 3. The application of magnesium-based coronary stents in human and animal models.
(A,B): The experiment of Magmaris® implanted into human coronary arteries in vivo (Figure A
illustrates the end-to-end implantation technique of multiple Magmaris®stents, where: 1 denotes
the initial Magmaris® stent, 2 signifies the tantalum marker on the first Magmaris® stent, 3 indicates
the balloon associated with the second Magmaris® stent, 4 represents the tantalum marker on the
second Magmaris® stent, and 5 corresponds to the second Magmaris® stent itself) [22,55]; (C): the
experiment of Magmaris® implanted into pig coronary arteries in vivo (The yellow circles depict
the strut framework of the coronary stent, with Figure 2 in particular showcasing a clearer view of
the stent struts.) [56]; and (D,E): the experiment of JDBM implanted into rabbit coronary arteries
in vivo [50].

2.1.3. Other Vascular Stents

The occlusive vascular disease remains one of the leading causes of death in humans.
Vascular stents are inserted into diseased segments of blood vessels to provide support,
reduce vascular elasticity retraction, promote vascular remodeling, and maintain unob-
structed blood flow. Currently, vascular stents are primarily categorized into different
types, including coronary stents, cerebral vascular stents, renal artery stents, aortic artery
stents, and others.

While stent implantation is an effective treatment for occlusive vascular disease,
autologous vein bypass grafting remains a significant therapeutic option [57]. However,
approximately 50% experiences vein graft failure (VGF) [58] and lose functionality within
10 years, primarily due to vein graft stenosis. Current endovascular treatments include
balloon dilatation, bare metal stents (BMS), and drug-eluting stents (DES), all of which have
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shown effectiveness in improving the prognosis of VGF [59–62]. Similar to coronary stents,
VGF treatments pose long-term issues such as thrombosis and endothelial hyperplasia.
Bioabsorbable Mg scaffolds (BMASs) offer new hope for VGF treatment. Li et al. [63]
conducted a study using AZ31 (Mg-Al-Zn-Mn, with high machinability, low density,
and low corrosion resistance) Mg alloy scaffolds implanted into the carotid artery and
abdominal aorta of experimental rabbits (Figure 4). The degradation cycle of the AZ31 Mg
alloy was approximately 4 months, with structural damage to the AZ31 Mg alloy scaffolds
observed at 2–3 months. Furthermore, a comparison between the AZ31 group and the
control stainless-steel group revealed that the implantation of the AZ31 Mg alloy promoted
an early-stage lumen diameter increase and vascular endothelialization.
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Figure 4. The magnesium-based scaffold is used in the vascular stent. (A,B): Stent design and animal
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The prevalence of cerebral aneurysms ranges from 1% to 7%, making it one of the most
common cerebrovascular diseases [64–67]. Coil embolization is the primary treatment for
cerebral aneurysms [68,69]. However, this method has certain disadvantages, including a
relatively low rate of complete occlusion, a high rate of recanalization, high treatment costs,
and limited anatomical cures [70,71]. In recent years, vascular stenting has emerged as an
alternative approach to isolate aneurysms [72]. However, most of the available stents are
permanent metal stents that can induce intimal hyperplasia and lead to restenosis. In the
case of cerebral aneurysms, biodegradable Mg stents have become an alternative treatment
option. Cui et al. [73] established an animal model of common carotid artery collateral
aneurysms (CCA) and implanted Mg alloy overlay stents (Macs) into the carotid arteries
of experimental rabbits. Most of the struts in the Macs stent degraded after 3 months of
implantation, and by 6 months of implantation, the Macs stent was completely degraded.
During the degradation process of the Macs stent, endothelial cells were observed on
the remaining struts, and the rest of the stent was fully endothelialized. Compared to
the control group with the Willis Coated Stent (WCS), the Macs stent showed a faster
endothelialization process and a better sealing of CCA collateral aneurysms.
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Based on the different clinical requirements and implantation sites, the requirements
for biodegradable vascular scaffolds may vary. Like biodegradable coronary stents, the gen-
eral requirements include a degradation cycle of >6 months, a maintenance of mechanical
strength, and good biocompatibility. However, there is an additional requirement specific
to certain clinical needs, which is the promotion of endothelialization in blood vessels. For
instance, in procedures such as autologous venous bypass grafting and coil embolization
of aneurysms, the implanted biodegradable vascular scaffolds are expected to facilitate the
rapid endothelialization of the vessel and ensure the integrity of the lumen, thus improving
therapeutic outcomes.

2.2. Biliary Stents

The bile duct is a long tubular tissue responsible for transporting bile and is one of the
digestive organs. Bile has a pH that is maintained between 7.6 and 8.6 (Figure 2) due to
its high concentration of alkaline substances such as bile salts, cholesterol, and bilirubin.
The liver and gallbladder play a significant role in regulating bile pH. The liver regulates
bile pH primarily by secreting bile acids during bile synthesis, while the gallbladder
is responsible for storing and concentrating bile and has a minimal impact on bile Ph.
Bile duct stenosis typically occurs as a result of biliary stones, tumors, inflammation, or
intraoperative bile duct injuries [24]. It is generally categorized into benign biliary strictures
(BBS) and malignant biliary strictures (MBS). BBS is mainly caused by biliary tract injuries
and gallstones, while MBS is primarily caused by biliary tract tumors. BBS and MBS have
different requirements for biliary stents. Currently, biliary stents that are commonly used
in clinical practice can be classified into plastic stents and metal stents [74]. Plastic stents
are typically used for patients with benign biliary obstruction and has a lifespan of less
than 3 months due to their tendency to displace and cause re-obstruction, necessitating
frequent replacements. In contrast, metal stents have superior durability and are suitable
for use for 3 months or longer. However, removing metal stents can be challenging due
to lumen adhesion, and they are also more costly, placing a greater financial burden on
patients. Although the specific requirements for biliary stents vary depending on the type
of bile duct stenosis, in general, a secondary operation is necessary to remove biliary stents.
Biodegradable stents can degrade within the body, reducing the necessity for a subsequent
surgery and alleviating any discomfort experienced by the patients. However, biliary
stents have strict requirements for degradation due to the complex composition of bile
fluids in the service environment, which accelerates the mechanical deterioration of the
stents. Although biodegradable Mg biliary stents prevent complications associated with
prolonged stent placement in the bile duct, corrosion resistance remains a huge challenge
in a clinical trial.

Currently, there are several types of Mg alloy biliary stents available, such as Mg-
2Zn, Mg-6Zn, AZ31, JDBM, etc. [25,74]. As different magnesium alloys incorporate distinct
alloying elements, their characteristics including strength, hardness, and density exhibit
variations. In general, the pH levels within the human body’s lumens tend to be mostly
neutral, with some being mildly acidic or slightly alkaline. Within a neutral environment,
JDBM demonstrates superior biocompatibility and resistance to corrosion. Likewise, WE43
demonstrates analogous traits in such conditions, though it is often not the primary thera-
peutic choice due to its higher cost. Conversely, AZ21 and AZ31 alloys display a slightly
lower resistance to corrosion and often necessitate additional coatings to enhance their
degradation cycle. In conclusion, the selection of magnesium alloys suitable for various
luminal scaffolds necessitates a comprehensive evaluation considering factors such as
specific application requirements, desired biocompatibility, and degradation cycle. Guo
et al. [75] included a bare Mg alloy stent and a coated stent. An immersion experiment
in vitro indicated the JDBM bare stent suffered structural damage and lost its supportive
function after 12 weeks of immersion. In contrast, the JDBM-MgF2/PDLLA-coated stent
retained its basic structure after 12 weeks of immersion. In the in vivo experiments, the
overall structure of both the JDBM bare stent and the JDBM-MgF2/PDLLA-coated stent
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disappeared after 30 days of implantation. After 60 days of implantation, both groups of
stents completely degraded, and the bile ducts showed a smooth endothelium without
stenosis or fibroplasia. Hao et al. [76] prepared AZ31B Mg alloy stents via the surface
micro-arc oxidation method. After implantation into the bile ducts, the AZ31B stents began
to undergo structural damage after 2 months and completely degraded after 3 months. Liu
et al. [77] prepared an AZ31 Mg alloy stent (Figure 5), which, after 3 months of implantation
in the biliary tract, exhibited destruction of the stent structure. After 6 months, the stent
completely degraded with only a small amount of metal residue, demonstrating good
corrosion resistance of the AZ31 Mg alloy stent. It has successfully manufactured an MZ2
biliary scaffold and investigated the stratification of degradation products in this scaffold.
This was accomplished via the examination of its in vitro degradation process in the bile
and HBSS solution, as well as its in vivo degradation within the bile duct. These studies
have established a solid groundwork for the utilization of degradable magnesium scaffolds
in the field of biliary ducts [78]. The development of the Mg alloy as a new biodegradable
material in the field of biliary stents attracts more attention. The good biocompatibility and
mechanical properties of the Mg alloy make it an ideal material for biliary stents. However,
the rapid corrosion rate of the Mg alloy in the bile duct environment hinders its suitability
for the desired service life of biliary stents. Prolonging the corrosion resistance of the Mg
alloy remains a key focus of biliary stent research. Nevertheless, there is a broad prospect
for the use of the Mg alloy in the field of biliary stents.
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arrows indicate the balloon, followed by the upper end and the lower end of the biodegradable
stent) [79]; (B): the experiment of MZ2 implanted into pig bile duct in vivo (The arrows in the figure
indicate the MZ2 biliary stent and its design, while the white highlighted area inside the red box
provides a magnified view of the biliary stent 14 days after implantation) [78]; and (C): the experiment
of AZ31 implanted into rabbit bile duct in vivo (The white highlighted shadow, indicated by the
arrow, represents the AZ31 stent that has been implanted in the rabbit’s bile duct) [77].

2.3. Tracheal Stents

The microenvironment of the pH value in the trachea is relatively alkaline (from 7.3 to
7.6) but fluctuates in certain respiratory diseases, such as chronic obstructive pulmonary
disease (COPD) and airway infections. Tracheal stenting is used to treat diseases that
cause airway obstruction, such as congenital airway stenosis (CTS) and acquired airway
stenosis. These conditions can make it difficult to breathe and cause shortness of breath. [80].
Airway obstruction can be further classified as either auto-causal (due to the lack of tracheal
structure) or iatrogenic (resulting from disruptions to the tracheal structure) [81,82]. The
primary goal of treating patients with tracheal stenosis is to maintain airway patency
and stability [83]. Surgery remains associated with a high intraoperative mortality rate
and postoperative complications, making it a less favorable option. Airway stenting can
rapidly reconstruct the airway and alleviate symptoms such as respiratory distress [84,85],
making it a potentially effective method. However, conventional stents may not meet the
rapid growth needs of infants with CTS. Hence, the development of a new generation of
biodegradable medical implants, such as the Mg alloy, has been explored to reduce the
incidence of associated complications.

Xue et al. [86] conducted experiments using Mg-Zn-Ca alloys and JDBM Mg alloys to
process degradable Mg scaffolds. According to the results in vitro and in vivo, the JDBM
tracheal stent maintained its structure for over 2 months, underwent uniform degradation,
and showed no apparent inflammatory reaction. The trachea exhibited no significant
morphological abnormalities. These experiments confirmed that the Mg alloy tracheal
stents did not induce severe inflammatory reactions in the airway and were harmless to
vital organs, confirming the feasibility of biodegradable Mg alloy tracheal stents used in
tracheal stenosis. Therefore, for degradable tracheal stents, in addition to possessing good
mechanical properties and complete degradation within a certain period (>2 months), they
also need to exhibit good biocompatibility and reduce irritation to the tracheal epithelium,
thus minimizing the airway’s inflammatory response.

2.4. Esophageal Stents

The esophagus exhibits slight variations in pH levels across its different segments.
The Upper Esophageal Sphincter (UES) has a neutral pH of 6.5–7.5. The Esophageal Body
(EB) has an acidic pH of 6.0–7.0. The Lower Esophageal Sphincter (LES) is more acidic,
with a pH of 5.5–6.5 (Figure 2). The requirements for stent implantation in different parts
of the esophagus are generally similar. The main condition that necessitates esophageal
stents is esophageal stenosis, particularly in cases of benign esophageal stenosis caused
by conditions such as gastro-esophageal reflux, esophageal erosion, and injuries, which
are common in clinical practice [87]. The goal of treatment is to alleviate dysphagia, and
esophagectomy dilatation is a commonly used clinical procedure that often requires re-
peated sessions [88,89]. Therefore, stenting has emerged as an alternative method for
treating benign esophageal stenosis [90]. However, permanent metal stents can disrupt
the physiological structure of the esophagus and are typically removed after a period of
more than 3 months, where complications occur such as damage to the esophageal mucosa,
esophageal perforation, bleeding, and infection after the removal of stents [91]. Conse-
quently, there is an urgent need to research and develop biodegradable esophageal stents.

Mg is more prone to degradation in an acidic environment, which avoids the long-
term retention of the stents. Therefore, some biodegradable Mg esophageal stents with
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polymer coating were designed to prolong the anti-corrosion ability. Liu et al. [92] prepared
the stent coated with poly (lactic acid)-hydroxy acetic acid copolymer (PLGA) incorpo-
rating the antiproliferative agent paclitaxel (PTX), which showed relative biosafety after
being implanted in rabbits. The evaluation of stent displacement within the first 3 weeks
revealed a displacement rate of 58.3% (7/12), but the esophagus of all rabbits remained
patent. Yuan et al. [93] developed an AZ31 magnesium alloy stent coated with PCL-PTMC
(Figure 6). In in vitro degradation experiments, the PCL-PTMC-coated AZ31 esophageal
stent was tested in a neutral solution, showing a 10% reduction in stent mass after 4 weeks.
After 10 weeks of testing, the stent’s residual weight was 65% of its original weight. How-
ever, in an acidic environment, the stent completely degraded after 10 weeks. Among
the 10 rabbits implanted with PCL-PTMC-coated AZ31 esophageal stents, two exhibited
displacements. HE staining revealed reduced esophageal wall remodeling and no signif-
icant inflammatory response. These findings suggest that the PCL-PTMC-coated AZ31
esophageal stent exhibits outstanding biocompatibility. The experimental group showed a
decrease in the thickness of the esophageal wall, a reduced inflammatory response, and
an increased lumen area, which prevented the growth of granulation tissue. Therefore,
the requirements for biodegradable esophageal stents include good mechanical properties,
complete degradation within a specific period (>3 weeks), good biocompatibility, and
reduced irritation to the esophageal epithelium in order to prevent stent displacement.
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Esophageal radiography after stent implantation (In Fig. B, the yellow arrows indicate the imaging Figure 6. The study of Mg-based esophageal stents. (A): The PCL-PTMC coated Mg-stent shape.

(B): Esophageal radiography after stent implantation (the yellow arrows indicate the imaging of the
esophagus at different stages of stent implantation, including pre-implantation imaging, imaging
after stent placement, imaging after balloon dilatation following stent placement, and assessment of
esophageal patency after stent placement, respectively). (C): The magnesium stent group inhibits
epithelial and smooth muscle cells (The red line represents the thickness of the epithelial layer, while
the blue line represents the thickness of the smooth muscle layer). (D): Tissue HE staining (The
arrows indicate the presence of collagen deposition in the submucosal layer.) [93].
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2.5. Urethral Stents

The urethra has an acidic pH ranging from 5.0 to 7.0, as shown in Figure 2. In urol-
ogy, stents were first introduced in the 1970s, with silicone and polyurethane being the
preferred materials for ureteral stents due to their ability to reduce encrustation [94]. The
current first-line treatment plan requires follow-up cystoscopy and stent removal after a
certain time, which can cause discomfort to patients, including lumbar and abdominal pain,
urinary tract irritation, infections, and stone formation. Failure to remove the ureteral stent
promptly after treatment may lead to complications such as renal failure [95–97], and multi-
ple anesthesia procedures can impose physical and economic burdens on patients [98–100].
Currently, double-J stents (DJ) are commonly used in clinical practice as they have been
shown to reduce complications, facilitate stent removal, and minimize patient discom-
fort [101]. However, the ideal ureteral stent should be completely biodegradable in the
body without causing cytotoxicity [102]. Natural biodegradable materials for ureteral stents
include alginate, gelatin, and hyaluronic acid, while synthetic polymer materials include
polylactic acid, polyglycolic acid, and polylactic acid–glycolic acid. In recent years, Mg
and Mg alloys have also been explored as potential materials for biodegradable ureteral
stents. Studies have demonstrated that Mg, Mg-Y alloys, and AZ31 alloys can degrade in
artificial urine and exhibit antimicrobial activity, highlighting the potential of Mg alloys
for urological applications (Figure 7) [103,104]. Therefore, the antimicrobial activity of Mg
alloys serves as an advantage for their use as biodegradable materials.
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samples. (B): Quantification of colonies after 16 h of incubation (* p < 0.05 compared to PU, glass,
and the blank group). (C): Bacterial enumeration in AU solution following incubation with various
materials (* p < 0.05 in comparison to PU, glass, and the control group on day 3) [104].
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Tie et al. [105] conducted a study using ZJ41 (Mg-Zn-Sr, high strength, high hardness,
good machinability, and low density) Mg alloy semi-solid rheological scaffolds [106]. These
scaffolds exhibited superior mechanical properties compared to general Mg-Zn alloys. In
the experiment, the ZL41 Mg scaffolds began to exhibit structural damage after 7 weeks of
implantation and completely degraded at 12 weeks. Due to the antimicrobial activity of the
ZJ41 alloy, the frequency of urination in the experimental animals was significantly lower
two weeks after surgery. After 6 weeks, the urinary frequency returned to normal levels.
Furthermore, it not only validates the efficacy of degradable Mg stents as ureteral stents but
also showcases the antimicrobial properties of Mg alloys, which can help alleviate adverse
reactions associated with stent implantation. Therefore, a requirement for degradable
ureteral stents is to possess certain antibacterial activity, which can inhibit biofilm formation
and bacterial growth.

2.6. Intestinal Stents

The intestines are tubular structures in the digestive tract that extend from the stomach
to the rectum. The pH values in different parts of the intestines may vary. For example,
the jejunum typically has a slightly acidic pH ranging from 6.0 to 7.4, while the colon has
a slightly acidic pH ranging from 5.5 to 7.0. Intestinal stenting is often required for the
treatment of intestinal stenosis. Benign intestinal stenosis can be caused by surgical injuries,
radiotherapy, or the effects of medications. Malignant intestinal stenosis is associated with
intestinal malignant tumors or metastases. Both types of stenosis can greatly reduce a
patient’s quality of life and may lead to complications such as malnutrition and weight
loss. Conventional treatments often require repeated procedures. As an alternative, self-
expanding metal stents have been used to treat benign intestinal stenosis. These stents
provide long-term mechanical support to maintain intestinal patency. However, the implan-
tation of metal stents can cause tissue hyperplasia, which can lead to serious complications
such as perforation and intestinal obstruction [107]. To overcome these issues, biodegrad-
able intestinal stents have been developed as an alternative to plastic or metal stents. These
stents avoid the need for secondary surgery and reduce the risk of complications [108].
Currently, degradable materials used for intestinal stents include lactic acid, glycolic acid,
caprolactone, Mg-based alloys, and iron-based alloys [109]. Mg alloys, in particular, have
shown promise due to their good mechanical properties and biocompatibility. Studies
have demonstrated that Mg alloys undergo degradation without significant inflammation
or necrosis, and the degradation products do not exhibit significant toxicity to important
organs. Therefore, degradable Mg alloy stents could serve as a suitable alternative to
traditional intestinal stents.

Wang et al. [110] performed a study where three different Mg-Zn-Y-Nd alloy (WE42,
boasts high strength, lightweight characteristics, exceptional corrosion resistance, and
exclusive machinability. Nevertheless, its production cost is relatively high, options for its
use are somewhat limited, and it is susceptible to humid environments) (Figure 8) scaffolds
were prepared. Animal experiments revealed that PLLA/paclitaxel JDBM alloy scaffolds
exhibited rapid degradation starting from the 8th day, complete degradation in 9–14 days,
and showed a significant inhibitory effect on the growth of intestinal endothelial tissue.
This inhibitory effect effectively suppressed the excessive growth of local intestinal tissues.
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coated, and MAO/PLLA/paclitaxel-coated; surgical perspective of stent retrieval (the red arrow
indicates the intestinal stent that was removed from the rabbit’s intestine). (B): Presents SEM images
of the intestinal scaffolds with PLLA coating taken before implantation, 5 days post-implantation,
and 8 days post-implantation, respectively (in the figure, the surface of the intestinal scaffold is visibly
coated with a thin layer of PLLA. The PLLA coatings on both the unimplanted intestinal scaffold and
the intestinal scaffold after 5 days of implantation were notably smooth and devoid of any cracks.
However, after 8 days of implantation, cracks started to emerge in the PLLA coating of the intestinal
scaffold). (C): CT images depict the front and rear extremities of the intestinal stent within a rabbit
(the bright area indicated by the red arrow is the Nitinol ring that serves as the identifier for the
stent) [110].

3. Clinical Applications of Mg-Based Stents

The Mg alloy, one of the most promising biodegradable materials, has a rich history of
clinical applications. Its earliest recorded use dates back to 1878 when Edward ligated pure
Mg to control bleeding, although it degraded rapidly. With the continuous development
of society, Mg alloys have transformed and found applications in various fields (Table 3).
Notably, they have been successfully utilized in the development of luminal stents, such
as coronary stents and bile duct stents. The first version of a biodegradable metal stent
(AMS-1) designed for human coronary arteries contained 93% Mg and 7% rare earth
elements [111]. AMS-1 was a bare-metal stent, and subsequent improvements led to the
development of AMS-2, which employed refined alloy compositions. To inhibit smooth
muscle cell growth, a poly (lactic acid)-hydroxy acetic acid-coating-loaded paclitaxel was
added to the surface, resulting in AMS 3 (DREAMS-1G) [112]. Further enhancements
led to DREAMS-2G [113], which incorporated a 7 µm sirolimus-eluting poly-L-lactic acid
coating on the surface, extending the degradation cycle to 12 months. In 2016, this stent
was released as Magmaris® (Figure 9) with a CE marking in the Euro, marking the first
biodegradable drug-eluting metallic stent (Figure 5). Additionally, the UNITY-BTM [79]
biodegradable implant was developed as a complementary biodegradable metallic stent to
AMG’s ARCHIMEDES biodegradable pancreatic-biliary stent (Figure 9). The UNITY-BTM

stent offers rapid, intermediate, and long-term degradation profiles. The ARCHIMEDES
stent received CE mark approval in 2018 and was subsequently released globally via a
partnership with Medtronic.
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Table 3. The applications of Mg-based implants in the clinical trial.

Product Material Alloy
Composition Coating

Coating
Thickness

(µm)
Drug Application

Area

Strut
Thickness

(µm)
Stent Design

AMS-1 WE31 Mg-Nd-Zn-Zr / / Cardiovascular 80 × 165 4-crown 4-link
AMS-2 WE31 Mg-Nd-Zn-Zr / / Cardiovascular 130 × 120 6-crown 3-link
AMS-3

(DREAMS-1G) WE31 Mg-Nd-Zn-Zr PLGA 1 Paclitaxel
(0.07 µg/mm) Cardiovascular 130 × 120 6-crown 3-link

DREAMS-2G WE31 Mg-Nd-Zn-Zr PLLA 7 Sirolimus
(1.4 µg/mm) Cardiovascular 150 × 150 6-crown 2-link

UNITY-B™ MgNdMn21 Mg-Nd-Mn / / Biliary / Y shaped
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4. Physiological Functions of Mg

Magnesium metal implants have been extensively studied for their potential therapeu-
tic applications due to their various biological activities. These implants have demonstrated
anti-tumor [115,116], antibacterial [117], anti-inflammatory [118], and tissue healing pro-
motion effects [119].

One notable characteristic of magnesium implants is their ability to undergo a hydro-
gen absorption reaction with body fluids. This reaction results in the release of magnesium
hydroxide (Mg (OH)2) and hydrogen gas (H2) [120].

The degradation behavior of Mg implants can be controlled via external stimuli such as
light and magnetism, enabling a controlled inhibitory effect on tumor growth. The released
H2 from Mg implants has shown promising results in selectively inducing apoptosis (cell
death) in different types of tumor cells, including gallbladder cancer, colorectal cancer, liver
cancer, and more [121–123]. We previously found that magnesium degradation products
inhibit various types of tumors, such as osteosarcoma tumors [124], ovarian cancer [115],
colorectal cancer, and gallbladder cancers [21]. Specifically, hydrogen suppresses tumor
cells by activating the P53-mediated lysosomal–mitochondrial apoptosis signaling pathway.
Furthermore, another research found that Mg implants activate immune response [125,126],
acting as a potential option for targeted cancer therapy.

Hydrogen gas is used as a therapeutic medical gas for treating some diseases, attribut-
ing to the reduction in highly cytotoxic reactive oxygen species (ROS), such as peroxynitrite
(ONOO-) and hydroxyl radical (•OH) [127,128], without disrupting the signaling of normal
cells [129]. Furthermore, we conducted an observation using a live cell microscope and
found that the presence of hydrogen led to the generation of an apoptotic body in tumor
cells. However, in normal cells, hydrogen could be metabolized without impacting the
growth state of the cells. Similarly, when magnesium was implanted in the body, it was
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observed that hydrogen induced apoptosis in tumor tissues while causing minimal damage
to the normal organs [122].

Mg implants can achieve antibacterial effects using different approaches. These include
incorporating antibacterial elements in the implant alloy design, modifying the surface
topography, and loading antimicrobial drugs [130]. These strategies help prevent bacterial
colonization on the implant surface and reduce the risk of infection [131–133].

In addition to these properties, Mg implants promote tissue healing via collagen
synthesis, angiogenesis, cell proliferation [134], and anti-inflammatory effects [92,135].
These mechanisms contribute to the overall tissue regeneration process.

Overall, the unique biological activities of Mg metal implants, such as their controlled
degradation, selective tumor cell apoptosis, anti-inflammatory effects [136], and antibacte-
rial properties, make them promising candidates for a wide range of medical applications
in fields such as tubular lumen intervention and tissue engineering.

5. Conclusions

In summary, this article elucidates the application, translation and prospective devel-
opment of biodegradable magnesium (Mg) alloys in the domain of medical stents. The
investigation underscores the significance of corrosion resistance and biocompatibility in
diverse anatomical cavities. The quintessential biodegradable Mg stent ought to possess
stellar mechanical properties, biodegradability, and commendable biocompatibility while
taking into account site-specific requisites. The utilization of degradable stents obviates the
necessity for secondary interventions and proffers unparalleled advantages in disparate lu-
minal environments. Mg alloys have garnered attention as exceedingly promising materials
for multifaceted human implants, owing to their mechanical attributes and degradation ki-
netics. Nevertheless, challenges such as mechanical support duration, degradation kinetics,
biological functionality, and compatibility with minimally invasive therapeutic modalities
necessitate redressal for prospective device translation. Further investigation is imperative
to fully explore the potential of biodegradable Mg alloy stents in specific domains. All in
all, Mg alloys exhibit promise as biodegradable materials in the purview of medical stents.
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