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Abstract: Catecholamine metabolites are not only involved in primary metabolism, but also in
secondary metabolism, serving a diverse array of physiologically and biochemically important
functions. Melanin, which originates from dopa and dopamine, found in the hair, eye, and skin of
all animals, is an important biopolymeric pigment. It provides protection against damaging solar
radiation to animals. N-Acetyldopamine and N-β-alanyldopamine play a crucial role in the hardening
of the exoskeletons of all insects. In addition, insects and other arthropods utilize the melanogenic
process as a key component of their defense systems. Many marine organisms utilize dopyl peptides
and proteins as bonding materials to adhere to various substrata. Moreover, the complex dopa
derivatives that are precursors to the formation of the exoskeletons of numerous marine organisms
also exhibit antibiotic properties. The biochemistry and mechanistic transformations of different
catecholamine derivatives to produce various biomaterials with antioxidant, antibiotic, crosslinking,
and gluing capabilities are highlighted. These reactivities are exhibited through the transient and
highly reactive quinones, quinone methides, and quinone methide imine amide intermediates, as well
as chelation to metal ions. A careful consideration of the reactivities summarized in this review will
inspire numerous strategies for synthesizing novel biomaterials for future medical and industrial use.

Keywords: dopa; dopamine; N-acyldopamines; tunichromes; dopyl proteins; sclerotization; melanization;
quinones; quinone methides; catecholamines; antioxidants; antibiotics; elastic polymers; bioinspired
polymers

1. Introduction

Catecholamines are an important group of compounds generated from the amino acid
tyrosine. They are key components of both primary metabolism and secondary metabolism.
The primary metabolites, dopa, dopamine, norepinephrine, and epinephrine, are extremely
crucial for all living organisms. Several of these compounds and their derivatives are
used widely as drugs for the treatment of various ailments. Tyrosine and dopa are also
converted into a vast array of secondary metabolites that are very important for various
organisms. Lignin and tannins produced by plants are essential for the survival of all plant
species. Marine organisms and arthropods synthesize numerous catecholic compounds.
The catecholic (o-diphenolic) group attributes special reactivities to catecholamines due to
the ease with which they undergo oxidation to highly reactive quinonoid products. Studies
carried out extensively over the past fifty years have brought to light another important
aspect of catecholamines, viz., the reactivities through their side chains. Armed with these
two reactivities, catecholamines form a variety of biomaterials that possess amazing prop-
erties. The importance of such molecules has only been recognized recently, although
their involvement in biomaterial formation was well established years ago. Several simple
derivatives possess antioxidant as well as antibiotic properties. Some form novel crosslink-
ing agents for the construction of tough exoskeletons of insects and other arthropods. Some
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possess a combination of both antibiotic and crosslinking capabilities. Some are used as
novel gluing materials to bond to solid substrata. In this review, advances made in the past
fifty years on the reactivities of various catecholamines with respect to biomaterial forma-
tion are discussed in detail. Examination of the reactivities of catecholamine derivatives,
especially dopa, dopamine, their acylated products, side-chain dehydrogenated products,
and molecules embedded with these structural elements, can lead to the development of
novel biomaterials for future use. This review summarizes various aspects of catecholamine
chemistry that will be useful for this purpose.

2. Common Biochemical Pathway of Catecholamines

Catecholamines are biosynthesized starting from the common amino acid tyrosine.
Hydroxylation of tyrosine produces dopa, the first catecholamine, that serves as the pre-
cursor for several biologically and physiologically important biomolecules. Dopa decar-
boxylase produces another crucial catecholamine, dopamine. Hydroxylation of the side
chain of dopamine yields norepinephrine, which upon methylation produces the hormone
epinephrine, also known as adrenaline (Figure 1). Apart from these four key biochemical
components that are ubiquitous in most living organisms, most organisms also produce
different melanins that are derived from catecholamines. In animals, dopa undergoes
oxidation to form dopaquinone. Intramolecular cyclization of dopaquinone produces
dopachrome, which undergoes either decarboxylation and/or isomerization, yielding
5,6-dihydroxyindole (DHI) and/or 5,6-dihydroxyindole-2-carboxylic acid (DHICA) [1–6].
Oxidative polymerization of these dihydroxyindoles eventually produces brown to black
eumelanin pigments. Dopaquinone also undergoes addition reaction with the amino acid
cysteine, generating cysteinyl dopa, which produces yellow to red pheomelanin pigments
after oxidative polymerization (Figure 1). These are the common and well-known fates of
dopa that are often found in biochemistry textbooks. But in this article, we will examine,
in addition, several other reactivities of catecholamines that are key to the production of
unique biomaterials.
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mone epinephrine, also known as adrenaline. In the skin, hair, and eye of animals, phenolic pigment 
melanin is generated from dopa through oxidative polymerization reactions. Tyrosinase (E) oxi-
dizes dopa to dopaquinone. It also has the capacity to convert tyrosine to dopaquinone (not shown 
in figure). Intramolecular cyclization of dopaquinone (F = nonenzymatic reaction) produces do-
pachrome which undergoes transformation to produce 5,6-dihydroxyindole (X = H) and/or 5,6-di-
hydroxyindole-2-carboxylic acid (X = COOH) by dopachrome converting enzymes (G). Oxidative 
polymerization (H) of dihydroxyindoles generates black to brown eumelanin pigments. On the 
other hand, oxidative polymerization (H) of cysteinyl dopa, formed by the addition of cysteine to 
dopaquinone (F = nonenzymatic reaction), produces yellow to red pheomelanin pigments. 

Figure 1. The common biochemical fate of dopa. Tyrosine is hydroxylated by tyrosine hydrox-
ylase (A), generating dopa. Dopa decarboxylase (B) produces dopamine from dopa. Dopamine
β-hydroxylase (C) converts dopamine to norepinephrine. Methylation of norepinephrine (D) yields
the hormone epinephrine, also known as adrenaline. In the skin, hair, and eye of animals, phenolic
pigment melanin is generated from dopa through oxidative polymerization reactions. Tyrosinase
(E) oxidizes dopa to dopaquinone. It also has the capacity to convert tyrosine to dopaquinone (not
shown in figure). Intramolecular cyclization of dopaquinone (F = nonenzymatic reaction) produces
dopachrome which undergoes transformation to produce 5,6-dihydroxyindole (X = H) and/or 5,6-
dihydroxyindole-2-carboxylic acid (X = COOH) by dopachrome converting enzymes (G). Oxidative
polymerization (H) of dihydroxyindoles generates black to brown eumelanin pigments. On the
other hand, oxidative polymerization (H) of cysteinyl dopa, formed by the addition of cysteine to
dopaquinone (F = nonenzymatic reaction), produces yellow to red pheomelanin pigments.
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3. Catecholamines Destined to Become Biopolymers
3.1. Melanin Biopolymers

Melanin is the phenolic biopolymer found in the skin, eye, and hair of all animals.
Two types of melanin have been identified: yellow to red pheomelanin that arises by the
oxidative polymerization of cysteinyl dopa and the brown to black eumelanin that arises
from the oxidative polymerization of dihydroxyindoles. In addition, the existence of mixed
melanin is also acknowledged. The melanin biosynthetic pathway has been extensively
reviewed by several authors [1–7]. Therefore, it is not extensively discussed here and
only a summary of the biosynthetic pathway is given. As shown in Figure 1, tyrosine is
the precursor for melanin biosynthesis in all animals. It is converted to dopa by tyrosine
hydroxylase, which then serves as the immediate precursor of melanogenesis. Tyrosinase
oxidizes dopa to dopaquinone. It also has the capacity to convert tyrosine to dopaquinone.
Dopaquinone thus formed undergoes intramolecular cyclization, generating leucochrome.
Leucochrome undergoes double decomposition with dopaquinone, generating back dopa
and producing dopachrome as the end product (Figure 2). Dopachrome tautomerase
isolated from mammalian systems isomerizes dopachrome to DHICA probably via the
transient quinone methide intermediate [5]. It is believed that DHI arises in the mammalian
system through nonenzymatic reactions via the same quinone methide intermediate. A
separate DHICA oxidase might be associated with the oxidation of DHICA [8], but most
likely either tyrosinase and/or nonenzymatic oxidations initiate the oxidative polymer-
ization of dihydroxyindoles to eventually produce brown to black eumelanin pigment in
mammals. The yellow to red pheomelanin pigment arises by the oxidative polymerization
of cysteinyl dopa formed by the condensation of cysteine with dopaquinone [1–6]. The
major product of the reaction, 5-S-cysteinyldopa, is further oxidized by tyrosinase to its
quinone. Cyclization of 5-S-cysteinyl dopaquinone generates cysteinyl dopaquinone imine
product, which can either isomerize to benzothiazine carboxylic acid or decarboxylate to
benzothiazine. Eventual oxidative polymerization of these benzothiazine derivatives will
produce the pheomelanin pigment [1–6].
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Figure 2. Biosynthesis of melanin pigment. Dopa formed from tyrosine (shown in Figure 1) is oxidized
by tyrosinase (A) to dopaquinone. Dopaquinone undergoes nonenzymatic (B) cyclization and further
oxidation to generate dopachrome. Dopachrome tautomerase (C) isomerizes dopachrome to 5,6-
dihydroxyindole-2-carboxylic acid (DHICA) through a quinone methide intermediate. Dopachrome
is also believed to undergo nonenzymatic decarboxylation through the quinone methide intermediate
to form 5,6-dihydroxyindole (DHI). Oxidative polymerization of these two indoles produces brown
to black eumelanin pigment (D = a specific DHICA oxidase). Initially formed dopaquinone can also
be trapped by cysteine to produce cysteinyl dopa, which upon oxidation and further reaction can
generate yellow to red pheomelanin pigment through nonenzymatic reactions, as shown.
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Recent work indicates that insects are unique in that they produce mostly dopamine
melanin and not dopa melanin, thus significantly differing from the mammalian melanogenic
process (Figure 3) [7,9]. In practically all insects, dopamine and not dopa serves as the
primary source for melanin production. Insects need large amounts of N-acyldopamine
derivatives for the cuticular sclerotization reaction that is extremely vital for their sur-
vival [10–16]. They convert most of the available dopa to dopamine derivatives and
store them. Since dopamine is not converted back to dopa, only dopamine serves as the
melanin precursor for insects [7,9]. Also, both sclerotization and melanization reactions
occur in insect cuticles, with sclerotization preceding melanization. For sclerotization
reactions, most of the available N-acyldopamines are used up, the remaining material is
hydrolyzed [17], and the resultant dopamine is diverted for melanization. Accordingly,
chemical analysis of insect melanin reveals that they are mostly generated with dopamine
as the precursor and not dopa [9]. Recent studies also confirm the existence of a separate
dopaminechrome isomerase that participates in insect melanogenesis [18]. The scheme of
reactions shown in Figure 3 illustrates the differences between mammalian melanogenesis
and insect melanogenesis.
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Figure 3. Comparative biochemistry of mammalian and insect eumelanogenesis. In mammals, both
tyrosine and dopa are converted by tyrosinase (1) to dopaquinone. Dopaquinone undergoes in-
tramolecular cyclization and oxidation through nonenzymatic reactions (7), generating dopachrome.
A specific dopachrome tautomerase (2) converts dopachrome to 5,6-dihydroxyindole-2-carboxylic
acid in mammals. Dopachrome is also nonenzymatically converted to 5,6-dihydroxyindole. Oxidative
polymerization of these two dihydroxyindoles produces brown to black eumelanin in mammals.
In insects, dopa is mostly decarboxylated by dopa decarboxylase (3) to produce dopamine. Phe-
noloxidase (4) oxidizes dopamine as well as any dopa to their corresponding quinones, which
are nonenzymatically (7) converted to chromes. Insects possess a unique dopachrome decarboxy-
lase/tautomerase (5) which converts any dopachrome formed in the system to 5,6-dihydroxyindole.
A specific dopaminechrome tautomerase (6) converts dopaminechrome to 5,6-dihydroxyindole,
which is oxidatively polymerized to give black-colored eumelanin pigment in insects. Thus, mam-
mals produce dopa eumelanin, but insects produce mostly dopamine eumelanin. (Not shown in
figure—Pheomelanin is mostly formed from dopa in mammals and from dopamine in insects).

3.2. N-Acyldopamine Derivatives and Cuticular Sclerotization

The exoskeletons of all insects are hardened to protect their soft bodies by a pro-
cess known as sclerotization [10–16]. In addition, other structures, such as oothecae, egg
cases, egg sacs, chorions, and silk, produced in insects are also often hardened by the
sclerotization process [19]. During sclerotization, catecholamine derivatives, in particu-
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lar, N-acetyldopamine (NADA) and N-β-alanyldopamine (NBAD), are activated to form
reactive intermediates that crosslink cuticular proteins and chitin, a carbohydrate-based
structural polymer, to form the tough exoskeleton [10–16]. Dopa serves as the precursor for
these two compounds. Dopa decarboxylase, as usual, produces the necessary dopamine by
decarboxylation reaction. The resultant dopamine is acylated by appropriate enzymes to
produce NADA and NBAD. While both NADA and NBAD can be oxidized to their corre-
sponding quinones and the resultant quinones can be used to form quinone amino acid
adducts, like cysteinyl dopa and cysteinyl dopamine, their full potential to form maximum
crosslinks can only be achieved if their side chains can be desaturated [5,16]. This process
is much like introducing the double bond in the side chains of dopa and dopamine when
they form dihydroxyindoles (see Figure 2). Again, the process requires the conversion of
quinone first to its quinone methide analog and then another isomerization to produce
the side-chain desaturated compound [5]. Side-chain desaturation can be spontaneous
in some cases. For example, both dihydrocaffeiyl amide and dihydrocaffeiyl ethyl ester
(Figure 4), upon oxidation to their corresponding quinones, exhibit spontaneous nonen-
zymatic isomerization, generating their side-chain desaturated compounds via transient
quinone methide intermediates [5,15,16]. The peptidyl model compounds N-acetyl dopa
methyl ester as well as N-acetyl dopa ethyl ester also exhibit the same reaction sequence,
producing their corresponding dehydro dopa derivatives (Figure 4) [6,16,20,21].
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Figure 4. Spontaneous side-chain desaturation of some quinones. Both dihydrocaffeiyl methyl
amide (R = H; X = NHCH3) and dihydrocaffeiyl methyl ester (R = H; X = OCH3), upon oxidation
to their corresponding quinones, undergo rapid nonenzymatic conversion to produce side-chain
dehydrogenated caffeic acid derivatives. Even peptidyl dopa derivatives (R = NHCOCH3, X = OCH3,
or OCH2CH3) form dehydro dopa derivatives by a similar process.

Such spontaneous isomerization reactions are not possible for simple N-acyldopamine
derivatives, and enzymatic assistance is needed to introduce the double bonds in their
side chains (Figure 5). The first reaction, viz., quinone-to-quinone methide isomerization,
occurs spontaneously and not enzymatically in many cases [5,16], but for N-acyldopamine
quinones an enzyme is needed to cause this conversion [16]. Quinone isomerase converts
a few 4-alkyl-o-quinones to isomeric 2-hydroxy-p-quinone methides by tautomerization
reaction. Thus, both N-acetyldopamine quinone and N-β-alanyldopamine quinone are
converted to their corresponding quinone methides by this enzyme. The resultant quinone
methide largely undergoes water addition to form side-chain hydroxylated products [16].
However, when the next enzyme, quinone methide isomerase, is available, the quinone
methides are converted to dehydrodopamine derivatives, thus introducing the double
bond in the side chain of N-acyldopamine derivatives [16]. In this context, it is important to
draw particular attention to the presence of many small peptidyl dehydro dopa derivatives
found in marine organisms, which are summarized in the next section.
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Figure 5. Enzyme-catalyzed side-chain desaturation of N-acyldopamines. Unlike dihydrocaffeiyl
derivatives which exhibit spontaneous nonenzymatic side-chain desaturation, the introduction of
double bonds in both N-acetyldopamine and N-β-alanyldopamine calls for the use of a three-enzyme
system comprised of phenoloxidase as the initial oxidant and two isomerases, quinone isomerase
and quinone methide isomerase, without which side-chain desaturation of these compounds cannot
be achieved (R = CH3 for N-acetyldopamine; CH2CH2NH2 for N-β-alanyldopamine).

3.3. Tunichromes and Related Marine Compounds

Tunicates, also known as ascidians, are sessile marine filter-feeding invertebrates. Sev-
eral species of tunicates accumulate significant amounts of catecholamine peptides in their
blood cells [22–29]. Since many tunicates also accumulate metal ions, such as vanadium
and iron, in their blood cells, it is often misunderstood that the catecholamine peptides
are somehow associated with metal ion chelation and transport. However, the association
of these two groups of materials in different cell types caused serious doubt about this
proposal [26]. Possible functions of tunichromes in the biochemistry and physiology of
truncates have been extensively discussed and summarized in ref. [26]. Some of them are
known to possess antibiotic and antioxidant properties [28,29]. The current understand-
ing is that these catecholamine derivatives are associated with innate immune response
(defense reaction), tunic (exoskeleton) formation, and wound healing [26].

Tunichromes An-1, An-2, and An-3 were the first group of compounds isolated from
the tunicate Ascidia nigra [22,23,30,31]. Subsequently related compounds were isolated from
different species of tunicates, such as Molgula manhattensis, Phallusia mammillata, and Styela
plicata [22–28]. The compound names and chemical names of several of these compounds
are listed in Table 1. The structures of several of these compounds are illustrated in
Figure 6A,B.

A cursory glance at the table and the associated Figure 6A,B clearly illustrates that these
peptide units possess a common structure, namely, a dehydrodopa skeleton. This, combined
with the fact that sea water is alkaline, introduces new possibilities of nonenzymatic and
free-radical-mediated reactions, as will be discussed later.
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Table 1. Names and chemical names of tunichromes and related compounds.

Compound Name Chemical Name

Tunichrome An-1 Topa-Dehydrotopa-Dehydrotopamine
Tunichrome An-2 Dopa-Dehydrotopa-Dehydrotopamine
Tunichrome An-3 Dopa-Dehydrotopa-Dehydrodopamine
Tunichrome Pm-1 Topa-Topa-Dehydrotopamine
Tunichrome Pm-2 Dopa-Topa-Dehydrotopamine
Tunichrome Pm-3 Topa-Topa-Dehydrodopamine
Tunichrome Mm-1 Gly-Dehydrodopa-Dehydrodopamine
Tunichrome Mm-2 Leu-Dehydrodopa-Dehydrodopamine
Tunichrome Sp-1 Dopa-Dopa-Gly-Pro-Dehydrodopamine
Plicatamide Phe-Phe-His-Leu-His-Phe-His-Dehydrodopamine
Clionamide 1 6-BrTrp-Dehydrotopamine
Celenamide A Leu-Dehydrotopa-6-BrTrp-Dehydrodopamine
Celenamide B Val-Dehydrotopa-6-BrTrp-Dehydrodopamine
Celenamide C Leu-Dehydrotopa-6-BrTrp-Dehydrotyramine
Celenamide D Leu-Dehydrotopa-Dehydrotopa-Dehydrodopamine
Celenamide E Dehydrotopa-6-BrTrp-Dehydrodopamine
Morulin Pm Polycyclic compound with 6-BrTrp & dehydrodopamine
Purpurone Polycyclic compound with dehydrodopamine
Lamillarins Polycyclic compounds with dehydrodopamine
Ningalins A-D Polycyclic compounds with dehydrodopamine
Storniamides A-D Polycyclic compounds with dehydrodopamine
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dislodging by powerful waves and sea currents. The cause of this powerful adhesion is 
attributed to the mussel foot protein that contains abundant amounts of dopa. Waite and 
his associates pioneered the studies on this novel adhesive system [32–36]. This system 
obviously calls for the interaction of biomaterials with inorganic solid surfaces. Catechol-
amine derivatives associated with this process are well known for metal chelating prop-
erties that play a crucial role in adhesive properties of the mussel foot fibers [32–39]. 
Among all the catecholamine biomaterials, these proteins and similar molecules seem to 
offer unique avenues to develop novel bioadhesives with wet/dry adhesive properties 
[37–41]. 

Figure 6. (A) Structures of tunichromes, and storniamides. The chemical structures of tunichromes
and storniamides listed in Table 1 are given here. (B) Structures of clionamide and celenamides. The
chemical structures of clionamide (6-BrTrp-Dehydrotopamine), Celenamide A (Leu-Dehydrotopa-
6-BrTrp-Dehydrodopamine), Celenamide B (Val-Dehydrotopa-6-BrTrp-Dehydrodopamine), Ce-
lenamide C (Leu-Dehydrotopa-6-BrTrp-Dehydrotyramine), Celenamide D (Leu-Dehydrotopa-
Dehydrotopa-Dehydrodopamine), and Celenamide E (Dehydrotopa-6-BrTrp-Dehydrodopamine)
listed in Table 1 are given here.

3.4. Peptidyl Dopa Derivatives

Marine mussels often cling to rocks and other solid surfaces through a powerful
adhesive which works even in the presence of water (Figure 7). It allows the mussels
to resist dislodging by powerful waves and sea currents. The cause of this powerful
adhesion is attributed to the mussel foot protein that contains abundant amounts of dopa.
Waite and his associates pioneered the studies on this novel adhesive system [32–36]. This
system obviously calls for the interaction of biomaterials with inorganic solid surfaces.
Catecholamine derivatives associated with this process are well known for metal chelating
properties that play a crucial role in adhesive properties of the mussel foot fibers [32–39].
Among all the catecholamine biomaterials, these proteins and similar molecules seem to offer
unique avenues to develop novel bioadhesives with wet/dry adhesive properties [37–41].
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Figure 7. Marine mussels clinging to solid surface. Mussels and other marine organisms cling to solid
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4. Chemical Reactivities of Catechols

From the foregoing summary, it is evident that catecholamines are used for a variety of
purposes. To achieve such properties, catecholamines use a variety of mechanisms. These
include and are not limited to metal chelation, free radical production, quinone formation,
quinone methide formation, and dehydro dopa formation. The normal interactions, such
as hydrogen bonding, hydrophobic interaction, and other types of interactions, will not be
considered here, although they also contribute significantly and sometimes monumentally
to the binding ability of catechols. In the following section, some of these mechanisms
are examined.

4.1. Reactivity Exhibited through Quinone Formation

The first reactive intermediate that is widely recognized for catechols is its two-electron
oxidation product, quinone. o-Diphenols upon enzymatic and even nonenzymatic oxida-
tion generate their corresponding o-quinone. Nature has a variety of enzymes to produce
quinones [3–7,12–16]. As mentioned in Section 2, tyrosinase readily oxidizes catechols to
quinones [3–7]. In insects and other arthropods, genetically different but functionally simi-
lar enzymes that are generally referred to as phenoloxidases perform this reaction [13–16].
Both o-diphenol oxidase and p-diphenol oxidase (laccase) of insect origin could oxidize
o-diphenols to their corresponding quinone derivatives [13–16]. In addition, peroxidases
also assist in the production of quinones from o-diphenols but by an indirect mechanism.
They primarily oxidize catechols to their semiquinone radicals, which undergo nonenzy-
matic dismutation to regenerate the parent catechol and o-quinone product [42,43]. Some
quinones also generate quinones from certain catechols nonenzymatically by oxidation.
For example, dopaquinone oxidizes leucochrome to dopachrome. During this process, it
gets reduced to dopa (Figure 2). Regardless of the way they are formed, o-quinones are
highly reactive electrophiles and seek nucleophilic addition reactions (Figure 8). We have
already seen two key reactions of quinone in melanin biosynthesis, viz., cysteine addition
to dopaquinone and intramolecular cyclization of dopaquinone (Figure 2). Primary amines
react rapidly with quinones, forming amino catechols [5,16]. Thus, intramolecular cycliza-
tion of dopaquinone produces leucodopachrome [1–7] (Figure 2). External addition of
primary amine nucleophiles, as shown in Figure 8, will produce amino catechols. These
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amino catechols are susceptible to nonenzymatic oxidation most readily. Such reactions
will produce aminoquinones, which can further exhibit reactions forming quinone imines
(Figure 9). Such products have been identified in many systems and are now known to
be part of enzymatic active sites [44]. Secondary amines such as the imidazole group of
histidine also exhibit addition reactions (Figure 8) [45–49]. It is likely that even arginine
can add to catechols. These reactions yield typical Michael-1,4-addition products (Figure 8).
Hydroxyl groups can function as nucleophiles and produce hydroxy catechols which will
suffer nonenzymatic oxidation, forming hydroxy-p-quinones (Figures 8 and 9) [50]. Finally,
the carboxyl group can also add on to the quinone nucleus, producing ester derivatives [5].
While these reactions all occur via Michael-1,4-addition reactions, thiols seem to violate
this normal nucleophilic addition. Thiols, which can react even faster than amines, do not
produce the normally expected Michael-1,4-adducts, as they do not seem to add via normal
nucleophilic reactions [1–7,51–53]. Instead, the coupling of dopaquinone and cysteine pro-
duces 5-cysteinyldopa as the major product [1–7,53]. Different theories have been proposed
for this abnormal addition reaction, but recently it has been conclusively proven to be a
free-radical coupling reaction [53]. On the other hand, methionine seems to produce the
normally expected Michael-1,4-adduct only [54,55].
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Figure 8. Reactivities of o-quinone. o-Quinones typically undergo nucleophilic addition reactions
with various available nucleophiles present on proteins and other macromolecules. Primary amines,
secondary amines, hydroxyl groups, and carboxyl groups produce the typical Michael-1,4-addition
adducts. Even water can add on to o-quinones, producing hydroxy catechols. Thiols seems to
add on to quinones by free-radical coupling reactions, while thiol esters and methionine may
react by normal nucleophilic addition reactions. R = side chain of catechol; R1 = different side
chains. (Compound 1 = parent quinone; 2 = quinone amine adduct; 3 = quinone histidine adduct;
4 = quinone thiol adduct; 5 = quinone water adduct; 6 = quinone ether adduct; 7 = quinone ester
adduct; 8 = quinone arginine adduct; 9 = quinone methionine adduct).
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Figure 9. Further reactions of hydroxy catechols and amino catechols. Both hydroxy catechol
formed by the addition of water to quinone and amino catechol formed by the addition of amine to
quinone readily undergo aerial oxidation (or oxidation by parent quinones) to hydroxy-p-quinone and
hydroxyquinone imine, respectively. Hydroxy quinone imine also undergoes further Schiff base formation
with amine, generating quinone imines (R = side chain of catechol; R’ = side chain of amine) [44,50].

4.2. Reactivity Exhibited through Quinone Methide Formation

The next key reactive metabolite associated with various catecholamine derivatives is
the p-quinone methide. Formation of this intermediate is possible only for 4-alkylcatechols
and related compounds. In the case of 4-alkylcatechols, their two-electron oxidation prod-
ucts, quinones, can isomerize to tautomeric hydroxy-p-quinone methides [5,15,16]. This
reaction could be nonenzymatic in some cases (Figure 4) or require an enzyme is some
other cases (Figure 5). Quinone isomerase isolated from a number of insects catalyzes
the conversion of 4-alkylquinones to p-quinone methides [16]. This reaction is absolutely
essential for sclerotization of the insect cuticle [12–16]. Regardless of the mode of formation,
the resultant quinone methides are highly reactive. The quinonoid portion tries to arom-
atize, which results in the nucleophilic addition of various electrophiles at 1,6-positions.
Thus, they yield side-chain substituted products, as shown in Figure 10. Practically all
nucleophiles add on to quinone methides, generating side-chain substituted compounds.
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methide ester adduct; 6 = quinone methide thiol adduct; 7 = quinone methide methionine adduct;
8 = quinone methide histidine adduct; 9 = quinone methide arginine adduct.)
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4.3. Reactivity Exhibited through Dehydrodopa Formation

As shown in Figure 10, quinone methides also behave much like quinones in exhibit-
ing nucleophilic addition reactions, except for the fact that the additions occur at the side
chain and not in the ring. But one of the reactions of a quinone methide that is not possible
for quinones is the isomerization to a dehydro derivative if an electron withdrawaling
group is present on the beta carbon atom. Thus, as explained in Section 3.2, quinone
methides of both dihydrocaffeiyl methyl amide and dihydrocaffeiyl methyl ester sponta-
neously and rapidly exhibit tautomerization to produce side-chain desaturated caffeic acid
derivatives (Figure 4) [5,20,21]. However, when the CO and NH groups in dihydrocaffeiyl
methyl amide and related compounds are interchanged, spontaneous tautomerization is
not possible and enzymatic intervention is necessary to generate the side-chain desaturated
catechols (details outlined in Section 3.2) [16]. The oxidation of these compounds uniquely
produces a different reactive intermediate called quinone methide imine amide (QMIA),
which has the capability to exhibit addition reactions through both its side-chain carbon
atoms. See Ref. [16] for a detailed review. The first reaction witnessed in this case is
the benzodioxan formation from the oxidation product of dehydro NADA. Upon enzy-
matic (or even nonenzymatic) oxidation under physiological conditions, the immediate
product formed in this case is the QMIA and not the normally expected quinone product
(Figure 11). The conventional quinone is formed only when dehydro NADA is oxidized
under acidic conditions. Even raising the pH of the reaction to near-neutral conditions
converts the quinone rapidly to the more stable QMIA isomer. The quinone-to-quinone
methide isomerization is a base-catalyzed reaction [56,57] and hence at near-neutral and
alkaline conditions the QMIA is the observable product and not the quinone. Therefore,
reactions associated with dehydro NADA at physiological pH are manifested by the QMIA
and not the quinone [16]. Semiquantitative calculations show that the QMIA is more stable
than the quinone by about 6 kcal/mole [16]. The extra hydrogen bonding that occurs in
QMIA, as shown in Figure 11, may provide additional stabilization. QMIA has two reactive
sites. The quinone methide nucleus undergoes Michael-1,6-addition reaction, regenerating
the aromatic ring. The side-chain imine amide part undergoes addition, resulting in the
saturation of the original double bond. Since the two phenolic groups of parent dehydro
NADA are stereochemically well suited to undergo addition at both the sites, it rapidly
generates benzodioxan dimers, as shown in Figure 12. Such addition reactions indicate that
other nucleophiles can also add on to both the side-chain carbon atoms of QMIA, forming
adducts and crosslinks [58].
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Figure 12. Oxidation of dehydro NADA under physiological conditions yields QMIA, which adds
on to its side chain both the hydroxyl groups of the parent catechol, resulting in the formation of a
benzodioxan dimer. The dimers then add on to QMIA, producing trimers and other oligomers (not
shown in figure). (1 = parent dehydro NADA; 2 = QMIA portion.)

Examination of the reactions of dehydro NADA resulted in some unusual findings.
First, the QMIA formed undergoes, not only addition reactions, but also substitution
reactions [58,59]. In two instances, regeneration of the side-chain double bond following
substitution at the side chain has been reported, as shown in Figure 13 [16,58,59]. This
presents an interesting scenario for dehydro NADA and related compounds. (A) They
undergo substitution with available external nucleophiles, and (B) they still can exhibit
further oxidation to substituted QMIA and add on to more nucleophiles. Second, the
benzodioxan formation can occur not only through QMIA intermediate formation, but also
by two additional mechanisms.
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Figure 13. Dehydro NADA QMIA can also undergo substitution reaction, regenerating the side-chain
double bond. The regenerated dehydro compound can undergo further oxidation to another QMIA
intermediate that can also react with nucleophiles (not shown in figure).

In the first mechanism, dehydro NADA oxidation by laccase causes semiquinone
radical production that results in coupling, providing the benzodioxan dimer only, as
shown in Figure 14 [16]. This is contrary to the reaction that occurs with tyrosinase,
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where dimers can go on adding another molecule of QMIA, forming trimers and other
oligomers [16].
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Figure 14. Laccase-catalyzed oxidation of dehydro NADA. Oxidation of dehydro NADA by laccase
produces semiquinone free radicals which couple immediately, forming benzodioxan dimers. In this
case, trimers and other oligomers are not witnessed.

In the second mechanism, which also involves free radical formation, dehydro NADA
exhibits polymerization reactions [16]. Dehydro NADA and related compounds, such as
tunichromes and others, are extremely sensitive to air and pH. For example, tunichromes
are so unstable that their synthesis requires protection of the hydroxy groups. Upon
removing the protecting groups during the final stage of the synthesis, the tunichromes
become so unstable and rapidly undergo polymerization reactions [22–26]. Dehydro NADA
itself is reasonably stable in a solid state under an argon atmosphere, but upon exposure to
air it exhibits slow aerial oxidation. In solution, it is stable under acidic and near-neutral
conditions, but as soon as the pH is raised, even to about 7.5, it becomes sensitive to
oxygen. The interaction of dehydro NADA with molecular oxygen produces semiquinone
radicals and superoxide anions. Continuous production of free radicals and coupling
causes dimerization as well as trimerization reactions. Note that even though laccase
reaction also produces free radicals, they do not produce superoxide anions, which causes
continuous production of free radicals and leads to polymerization reactions (Figure 15).
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Figure 15. Aerial oxidation of dehydro NADA under mild alkaline conditions. Under mild alkaline
conditions, dehydro NADA reacts rapidly with molecular oxygen, producing free radicals and
superoxide anions. Radical coupling and addition results in polymerization reaction. Therefore, in
this case, trimerization and other oligomerization reactions are also witnessed.

Finally, one must be aware of the fact that not all dehydro compounds will generate
stable quinone methide derivatives. There are instances in which the conventional quinones
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could be stable products as well. Thus, while both dehydro NADA and dehydro N-acetyl
dopa produce more stable quinone methide derivatives, as shown in Figure 16, dehydro
N-acetyl dopa methyl ester produces only the normal quinone as the stable product [16].
This is because of the differential stabilization of quinone versus quinone methide isomers.
Therefore, in case of peptidyl dehydrodopa derivatives, which are more similar to dehydro
N-acetyl dopa methyl esters, quinones will be the dominant oxidation species.
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Figure 16. Differential stability of quinone versus quinone methides. In the case of both dehydro
NADA and dehydro N-acetyl dopa, the quinone methides are more stable than the corresponding
quinones. The opposite happens with dehydro N-acetyl dopa methyl ester, where the quinone is
more stable than the quinone methide.

Interestingly, the dehydro dopa quinone ester also exhibits dimerization reactions, not
through the quinone methide isomer, but by itself through a different mechanism involving
ionic Diels–Alder-type addition (Figure 17). Two such cases have been identified in recent
years where side-chain desaturated catechols have been shown to exhibit benzodioxan-
type adduct formation by this mechanism [60,61]. Thus, irrespective of quinone, quinone
methide, or free radical intermediacy, side-chain dehydrogenated catecholamines can
exhibit dimerization and benzodioxan formation.
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Upon oxidation, N-acyldehydro dopa esters produce stable quinones that can undergo ionic Diels–
Alder-type addition to form benzodioxan adducts.
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4.4. Reactivity Exhibited through Free Radicals

Simple o-diphenolic compounds do not spontaneously produce free radicals. However,
some of the compounds are oxidized by enzymes such as peroxidase that could lead to
free radical production. The free radicals thus formed will exhibit a variety of reactions.
We have already seen the free radical formation from dehydro NADA. Dehydro NADA
and its derivatives are extremely air-sensitive and even at slightly alkaline conditions
undergo rapid oxidation to form free radicals. The free radicals, such as phenoxy radicals
and quinone methide radicals, that are formed during the reaction also seem to undergo
coupling to produce benzodioxan-type dimers and related oligomers. But other adduct
formations are also possible for free radicals. Peptidyl tyrosine residues in the protein
resilin present in the elastic cuticles of insects undergo peroxidase-mediated dityrosine
formation. See Ref. [16] for a detailed review. Similar adduct formation has been noticed in
other systems as well [62]. Both trityrosine formation as well as isodityrosine formation are
also possible (Figure 18). Trityrosine has been isolated from the protein hydrolysates. But
isodityrosine is yet to be identified in any insect systems.
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Figure 18. Peroxidase-mediated crosslinking of the tyrosine-rich protein resilin results in dityrosine
and trityrosine crosslink formation. The figure also includes the production of isodityrosine crosslinks
that are yet to be identified in insects.

Similar crosslink formation with peptidyl dopa derivatives is also highly likely both
enzymatically and nonenzymatically. If oxidative enzymes such as peroxidases are present
at the site, these catechols can be easily oxidized to free radicals. The resultant free radicals
upon coupling will produce different kinds of dimeric products, such as o,o’ coupled and
p,p’-coupled (as well as o,p-coupled; not shown in figure) biphenyls and ether dimers, as
shown in Figure 19. During this process, oxygen is reduced to superoxide anion, and it
can oxidize another molecule of catechol to semiquinone and then reduce to hydrogen
peroxide. However, enzymatic oxidation can lead to the production of free radicals. Unsta-
ble catechols can easily undergo nonenzymatic oxidation, producing the same products
as well.
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Figure 19. Peroxidase-mediated crosslinking of dopa derivatives can produce different dimeric
products, as shown in the figure. Production of ether-type adducts, as well as different biphenyl
dimers, is also possible.

4.5. Catechols and Their Derivatives as Metal Chelators

Finally, catechols also exhibit excellent complexation reactions with metal ions [63,64].
The o-dihydroxy group is especially suitable for complex formation and provides a biden-
tate ligand to complex with a variety of divalent and polyvalent metal ions. Such inter-
actions will produce very strong metal complexes. Mono-, bis-, and tris-coordination
of catechols to various metal ions has been well documented in the inorganic chemistry
literature [64]. The structures of some of these complexes are shown in Figure 20.
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Figure 20. Complex formation of catechols with metal ions can result in mono-, bis-, and tris-
coordinated metal catechol complexes.

Interestingly, several of the oxidation products of catecholamine derivatives, such
as quinone methides, hydroxyquinones, aminoquinones, and diimines, can also complex
with metal ions, as shown in Figure 21. Only bis complexes are shown in the figure.
But mono as well as tris complexes are also possible for these compounds too. These
complexation reactions will allow the entrapment of metal ions in the biomaterial to
provide additional strength.
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5. Catecholamine-Based Biomaterials

From the above summary, it is evident that catecholamines exhibit a wide variety of
reactivities both through their aromatic rings and through their side chains. Time and again
various groups have summarized the reactivities of catecholamines [1–7,22–26,32–38,63].
Since life evolved in the sea first, before terrestrial animals appeared, it is appropriate to
consider what is going on in the sea animals first. Obviously to work under water (or
in the presence of large amounts of water), the gluing and crosslinking process must use
materials that are not easily washed off. Under such constraints, a protein-based glue
that can form a polymer like adhesive is ideal. Accordingly, mussels have developed
peptidyl dopa, a protein-based glue to bind to solid substrata [32–41]. Tunicates and other
sea animals developed peptidyl dehydro dopas and dehydro dopas, which have been
shown to be extremely reactive and “sticky”. They bind to solid surfaces such as glass with
great ease and are extremely difficult to wash off [22–26,30,31]. Terrestrial insects, on the
other hand, having limited use for the adhesive properties of these proteins, developed
the use of water-soluble N-acyldopamine derivatives, NADA and NBAD, as crosslinking
materials [10–16]. In this section, we will examine how these chemicals are used in making
different biomaterials.

5.1. Peptidyl Dopa-Derived Biomaterial

As shown in Figure 7, marine mussels cling to rocks and other solid surfaces through
a powerful adhesive which works even in the presence of water. It allows the mussels
to resist being dislodged by powerful waves and sea currents. The byssal proteins in the
foot of the mussel contain abundant amounts of dopa, which is considered the critical
component responsible for providing adhesive properties. Several research groups have
examined the properties and function of the byssal proteinaceous material with the aim of
providing avenues to develop novel biomaterial adhesives that are nontoxic and can work
under wet conditions. Such materials could be used for medical sutures, dental bonding,
and other purposes where the gluing needs to take place in a water-rich environment.

The adhesion of a mussel to a wet, rough, and slimy surface is a carefully orchestrated
process. The mussel foot creates an insulated reaction chamber, forming a vacuum that
stimulates the deposition of adhesion proteins through the byssal threads [65]. Proton
and electron pumps serve to lower the pH and control the redox environment [66]. It is
thought that these conditions enable adhesive proteins to undergo controlled fluid–fluid
phase separation, stimulating spreading and surface absorption [67]. These coacervates are
denser than water, so they can be applied to the surface without significant dilution. The
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major byssal proteins, Mfp-1, Mfp-2, Mfp-3, Mfp-4, Mfp-5, and Mfp-6, are highly localized
and have specific post-translational modifications, most importantly, the hydroxylation of
tyrosine to form dopa [32–39,62]. It is hypothesized that the low pH acts to clean the surface
and kill any attached microbes to prepare for surface attachment [32–39]. The reducing
environment prevents premature oxidation of the dopa units of the byssal proteins. A
combination of oxide formation with catechols, electrostatic interactions with amines and
phosphates, hydrophobic interactions via phenylalanine, and coordination of catechols
with metal ions on the surface all contribute to surface adhesion [32–39]. Once the foot
detaches from the surface, the pH increases. Several of these surface interactions, such as
electrostatic interactions and coordination with surface metal ions, strengthen as the pH
increases. One could argue that oxidation of the catechols would likely weaken this surface
interaction but there is some evidence that the reducing environment near the surface
remains, even after detachment [68], and it is also speculated that the high cysteine content
of Mfp-6, one of the main byssal proteins, helps to maintain the reducing environment of
this surface layer [69]. Furthermore, the oxidation of catechols to quinonoid molecules can
still afford metal ion chelation, as various oxidized derivatives will contribute to metal
chelation [70–75].

Upon lift off, the pH increases at the reaction site (the pH of seawater is around 8.0).
Catechols in the bulk of the proteinaceous deposit are oxidized, both enzymatically and nonen-
zymatically (due to the alkaline pH of the sea water) and initiate polymerization [32–39,74].
Polymerization can take place through several mechanisms: by the addition of amino acids
on one byssal protein to the catechol ring of another byssal protein (Figure 8), or by didopa
formation and by oxidative conversion to a dehydro dopa unit (Figure 4). The quinone
methides formed during this process can form adducts with proteins and other materials
(Figure 10). The dehydro dopa units also upon oxidation to QMIA will crosslink amino
acid groups on other proteins across the double bond. The coupling of dopa units to form
biphenyl and ether dimers (Figure 19) will contribute elastic properties to the fibrous de-
posit. Finally, the catecholic group and its oxidation products can form coordination bonds
to Fe3+ and V4+ (Figures 20 and 21). The Fe3+ and V4+ are accumulated by mussels and
stored in the foot in vesicles separate from those of the byssal proteins [69–75]. The strength
of a coordinate covalent bond between Fe3+ and a catechol is approximately one-quarter
as strong as a covalent bond [64]. The bonds between V4+ and catechols are about half
as strong as a covalent bond [70]. There is some experimental evidence for the usage of
V4+ crosslinking in adding extra strength to the outer protective cuticle [70]. Thus, cova-
lently crosslinked proteins are connected to one another through weaker metal–catechol
coordination bonds. All these interactions contribute to the binding of byssal threads to
solid surfaces.

5.2. Tunichrome-Based Biomaterials

For a long time, it used to be assumed that tunichromes and related compounds are
used as metal chelators/transporters in tunicates. However, this popular belief was put
to rest with the finding that metals and tunichromes are localized in different cell types
of tunicates. Tunichromes and related compounds have been shown to possess antibiotic
properties [25,26,28,29]. Their facile oxidation and easy production of reactive oxygen
species account for part of the antibiotic properties. But as many investigators have noticed,
they are extremely unstable and undergo facile oxidative polymerization. Lysis of the
blood cells of tunicates leads to the production of a greenish black fluid, called Heinze
precipitate, that frequently yields a dark and fibrous material [76,77]. Blood cells also
contain phenoloxidase that readily oxidizes the tunichromes. Moreover, practically all
tunichromes are pH-sensitive and rapidly undergo nonenzymatic aerial oxidation when
exposed to the conditions of sea water, namely, pH 8. This and other observations lead
to the proposal that tunichromes are not only involved in defense reactions, but also in
wound healing and tunic formation [22–26]. Tunic, the outer shell of the tunicates, also
contains abundant amounts of cellulose [78], which is not common to animals. Oxidized
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tunichromes could couple with each other and proteins, as well as the cellulosic fiber,
forming hardened tunic that will protect tunicates [26]. Typically, tunichromes are localized
in the morula cells and metal ions are accumulated in signet cells. During wounding,
when these cells are exposed and ruptured, they release their contents. The presence
of phenoloxidase as well as exposure to mildly alkaline pH initiates rapid oxidation of
tunichromes and free radical production (Figure 22). This results in rapid deposition of
Heinze precipitate and sealing of the wound. The same mechanism, in a controlled fashion,
could be used for tunic formation as well (Figure 22).
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Figure 22. Tunichrome function in tunicates. Morula cells containing tunichrome (TC) released
during injury or parasite invasion is oxidized by the phenoloxidase and/or exposure to pH 8 to
the quinone form (TCQ). Interaction of tunichrome with oxygen produces tunichrome semiquinone
radicals (TCSQs). Superoxide dismutase converts superoxide to oxygen and hydrogen peroxide.
Interaction of hydrogen peroxide with reduced metals leads to hydroxyl radical production that is
used for killing invading organisms. Oxidized species of tunichromes are used for wound healing
and encapsulating the parasites. Not shown in figure—Tunichromes also bind to the outer tunic and
allow its hardening.

5.3. N-Acyldopamine Derivatives and Cuticular Hardening

Finally, we examine the biomaterial produced by the oxidation products of N-acyldopamines.
The hard and often tanned exoskeleton is a vital body part of all insects which protects the
soft-bodied animals from dehydration and harsh environmental conditions and invading
parasites. A hard cuticle naturally does not allow for continuous growth. Therefore,
insects and other arthropods often shed their old cuticle and make a fresh, larger one to
accommodate the increased body mass. Freshly made cuticle is often very soft and pale. But
in a matter of couple of hours, often, it becomes hard and sometimes darkened by what is
known as sclerotization reactions. During sclerotization, catecholamine derivatives, mostly
N-acyldopamines, NADA, and NBAD, are oxidized by cuticular phenoloxidases (both o-
diphenoloxidase and p-diphenoloxidase, known as laccase) to reactive intermediates which
are used to form adducts and crosslinking with cuticular proteins and chitin polymers.
The protein–protein, protein–chitin, and chitin–chitin crosslinks thus formed provide the
necessary hardening of the cuticle. Extensive studies carried out on the sclerotization of
sarcophagid cuticle resulted in a unified mechanism for sclerotization of all insects, which
is depicted in Figure 23 [16]. Not all mechanisms are shown in this figure. Both free-radical
polymerization and metal chelation reactions also occur along with these reactions in
different cuticles.
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R = COCH3; NBAD, R = COCH2CH2NH2) are oxidized by cuticular phenoloxidases (A) to their
corresponding quinones. Quinone isomerase (B) converts quinone to quinone methides, and the next
enzyme, quinone methide isomerase (C), generates the side-chain desaturated N-acyldopamines.
Dehydro-N-acyldopamines thus formed are further oxidized by phenoloxidases. Quinones, quinone
methides, and QMIA are used for crosslink purposes, generating different adducts and crosslinks
necessary to harden the cuticle. Part of the quinone methide also reacts with water to form N-
acylnorepinephrines. (D = nonenzymatic reaction. Not shown in the figure are free-radical coupling
reactions mediated by peroxidase and related enzymes, benzodioxan dimerization and oligomer-
ization reactions, and metal chelating reactions that are possible for various catecholamines and
their derivatives.)

Different insect cuticles come with different tanned properties. The elastic cuticles of
insects that can allow expansion and contraction in some insects are due to a crosslinked
protein called resilin. The elastic protein resilin is crosslinked with dityrosine and trityrosine
crosslinks that allow a layer of protein fibers to move one over the other during stretching
and come back to their original size during contraction [12–16,79,80]. Some cuticles are
very transparent and practically colorless, like dragon fly wings. They are also hardened
by sclerotization reaction. Some cuticles or spots on cuticles that are jet black attain their
color by eumelanin deposition [7]. Most of the cuticles are brown in color. Typically,
brown-colored cuticles use NBAD as the major sclerotizing precursor, and colorless or
lightly colored cuticles tend to use NADA as the sclerotizing precursor [16]. The hardness
of the cuticle is attributed to the sclerotization reactions. Some sclerotized cuticles are very
fragile, while some others can withstand heavy weight loads with ease. Not all the factors
causing these differences are identified and more work is required to understand the details
responsible for the wide range of biomechanical properties that various insect cuticles
exhibit. Apart from cuticles, the mandibles of insects, which allow the crushing, cutting,
and chewing of food materials, also seem to be hardened. This hardening is associated
with the deposition metal ions, such as zinc [81]. Metal ions such as zinc accumulate in
the hardened mandibles and jaws of invertebrates [75,81–84]. Thus, adding metal ions
to organic composites modifies the hardening and toughness of biomaterials. In this
regard, it is important to note that catecholamine crosslinks alone could provide very
tough biomaterials. The stiff beak of the squid, Dosidicus gigas, which is made up of only
organic materials (proteins and chitin, to be specific), contains many types of histidine
catechol adducts that seem to confer stiffness and strength to the beak [82–84]. Finally, a
variety of silks, egg cases, egg sacs, chorions, and oothecae of insects are also hardened and
protected by various sclerotization and hardening processes [16,19]. Some are crosslinked
by dityrosine-type crosslinks, and others are crosslinked solely by catecholamines and
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proteins and are devoid of chitin [19]. But the majority of hardening mechanisms in these
novel biomaterials are yet to be unraveled.

Although melanin is often considered as a polymer of oxidation products derived from
dopa and dopamine, its interaction with other biomolecules cannot be ignored, especially
when dealing with insects and other arthropods [1–7]. Melanin in mammals is typically
generated as exoskeletal pigmentation by melanocytes. On the other hand, insects and
other arthropods generate melanin not only for exoskeletal pigmentation, but also for
defense reactions and wound healing reactions practically in all body parts [16,85–87]. With
its open circulatory system, producing melanin and its reactive precursors in the blood is
highly dangerous and various control mechanisms play crucial roles in preventing and/or
controlling damages caused by melanin-related compounds. But from a biomaterials
point of view, the production of melanin–protein adducts, melanin–chitin adducts, and
melanin–protein–chitin crosslinks is certainly a reality.

5.4. Synthetic Biomaterial Mimics

The ubiquitous use of catechols as crosslinking agents in nature has inspired volumes
of work aiming to develop catechol-based polymers and hydrogels for a large variety of
purposes, such as antifouling coatings, antibacterial coatings, catalysis, reduction of organic
pollutants, oxygen reduction, lithium-ion batteries, solar cells, and supercapacitors, as
highlighted in a recent review article [88]. In many of the applications, co-polymers are
crosslinked through dopa or pyrogallol pendants and metal ions are added for reinforce-
ment, mimicking, to some extent, the cohesion forces in the mussel foot. Oh et al. reported
on a pyrogallol-conjugated chitin nanofiber composite and demonstrated a high shear
strength under wet conditions [89]. Montoni et al. prepared a dopa-conjugated chitin-
based polymer reinforced with Fe3+ crosslinking [90]. Kim et al. prepared a poly (dopamine
acrylamide-co-n-butyl acrylate) crosslinked via phenyl diboronic acid [91]. This polymer
was shown to be non-swellable and possess good self-healing properties in seawater.

The successful example of adhesion in a wet, dynamic environment provided by
the mussel has inspired much research in developing an effective, nontoxic glue that
could potentially be used in medical applications, such as wound closures and dental
procedures [41,92–94]. Many researchers have explored the use of dopa-derived polymers
for a variety of medical uses. Dopamine-linked primers consisting of methyl acrylamide
and allyl- and thiol-containing compounds, as well as phenol–polyamine superglue, have
been shown to be suitable for bone adhesion and tissue repair [90–98]. Mussel-mimetic
tissue adhesives consisting of catechol derivatives linked to various other biomaterials
have been demonstrated for internal medical uses, such as wound healing, bone fracture,
and dental fixture [41,90–98]. The bulk of the work reported in the literature so far has
focused on using the polymerization of dopa and/or dopamine-based materials. However,
the resulting polymers tend to underperform in terms of mechanical strength [41,95] and
adhesion in wet environments [98]. It has proven to be particularly challenging to control
the deposition process and environment in a manner that is analogous to the carefully
orchestrated process described above in terms of pH, the reducing environment, and the
viscosity of the starting material [36–39]. Also, missing from most of these attempts is the
diversity of chemistries that contribute to the adhesion of the mussel proteins to the surface.

Other approaches have focused on synthesizing several of the known byssal proteins
to better emulate the natural system. One can use standard peptide synthetic strategies
for this, but synthesizing proteins in the amounts necessary for industrial scale-up would
not be cost-effective. Using E. coli to overexpress large quantities of the proteins is one
option. However, E. coli does not have the machinery to carry out the necessary post-
translational modifications of tyrosinase to dopa, and even when the enzymes that could
perform this work are added to the reaction mixture, successful incorporation only occurs
in less than 20% of the tyrosine residues in the protein. So, the strategy has shifted to
the incorporation of non-natural amino acid substituents during translation. This can be
achieved either through selective pressure incorporation [99,100] or by establishing an
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orthogonal translation system [101,102]. With selective pressure incorporation, the essential
amino acid is depleted from the culture media, so that the desired derivative version
(i.e., dopa in place of tyrosine) is selected in its place. With the orthogonal translation
system, the genetic code is rewritten so that stop codons can be used to place noncanonical
amino acids onto the growing protein. Enzymes that activate the insertion of amino acids
are engineered to work effectively with the target noncanonical amino acid, such as dopa.
Computation methods have been used effectively to find mutants that can insert the dopa
units with impressive efficiency [102]. A high-throughput screening method has also been
used to identify a suitable catecholamine polyphenol mix for nanocoating [103].

6. Summary and Conclusions

Figure 24 offers a bird’s-eye view of the reactions outlined in this review. Dopa and
dopamine upon oxidation generate their corresponding quinones. These quinones, due
to the presence of suitably situated internal amino nucleophilic groups, exhibit mostly
intramolecular cyclization reactions. External reaction is minimal and is only observed
with thiols which lead to yellow to red pheomelanin polymers. The intramolecular cyclized
products eventually undergo side-chain desaturation to form 5,6-dihydroxyindoles, which
are highly unstable and exhibit rapid oxidative self-polymerization to produce eumelanin
pigment that is essential to protect animals from damaging solar radiation. When the amino
group is protected by acylation so that the internal reactions are prevented, the resultant
catecholamines exhibit mostly external reactivities suitable for bonding and crosslinking
structural proteins and carbohydrate polymers, producing exoskeletons with varying
degrees of toughness, flexibility, elasticity, and strength. This is particularly useful to build
the exoskeletons of arthropods. Similarly, dopa embedded in protein and peptide chains in
the primary structure by post-translational modification of its tyrosine residues exhibits
external reactivities after oxidation to its quinonoid product. In all these cases, the side chain
of catecholamine can also exhibit desaturation either with the help of suitable enzymes or
by spontaneous nonenzymatic reactions. Dehydrodopa and dehydrodopamine derivatives
thus formed are far more reactive than their saturated counterparts and suffer rapid
nonenzymatic oxidation to produce novel QMIA derivatives that are uniquely capable of
directly crosslinking to nucleophiles and bonding them together. Furthermore, all catechols
and their oxidation products are also suitable for chelating various metal ions found in
the environment. These reactions provide additional strategies for strengthening various
biomaterials. Finally, numerous catecholamine derivatives and their biopolymers can
generate, as well as interact with, free radicals, providing both protective and damaging
effects to the surroundings.

Thus, the remarkable and wide range of reactivities exhibited by catecholamine deriva-
tives contribute significantly to the key functions of these biomolecules. The potentials
of catecholamine-derived biomaterials to function as novel building blocks and adhesive
molecules with antioxidant and antibiotic properties are also highly evident. The mech-
anisms by which these biomaterials function in a myriad of complex ways that are still
being examined in several laboratories. So far, most laboratories have focused on only
dopa/dopamine and a few other catechol-based polymers to develop novel biomaterials.
Other small molecules as well as macromolecules based on the scheme of reactions outlined
in this review will be useful for the production of newer and more accessible glues and
polymers for future use in medical and industrial settings.
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Figure 24. A bird’s-eye view of the reactions summarized in this review. Simple dopa and dopamine
after the initial oxidation to their corresponding quinones often exhibit intramolecular cyclization
and further oxidation to dihydroxyindolic compounds which suffer oxidative polymerization to
produce melanin pigments. Although the reactive species formed in the pathway can exhibit external
reactivities to a certain extent, mostly internal reactions seem to dominate in the case of dopa and
dopamine. On the other hand, NADA and NBAD, which are major sclerotizing precursors for
hardening and strengthening the exoskeletons of insects, mostly exhibit external reactivities and
glue to structural proteins and carbohydrate polymers, generating different kinds of biomaterials.
Peptidyl dopa derivatives as well as peptidyl dehydrodopa derivatives also show mostly external
reactivities and produce biomaterials exhibiting different strengths and elasticities. All biopolymers
formed from catecholamines are capable of exhibiting antioxidant as well as antibiotic properties to
varying degrees.
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