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Abstract: Nanoparticles with unique shapes have garnered significant interest due to their enhanced
surface area-to-volume ratio, leading to improved potential compared to their spherical counterparts.
The present study focuses on a biological approach to producing different silver nanostructures
employing Moringa oleifera leaf extract. Phytoextract provides metabolites, serving as reducing
and stabilizing agents in the reaction. Two different silver nanostructures, dendritic (AgNDs) and
spherical (AgNPs), were successfully formed by adjusting the phytoextract concentration with and
without copper ions in the reaction system, resulting in particle sizes of ~300 ± 30 nm (AgNDs) and
~100 ± 30 nm (AgNPs). These nanostructures were characterized by several techniques to ascertain
their physicochemical properties; the surface was distinguished by functional groups related to
polyphenols due to plant extract that led to critical controlling of the shape of nanoparticles. Nanos-
tructures performance was assessed in terms of peroxidase-like activity, catalytic behavior for dye
degradation, and antibacterial activity. Spectroscopic analysis revealed that AgNDs demonstrated
significantly higher peroxidase activity compared to AgNPs when evaluated using chromogenic
reagent 3,3′,5,5′-tetramethylbenzidine. Furthermore, AgNDs exhibited enhanced catalytic degra-
dation activities, achieving degradation percentages of 92.2% and 91.0% for methyl orange and
methylene blue dyes, respectively, compared to 66.6% and 58.0% for AgNPs. Additionally, AgNDs
exhibited superior antibacterial properties against Gram-negative E. coli compared to Gram-positive
S. aureus, as evidenced by the calculated zone of inhibition. These findings highlight the potential of
the green synthesis method in generating novel nanoparticle morphologies, such as dendritic shape,
compared with the traditionally synthesized spherical shape of silver nanostructures. The synthesis
of such unique nanostructures holds promise for various applications and further investigations in
diverse sectors, including chemical and biomedical fields.

Keywords: green synthesis; silver nanodendrites; peroxidase activity; dye degradation; antibacterial activity

1. Introduction

Recently, there has been a notable surge for nanoparticles in multiple applications and
products that support human life. High-quality metal nanoparticles (e.g., Au, Ag, Pt, and
others) have gained extensive research in diverse biomedical domains, e.g., anticancer ther-
apy, radiotherapy augmentation, drug delivery, antibacterial treatments, diagnostic assays,
antifungal treatments, bioimaging, biosensing, gene delivery, and numerous others [1–3].
When concerning silver nanoparticles, they are utilized in composites [4,5], ceramics, poly-
mers, agriculture, and energy [6]. Several methods have been employed to synthesize
nanoparticles, including the chemical process, physical process, biological process, thermal
decomposition [7], heat-induced evaporation, and laser ablation [8]. Chemical methods
typically involve reduction using reducing agents (i.e., sodium borohydride, dimethyl-
formamide, trisodium citrate, hydrazine, ascorbic acid, m-hydroxy benzaldehyde, oleyl
amine, and polyvinylpyrrolidone). Nanoparticles produced by these techniques range in
particle size from 25 nm to 650 nm [9]. However, compared with the biological approach,
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the production cost and toxicity of hazardous chemicals are disadvantages. Biological
methods typically utilize microorganisms such as algae, fungi, and bacteria that are safe as
bio-reducing agents, but their synthesis rates are slower compared with green synthesis
using plant-based materials. Therefore, among biological methods, green synthesis, which
utilizes plant materials (biomass, juice, and extracts) to synthesize silver nanoparticles, is
increasingly supported by researchers. This is due to simplicity, eco-friendliness, safety,
cost-effectiveness, reproducibility, stability, and source availability [10].

In the current study, the Moringa oleifera plant, a member of the Moringa family com-
monly used as a vegetable in Asian countries, was employed as a bio-reducing agent.
Moringa oleifera is a fast-growing, draft-resistant plant native to Asian countries such as
Nepal, Pakistan, and India. It is also grown in tropical and subtropical regions of America
and Africa [11] and is readily available in local markets for a variety of purposes. This plant
exhibits a variety of benefits [12]. For example, from a nutritional perspective, Moringa
leaves contain protein, zinc, potassium, magnesium, and copper [13]. It is rich in natural
bioactive components with medicinal properties such as flavonoids, phenolic compounds,
terpenoids, carotenoids, sterols, anthraquinones, alkaloids, and saponins [14–17]. Some
flavonoids demonstrate anticancer activity against Hela cancer cells [18]. In the realm of
nanoscience, Moringa oleifera has received huge attention over the past decades for its poten-
tial ability to synthesize various metal nanoplatforms, as reported in various studies related
to iron oxide, nickel oxide, lanthanum oxide [19], magnesium oxide [20], tungsten [21], and
palladium nanoparticles [22] and others [23].

Important requirements in the development of nanoparticles are size and shape, as
crucial factors that determine the reactivity and use of nanoparticles. Thus, changes in these
properties can have a significant impact on their applications [24]. It is acknowledged that
nanoparticles with complex structures have received more attention than simple particles
due to their intricate structure [25]. Particle morphology, such as silver nanoflowers, silver
dendrites, silver nanostars, and silver nanowires, provides more surface area or reactive
sites compared with spherical nanoparticles [26]. Several studies have been conducted
using trisodium citrate [27], ammonium citrate dibasic [28], polyvinylpyrrolidone, and
formamide [29] to achieve nanoflower-like morphology.

The current study provides a straightforward method for the green synthesis of silver
nanostructures in a controlled shape using Moringa oleifera leaf extract. Interestingly, two
distinct morphologies of silver nanostructures, dendritic shapes (AgNDs) and spherical
shapes (AgNPs), were feasibly obtained for the first time by varying the concentration of
plant extract as a critical factor when reacted with silver nitrate with and without copper
ions in the reaction mixture. Our results showed that silver nanodendrites exhibit superior
properties compared with spherical nanoparticles when evaluated for oxidation, catalytic
degradation, and antibacterial activity. These findings could open many opportunities and
possible applications in various fields.

2. Materials and Methods
2.1. Synthesis of Silver Nanoparticles

Chemicals in all studies were used as purchased. Distilled water used in the experi-
ment was produced with a Green RO 350 water purification system (Seoul, Korea). Moringa
oleifera dried leaves were purchased from the Hands Herb Company, Korea. Leaves were
rinsed with plenty of distilled water before drying again at 80 ◦C using an oven. The
dried leaves were then ground with a mortar and pestle and stored in a glass bottle until
use. For plant extraction, 3 g of dried leaves were added to 100 mL distilled water and
refluxed at 100 ◦C for 1 h. Next, the solution was filtered and stored at 4 ◦C. To synthesize
silver nanostructures, 5 mM AgNO3 (silver nitrate, Samchun Chemicals Company, Seoul,
Korea) and 3 mM of Cu (NO3)2 · xH2O (copper nitrate (II) hydrate 99.99%, Sigma-Aldrich,
St. Louis, MO, USA) were added together to a 20 mL distilled water solution. Plant extracts
of different volumes were added dropwise to this solution to form silver nanoparticles with
a controlled shape effectively. Two types of experiments were performed to determine the
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growth mechanism. The first type of experiment involved fixing precursor concentration
(metal salt) and varying the volumetric concentration of the reducing agent (plant extract)
as 10%, 20%, 30%, and 40% of the precursor, while the second type involved fixing the
concentration of plant extract and varying the volumetric concentration of metal salt as
12.5%, 16.6%, and 25% of the precursor. These experiments were performed with and
without copper nitrate hydrate. The mixture solution of each designed sample was incu-
bated at room temperature for 24 h with a stirring speed of 200 rpm and then centrifuged
(15,000 rpm for 10 min) using a Hanil Mega 17r high-speed refrigerated centrifuge, Korea.
After removing the supernatant, the pellet precipitate was washed several times with
distilled water. Finally, nanoparticles were obtained using a freeze dryer (Ilshin, Korea).

2.2. Peroxidase Activity

Peroxidase assay was performed according to Deshmukh and colleagues [30]. Briefly,
0.15 mL of concentrated AgNDs/AgNPs suspension (50 µg/mL) was mixed with 0.1 mL
(10 mM) hydrogen peroxide (H2O2) (Samchun Chemicals Company, Seoul, Korea) in
a test tube and allowed to stand at room temperature. Then, 0.25 mL acetate buffer
solution (pH 4.2) was added, followed by rapid addition of 0.2 mL (12 mM) of 3,3′,5,5′-
tetramethylbenzidine (TMB, 99%, Sigma-Aldrich, St. Louis, MO, USA) in ethanol. The
colorless TMB was oxidized to a blue diimine. Absorbance was monitored over time, and
comparisons were recorded at 655 nm at regular intervals [31].

2.3. Catalytic Activity

Two types of dyes were investigated to evaluate the catalytic behavior of silver
nanoparticles in degradation. Methyl orange (MO, 85% dye content), methylene blue
trihydrate (MB, 97% dye content), and sodium borohydride (NaBH4, extra pure) were
purchased from Samchun Chemicals Company, Seoul, Korea. A catalytic dye degradation
experiment was performed by adding 5 mL of 15 mg/L dyes (MO, MB) to a 15 mL test
tube, followed by adding 50 µL (0.06 M) NaBH4 to each tube. The catalytic behavior was
observed by adding 150 µL of 100 µg/mL AgNDs or AgNPs to this solution. The reaction
started immediately, and the solids were removed after 5 min by centrifugation (13,000 rpm
for 10 min). The degradation percentage was measured by recording the optical density
using a UV–Vis spectrophotometer.

The % dye degradation was calculated from the equation:

% Degradation =
(c0 − ct)

c0
× 100 (1)

where C0 represents the initial dye concentration, and Ct represents the final dye concentra-
tion after degradation.

2.4. Antibacterial Activity

The antibacterial activity of AgNDs and AgNPs was evaluated using the disk-diffusion
agar method [32] against representative microorganisms, Staphylococcus aureus (ATCC 6538)
and Escherichia coli (ATCC 11775). Bacteria were cultivated on Luria-Bertani (LB) medium
and incubated at 37 ◦C for 24 h. Antibacterial tests were performed using nanoparticle con-
centrations (100 µg/mL) [33,34] as effective concentrations against bacterial strains. After
dropping 100 µL of silver nanostructures (100 µg/mL) on a sterile paper disc (Advantech,
Japan) with a diameter of 10 mm, it was dried, placed on an LB agar plate, and incubated
at 37 ◦C for 24 h. Then, the antibacterial activity was obtained by measuring the zone of
inhibition diameter (mm). Antibacterial activity was assessed in triplicate, and data were
plotted with error bars after calculating standard deviations.

2.5. Characterization of Silver Nanostructures

A UV–Vis absorbance spectrum of 200–800 nm wavelength was acquired using a
UV–Vis spectrophotometer at a resolution of 10 nm (mini, Shimadzu, Japan). Fourier
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transform infrared spectroscopy (FTIR) analysis was used to identify functional groups.
FTIR measurements were performed using an IR200 FTIR spectrometer (Thermo Scientific)
with a wavenumber range of 500–4000 cm−1 and a resolution of 4 cm−1 after 32 scans.
The crystallinity of the nanostructures was measured using an X-ray diffractometer (XRD,
X’Pert-Pro, Analytical) under the following conditions: room temperature, voltage 40 kV,
CuKα radiation at λ = 1.5406 Å, and scanning with 2θ range from 0◦ to 100◦ with 2◦/min.
The average crystallite size was determined by the Debye equation.

D =
0.9 λ

β cos θ
(2)

where D is the particle size, λ is the X-ray wavelength (0.154 nm), and β is the full width
at half maximum (FWHM). The interplanar spacing (d) between atoms was calculated by
Bragg’s law.

2d sin θ = nλ (3)

d =
λ

2sin θ
(n = 1) (4)

The nanostructures morphology was characterized using transmission electron mi-
croscopy (TEM, Libra 120, Carl Zeiss, Jena, Germany). For TEM observation, drops of the
colloidal nanostructure solution were placed on a carbon-coated copper grid and dried
at room temperature. Particle morphology and elemental composition were analyzed
using a scanning electron microscope (SEM, LEO-1530) coupled to energy-dispersive X-ray
spectroscopy (EDS). X-ray photoelectron spectroscopy (PHI Quentera-II) analysis was
performed to investigate the chemical oxidation state and surface composition, provid-
ing compositional information at the top of the monolayers, with a detection limit of
0.01–0.5 atomic%, an analysis depth of 0.5–7.5 nm, and a resolution of ≤10 µm probe size.

3. Results and Discussion

Silver nanostructures were synthesized utilizing Moringa oleifera extract from leaves
due to its properties as a reducing and capping agent. A green synthesis approach to metal
nanoparticles can incorporate carbohydrates, amino acids, proteins, phenolic compounds,
and flavonoids that promote metal ions to reduce and stabilize nanostructures [35,36].

3.1. Microscopic Observation of Silver Nanostructures

The obtained results reveal different morphologies depending on the plant extract
concentration in the presence and absence of Cu2+ ions. The nanostructures obtained at
a low concentration of 10% of the precursor with Cu2+ ions in the reaction system are
spherical with a size of about 100 ± 30 nm, as shown in Figure 1a–c. Increasing the plant
extract concentration to 20% in the presence of Cu2+ ions results in a transition state that
slightly changes the spherical shape to an unstable and undefine structure, as shown in
Figure 1d–f. Afterward, the plant extract concentration was increased to 30% to investigate
the possibility of changing the shape of the nanostructure. It is found that the shape of
dendrites is clearly formed as the concentration of the plant extract increases (Figure 1g–i).
The nanodendrites have an average size of ~300 ± 30 nm. Figure 1j shows the results
obtained in the absence of copper nitrate hydrate when using a low concentration of
10% of precursor. The obtained nanoparticles are spherical at this concentration, and no
dendritic morphology was observed even when the concentration was increased to 30% of
the precursor (as shown in Figure 1k,l). Therefore, for the formulation of nanodendrites,
the volumetric concentration of plant extract should be as high as 30% in the presence of
Cu2+ ions. Additionally, Figure 1m shows the SEM observation results for AgNPs, and
Figure 1n,o displays AgNDs.
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Figure 1. Morphologies of synthesized silver nanostructures by TEM and SEM observations. (a–c)
TEM images of silver nanospheres of different sizes in the presence of Cu2+ ions. (d–f) Deformed
TEM images of spheres for particle bud formation in the presence of Cu2+ ions. (g–i) Stabilized silver
nanodendrites in the presence of Cu2+ ions. (j–l) AgNPs in the absence of Cu2+ ions. (m) SEM image
of silver nanospheres. (n,o) SEM images of silver nanodendrites.

The phytochemicals in the extract act as a reducing agent for the silver ions. One
possible mechanism for the reduction of silver nitrate by phytoextract can be hypothesized
as the following: Initially, silver nitrate exists as Ag+ and NO3− ions in solution. The
bioactive molecules in the plant extract provide hydroxyl and carbonyl groups donating
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electrons to silver ions, causing bio-reduction of Ag+ to Ag0. These reduced silver ions
start to aggregate and form clusters. These clusters further grow and eventually stabilize to
form silver nanoparticles. Consistent with this hypothesis, many studies have disclosed
that flavonoids from various plant extracts exhibit bio-reductive functions of metal ions
through a mechanism of keto-enol tautomeric transformation [37,38].

The above results show that AgNPs and AgNDs can be successfully prepared using
Moringa oleifera leaf extract in the presence of Cu2+ ions. Cu2+ ions are necessary for
nanodendritic formulation. The addition of Cu2+ ions can slow down the reaction, forming
thermodynamically unstable branched structures that provide high specific surface areas.
These branches then aggregate to reduce the uncovered area and create a self-assembled,
stabilized dendritic structure [39,40]. Importantly, the shape of the nanoparticles in the
synthesis system changes from spherical to dendritic as the concentration of the plant
extract increases with the addition of Cu2+ ions. Increasing the concentration of the metal
salt was found to have no effect on the morphology. Without Cu2+ ions in the system, there
was no change in morphology, even at high plant extract concentration (30%). Therefore, for
the formulation of nanodendrites, the volumetric concentration of plant extract should be as
high as 30% in the presence of Cu2+ ions. Xu et al. [41] reported similar observations for the
chemically synthesized 3-dimensional silver nanostructures in the presence of Cu2+ ions.

3.2. UV–Vis Spectroscopy and Elemental Analysis

Figure 2 demonstrates possible differences in the optical properties of nanomaterials
depending on the shape and size formed. According to the results, AgNDs show a broader
spectrum with a maximum of 460 nm (Figure 2a), while AgNPs exhibit a narrower band
with a maximum of 443 nm (Figure 2b). The obtained data is like previous data showing
different morphologies for silver nanoparticles [42]. The elemental content of AgNDs was
analyzed. Figure 2c clearly reveals that AgNDs have a strong absorption peak (3 keV),
which is typical for silver nanocrystals [43]. Mass percentage analysis indicates that silver
is predominantly present at 88.4%, along with the organic content on the surface of the
silver nanodendrites, especially C (4.69%) and O (6.41%), while the Cu content is negligible
at 0.72%. It has been reported that Moringa oleifera cannot induce copper nanoparticles
under room temperature conditions and that high temperatures (≥80 ◦C) are required for
the formation of copper nanoparticles [44], but high temperatures were not used in our
conditions. This indicates that copper nitrate does not act as a strong competitor but slows
down the reaction rate for silver nanoparticles formation. Figure 2d also presents the EDS
mapping demonstrating the Ag atoms in AgNDs and confirming the distribution of the
major elements in the nanoparticles.

3.3. FTIR Analysis

FTIR investigations were employed to determine whether bioactive compounds are
found on the surface of nanoparticles. Figure 3a demonstrates that AgNDs exhibit a peak
at 3287 cm−1 related to O–H stretching vibrations of hydroxyl groups present mainly in
plant phenols and alcohols. Two peaks are observed at 2917 cm−1 and 2850 cm−1, which
are associated with C–H stretching vibrations. The peak observed at 1635 cm−1 can be
attributed to C=C stretching (in aromatic rings present in terpenoids) and C=O ketones (in
flavonoids). C-N bending vibrations appear at 1216 cm−1 and 1024 cm−1 related to the
amide group of plant extract [45]. Figure 3b illustrates the FTIR spectrum of AgNPs. The
broader spectrum detected at 3454 cm−1 can be ascribed to the O–H stretching. The peak
seen at 1625 cm−1 is due to C=C and/or C=O stretching vibrations. Figure 3c displays
the functional groups of Moringa oleifera extract leaf powder. The peak at 3291.2 cm−1

can be represented by the O–H stretching vibration, and the other peaks (2919 cm−1 and
2858 cm−1) can be confirmed by the C–H stretching of the alkane group. The peak at
1637 cm−1 can be assigned to C=C stretching and C=O. The peaks seen at 1230 cm−1 and
1033 cm−1 are associated with C–N bonds in the amine group [46]. From the FTIR results,
it is predicted that the C=O group is dominantly involved in the reduction, while C–H and
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C–N stretching are likely involved in the shaping of the nanoparticles because they are not
observed in the silver nanosphere vibration analysis. These results for Moringa oleifera are
like previously reported results [47]. The presence of identical peaks with a slight peak shift
in nanoparticles and Moringa oleifera powder suggests that the synthesized nanoparticles
are capped with bioactive functional groups present in this plant. Silver nitrate shows an
intense peak at 1291.1 cm−1 [48], indicating an Ag+NO3− ion pair, as shown in Figure 3d.

3.4. XRD Analysis

Figure 4 indicates that both AgNDs and AgNPs have cubic face-centered (FCC) struc-
tures. As shown in Figure 4a, significant peaks and crystal planes are observed at 37.91◦

(111), 44.08◦ (200), 64.3◦ (220), and 77.30◦ (311) corresponding to d-spacings of 0.237 nm,
0.220 nm, 0.144 nm, and 0.123 nm for AgNDs. XRD analysis shows that the synthesized
silver nanostructures correspond to well-defined surfaces with an arrangement of atoms in
a crystal lattice manner. The intense peak at 2θ = 37.91◦ corresponds to the (111) reflection
as one of the most compressed packed planes, indicative of the FCC structure. These
results are in accordance with the standard powder diffraction card of a joint committee on
powder diffraction standards (JCPDS), silver file No. 04-0783 [49]. In Figure 4b, distinct
peaks and crystal planes are detected at 37.88◦ (111), 44.18◦ (200), 64.258◦ (220), and 77.203◦

(311) for AgNPs, which are attributed to d-spacings of 0.237 nm, 0.204 nm, 0.144 nm, and
0.123 nm. The approximate crystal size corresponding to (111) is 26.82 nm and 32.48 nm for
AgNPs and AgNDs, respectively. The XRD data also reveals peaks representing organic
compounds from the plant extract (32.104◦, 37.16◦, and 44.18◦) in addition to peaks rep-
resenting silver nanocrystals. These results are consistent with previous studies as XRD
contains similar 2θ patterns [50,51]. Furthermore, no remarkable peaks are observed for
the copper crystal due to its low presence in the reaction system.
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3.5. XPS Analysis

The synthesized silver nanostructures are further analyzed using XPS, as manifested in
Figure 5. Figure 5a,e shows the survey spectra for AgNDs and AgNPs, confirming the pres-
ence of Ag0 as a major constituent. Ag peaks are detected at 365–376 eV (Figure 5b,f). As a
spin-orbital splitting, the Ag3d peak is shown as a doublet with two states: 367.5 eV Ag3d5/2
and 373.5 eV Ag3d3/2 with splitting energy of 6 eV, confirming the state in Ag0 [52,53].
Figure 5c describes the deconvolution of C1s spectra from AgNDs with four signals at
284.28, 285.5, 286.39, and 287.66 eV with respect to the C=C, C–O, C–N, and C=O relation-
ships [54–56]. The O1s XPS spectrum exhibits three signals at 530.88, 532.23, and 533.35 eV
(Figure 5d) due to AgO, O–H, and C–O, respectively [57,58]. For AgNPs, the pattern
gives a C1s spectrum (Figure 5g) with deconvolution into three peaks at 284.2, 285.6, and
287.3 eV, indicating the presence of C=C, C–O, and C–C connections [59–61]. The O1s XPS
(Figure 5h) represents four peaks at 531.24, 532.12, 532.7, and 533.35 eV corresponding
to the O–H, C=O, C–O linkages [62,63]. These results confirm the successful synthesis of
silver nanostructures with Moringa oleifera leaf extract. Results are in accordance with FTIR
studies confirming the connection.

3.6. Peroxidase Activity

Several nanoparticles are known to exhibit peroxidase activity, including cobalt ter-
traoxide [64], copper [65], nickel [66], gold [67], and silver nanoparticles [68]. In this study,
the peroxidase activity of silver nanostructures was investigated using a chromogenic
reagent TMB as shown in Figure 6. Originally, TMB did not exhibit any peak and appeared
colorless, but when oxidation begins, with the release of Ag+ ions, colorless TMB under-
goes oxidation and turns into a blue-colored diimine. The phenomena can be observed
visually, and spectrometry analysis confirms the reaction as a band at 655 nm (Figure 6a).
The absorbance of the samples was monitored over time, and comparisons were recorded
specifically at 655 nm every 30 min with a spectral range of 400 to 800 nm, which gradually
increases with rising TMB-oxide, as shown in Figure 6b. In contrast to AgNPs with a
maximum OD of 0.8, AgNDs displayed higher oxidation, i.e., a maximum OD of 1.1. The
plausible mechanism that could take place during this reaction and result in peroxidase
activity is shown in Figure 6c. The process involves the following main steps: catalytic
decomposition of H2O2 upon the addition of nanoparticles, and TMB oxidation via Ag+

ions, which is confirmed by a color change from colorless to blue. Initially, with H2O2,
Ag0 undergoes Ag+ ion formation, which leads to the decomposition of H2O2 into OH
radicals [69]. The free radicals then oxidize the peroxide substrate TMB, which confirms
the formation of silver cation (Ag+) on the surface of silver nanostructures. In addition, the
oxidized form of TMB can exist in equilibrium with the charge transfer complex and the
diimine derivative for TMB.

3.7. Catalytic Degradation

Methylene blue (MB) is a heterocyclic aromatic cationic dye that poses a threat to
aquatic life due to its non-degradability and potential to cause carcinogenesis and toxicity.
This dye is water-soluble and shows a dark blue color when dissolved in water and
generates a significant signal at 664 nm when analyzed by a UV–Vis spectrophotometer.
MB degrades to leuco-methylene blue [70]. Methyl orange (MO) is an anionic azo dye that
displays a strong peak at 464 nm and is also water-soluble. The color ranges from orange,
red to yellow depending on the acidity and alkalinity of the medium. When degraded, it
forms hydrazine-derivatives [71]. Our results demonstrate the positive impact of silver
nanostructures on the catalytic degradation of the used dyes (MO and MB). This is clearly
shown in Figure 7a,b. Degradation of the dyes was slow when sodium borohydride was
introduced, as observed both visually and by absorbance measurements. However, with the
addition of silver nanostructures in the solution, the reaction rate was accelerated, and the
reaction was completed in 3 to 5 min. The color of each dye disappeared, but black pellets
were formed along with the colorless supernatant. In addition, the absorbance spectrum
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of the dyes was significantly reduced. These observations suggest that the degradation of
dyes with sodium borohydride is thermodynamically favorable but not kinetically [72,73].
In this system, silver nanostructures act as a catalyst that increases the reduction/oxidation
reaction of dyes with sodium borohydride [74,75].
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The calculated degradation activity results show that AgNDs exhibit a higher degra-
dation percentage compared to AgNPs (Figure 7c) as follows: 66.6% (AgNPs) and 92.2%
(AgNDs) for MO dye degradation; 58.3% (AgNPs) and 91.0% (AgNDs) for MB dye degra-
dation. The experiment was performed in triplicate, and the calculated standard deviation
was less than 2%. It indicates that AgNDs have a superior catalytic effect required for the
degradation of dyes.

A reasonable mechanism for this reaction to occur can be attributed to the rapid
transfer of electrons available on the silver nanoparticles. Degradation activity relies on the
doner NaBH4 capability and acceptor dye. Initially, dye molecules and BH4

– are adsorbed
on the surface of nanoparticles [76]. Here, NaBH4 acts as a nucleophile, the dye molecules
act as an electrophile, and the silver nanoparticles act as an electron relay system mixture
that supports both electron transfer and degradation rate acceleration. These observations
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reflect the role of nanoparticles as substrates due to their high specific surface area [77,78].
For silver nanoparticles, several studies have demonstrated enhanced catalytic behavior
for dye degradation with NaBH4 [79–82].

J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 13 of 20 
 

 

the addition of silver nanostructures in the solution, the reaction rate was accelerated, and 
the reaction was completed in 3 to 5 min. The color of each dye disappeared, but black 
pellets were formed along with the colorless supernatant. In addition, the absorbance 
spectrum of the dyes was significantly reduced. These observations suggest that the deg-
radation of dyes with sodium borohydride is thermodynamically favorable but not kinet-
ically [72,73]. In this system, silver nanostructures act as a catalyst that increases the re-
duction/oxidation reaction of dyes with sodium borohydride [74,75]. 

      
Figure 7. Catalytic degradation of dyes in the presence of NaBH4 on the surface of silver nanostruc-
tures. (a) Absorbance spectra of methyl orange, methyl orange + NaBH4, methyl orange + NaBH4 + 
AgNPs, and methyl orange + NaBH4 + AgNDs. (b) Absorbance spectra of methylene blue, methylene 
blue + NaBH4, methylene blue + NaBH4 + AgNPs, and methylene blue + NaBH4 + AgNDs. (c) Deg-
radation percentage of dye + NaBH4, dye + NaBH4 + AgNPs, and dye + NaBH4 + AgNDs. Error bars 

Figure 7. Catalytic degradation of dyes in the presence of NaBH4 on the surface of sil-
ver nanostructures. (a) Absorbance spectra of methyl orange, methyl orange + NaBH4,
methyl orange + NaBH4 + AgNPs, and methyl orange + NaBH4 + AgNDs. (b) Absorbance spec-
tra of methylene blue, methylene blue + NaBH4, methylene blue + NaBH4 + AgNPs, and methylene
blue + NaBH4 + AgNDs. (c) Degradation percentage of dye + NaBH4, dye + NaBH4 + AgNPs, and
dye + NaBH4 + AgNDs. Error bars show the standard deviation for three replicates of data. (d) Dye
structures before and after reduction.

3.8. Antibacterial Activity

Silver nanostructures are primarily known for their potent antibacterial potential [83–85].
The antibacterial activity of the synthesized silver nanostructures was investigated against
Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). Figure 8a,b demon-
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strates the efficient killing of bacteria by AgNDs compared with AgNPs, showing specific
antibacterial action when tested by the zone of inhibition. AgNDs have a higher antibac-
terial effect against E. coli, reaching an inhibition of 40 ± 1.5 mm, when compared with
S. aureus, which had an inhibition of 10 ± 0.6 mm. In contrast, AgNPs treatment for both
strains resulted in insignificant inhibition of 12.6 ± 1.2 mm against E. coli and 5 ± 0.91 mm
against S. aureus. These results illustrate that nanoparticle shape enables antibacterial
effectiveness depending on the morphology change. The possible antibacterial action
mechanism of silver nanoparticles is explained as follows. Bacterial cells are composed of
various structures, such as cell membranes, proteins, and DNA, which contain sulfur and
phosphorus. They act as Lewis bases, while silver is considered a Lewis acid, resulting
in an electrostatic attraction between sulfur proteins and silver ions [86,87]. Therefore,
AgNDs can bind to the wall and penetrate bacterial cells [88,89]. Internalization of silver
nanostructures into cells interrupts respiratory function, resulting in the deactivation of
respiratory enzymes with the generation of reactive oxygen species (ROS) [90,91]. As
such, overproduction of ROS can destroy intercellular components such as DNA, lipids,
and proteins. Cellular membrane destruction thus causes loss of cytoplasm from the cell,
followed by cell death. Additionally, cell wall thickness can determine the antibacterial
efficiency of different bacteria upon contact with silver nanoparticles. Gram-negative E. coli
has a thinner cell wall, making it more susceptible to silver nanoparticle penetration than
Gram-positive bacteria such as S. aureus, which are characterized by thicker cell walls [92].
The structural shape of silver nanoparticles is also important in determining antimicro-
bial efficacy, and the dendritic shape possesses a more reactive crystal surface than the
spherical-shaped nanoparticles, leading to enhanced antibacterial performance [93–95].
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4. Conclusions

In search of an environmentally friendly method to produce nanostructures, a green
synthetic route was introduced to obtain controlled silver nanostructures, dendrites (Ag-
NDs), and spheres (AgNPs) using Moringa oleifera leaf extract at room temperature. These
nanostructures were characterized by surfaces containing bioactive functional groups.
Dendritic silver nanostructures were obtained with increasing plant extract concentration
in the presence of Cu2+ ions in the solution supporting the formation of nanostructures.
These nanoparticles were achieved with particle sizes of ~100 ± 30 nm (AgNPs) and
~300 ± 30 nm (AgNDs). Results demonstrated that AgNDs were more effective in terms of
peroxidase, catalytic degradation, and antibacterial activity. AgNDs showed >90% catalytic
degradation of methyl orange and methylene blue dyes. Additionally, AgNDs exhibited
higher inhibition against E. coli than against S. aureus, suggesting added value in biomedical
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applications. Certain nanostructured forms, such as dendritic silver nanoparticles, can be
applied to various fields in the future through green synthesis strategies.
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