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Abstract: Tannins are natural plant origin polyphenols that are promising compounds for pharma-
cological applications due to their strong and different biological activities, including antibacterial
activity. Our previous studies demonstrated that sumac tannin, i.e., 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-
galloyl-β-D-glucose (isolated from Rhus typhina L.), possesses strong antibacterial activity against
different bacterial strains. One of the crucial factors of the pharmacological activity of tannins
is their ability to interact with biomembranes, which may result in the penetration of these com-
pounds into cells or the realization of their activity on the surface. The aim of the current work
was to study the interactions of sumac tannin with liposomes as a simple model of the cellular
membrane, which is widely used in studies focused on the explanation of the physicochemical nature
of molecule–membrane interactions. Additionally, these lipid nanovesicles are very often investi-
gated as nanocarriers for different types of biologically active molecules, such as antibiotics. In the
frame of our study, using differential scanning calorimetry, zeta-potential, and fluorescence analysis,
we have shown that 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose interacts strongly with
liposomes and can be encapsulated inside them. A formulated sumac–liposome hybrid nanocomplex
demonstrated much stronger antibacterial activity in comparison with pure tannin. Overall, by
using the high affinity of sumac tannin to liposomes, new, functional nanobiomaterials with strong
antibacterial activity against Gram-positive strains, such as S. aureus, S. epidermitis, and B. cereus, can
be formulated.

Keywords: liposomes; sumac tannin; biomaterials; hybrid nanosystems; antibacterial activity

1. Introduction

Tannins are secondary plant metabolites which are, structurally, a diverse group
of polyphenols represented by hydrolysable tannins, condensed tannins, phlorotannins,
complex tannins [1], and by gallocatechins and their gallates [2]. The scientific interest in
this group of plant phytochemicals has recently increased, owing to their various beneficial
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effects on health, such as antitumorigenic, antioxidative, anticlotting, anti-inflammatory,
antiviral, and antimicrobial effects [1,3–5].

One promising compound in this category, in terms of pharmacological properties,
is the 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose—hydrolysable sumac tannin,
which is isolated from Rhus typhina (staghorn sumac) leaves, a plant widely used in tradi-
tional and veterinary medicine, especially in Asia [6]. Sumac tannin is structurally similar
to the well-studied 1,2,3,4,5-penta-O-galloyl-β-d-glucose (PGG). However, in contrast to
PGG, it contains 3 gallic acid and 2 digallic acid residues linked to glucose (19 and 15-OH
groups, respectively) compared to the 5 gallic acid residues present in the PGG structure.

Our previous studies have shown that 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-
glucose, herein after referred as hydrolysable Rhus typhina tannin (RT), exhibits antimicro-
bial activity and prevents hemolysis caused by bacterial toxins [7,8] and osmotic shock [9].
RT has also shown high and specific antiradical activity relative to reactive oxygen species
(ROS) and reactive nitrogen species (RNS), as well as a protective effect on red blood cells
against oxidative stress caused by a variety of oxidants, including bisphenol A (BPA) and
its metabolite hydroquinone [10,11].

We have also demonstrated that RT, due to its ability to bind to proteins and in
particular to α-synuclein protein, prevents the protein aggregation, exhibiting potential
neuroprotective activity in Parkinson’s disease [12] and preventing albumin against glyca-
tion and protecting Neuro2A nerve cells against oxidative stress induced by high glucose
levels [13]. It has been also proven that a water-acetonic extract from Rhus typhina leaves
containing more than 70% RT exhibited low toxicity levels (LD50 = 5600 mg/kg) and
an antitumor effect [14]. The pharmacological activity of polyphenols is associated with
their ability to interact with biomembranes, which may result in either penetration of the
compound in the cells or action on cells’ surfaces. In both cases, polyphenol–membrane
interaction leads to a change in the physicochemical properties of the membrane and in
their functionality in total. Lipids play a significant role in the interaction of polyphenols
with membranes, as they compose the main component of the membrane framework
and are responsible for properties such as fluidity, phase transition temperature, stability,
surface, and the dipole potential of the membrane. A plethora of studies have shown that
a polyphenol-induced decrease in membrane fluidity inhibited the distribution of free
radical reaction of fatty acids oxidation and leads to a cessation of oxidative stress [15–19].
Condensed tannins have been shown to exert an antidifferentiation effect on preadipocytes
by disruption of the membrane integrity and an increase in membrane fluidity [20]. Several
research groups have documented that the cytotoxic activity of polyphenols with a number
of cancer cells is related to their lipophilicity and affinity for lipids [21]. A correlation
has been shown between the antibacterial activity of catechin derivatives and their ability
to affect the physical properties of the phospholipid membrane [22,23]. In our previous
investigation, we have proven the relation between the antihemolytic activity of RT against
Staphylococcus aureus cytolysins and the stiffening of the hydrophobic part of the erythrocyte
membrane [8].

Liposomes are a widely accepted model for biological membranes and a convenient
test system for studying the activity of compounds, which are considered to act through
modification of the physicochemical properties of the membranes [24]. It must be empha-
sized that studying the interactions of active compounds (e.g., drugs or polyphenols) with
membranes is fundamental for assessing their localization in the membranes and their
effects on the membrane structure and surface potential, which are critical parameters in
the potential pharmacological implementation of polyphenols. In addition, liposomes are
very often investigated as nanocarriers for different types of biologically active molecules,
such as antibiotics, and can contribute to an increase in the absorption of the drug. A
significant increase in bacterial resistance to antibiotics leads to the constant search for new
antimicrobial agents among compounds of plant origin, including polyphenols along with
their new formulations and modifications.
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The aim of this work was to investigate the interaction of RT with artificial lipid
nanovesicles (liposomes) prepared from dimyristoylphosphatidylcholine (DMPC), which
is present in mammalian membranes and is, thus, used as a simple model of cell mem-
branes [25] to determine the influence of RT on their biophysical parameters, as well as to
study the antibacterial activity of a newly formulated, hybrid RT–liposome nanobiomaterial.

2. Materials and Methods
2.1. Materials

DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) was purchased from Avanti Polar
Lipids (Alabaster, AL, USA). A noncommercial sumac tannin (3,6-bis-O-di-O-galloyl-1,2,4-tri-
O-galloyl-β-D-glucose) (Figure 1) was isolated from Rhus typhina, according to the method
proposed by Olchowik-Grabarek et al. [8]. TMA-DPH (1-(4-trimethylammoniumphenyl)-6-
phenyl-1,3,5-hexatriene), DPH (1,6-diphenyl-1,3,5-hexatriene), and Laurdan were purchased
from Sigma-Aldrich (St. Louis, MO, USA). All other compounds were of analytical grade.
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Figure 1. (A) Molecular structure of 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose (RT),
(B) chemical structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC).

2.2. Liposome Preparation

Liposomes were prepared in two different ways, depending on the analysis to be
performed. For electrophoretic and dynamic light scattering (ELS and DLS) studies, lipo-
somal formulations of DMPC and DMPC:RT in various molar ratios were prepared by
utilizing the thin-film hydration and sonication method. Briefly, DMPC in chloroform
and the 3,6-bis-O-di-O-galloyl-1,2,4-tri-O-galloyl-β-D-glucose in methanol were mixed and
then transferred into a round flask and connected to a rotary evaporator (Rotavapor R-114,
Buchi, Flawil, Switzerland). A vacuum of −1 bar was applied and the thin film was formed
with slow removal of the solvent at 40 ◦C. The film was maintained under vacuum for
at least 30 min to remove traces of solvent and stored at 4 ◦C overnight. Subsequently, it
was hydrated with PBS (pH = 7.4) by slowly stirring for 1 h in a water bath, above the
phase transition temperature of the lipid (24 ◦C for DMPC), with a lipid concentration
of 30 mg/mL. The resultant structures (apparently multilamellar vesicles, MLVs) were
subjected to 2, 5 min sonication cycles (amplitude 70%, cycle 0.5 s) interrupted by a 5 min
resting period, using a probe sonicator (UP 200S, Dr. Hielsher GmbH, Berlin, Germany).
The resultant particles (tentatively assigned as small unilamellar vesicles, SUVs) were
allowed to anneal for 30 min. The prepared systems of lipids and tannins were assigned as
DMPC:RT1, DMPC:RT5 and DMPC:RT10.

For fluorescence studies of the interaction between RT and DMPC and for antibacterial
analysis, liposomes were prepared using the extrusion method by using the Avanti Polar
Lipids Mini-Extruder, according to Sekowski et al. [26]. Generally, DMPC phospholipids
were dissolved in chloroform and then the solvent was evaporated. The formed thin lipid
film was purged by nitrogen, resuspended in PBS, well mixed, and afterward heated to
45 ◦C, passing 15 times through the extruder polycarbonate membrane (pore diameter
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100 nm). The final DMPC concentration was 20 mg/mL. Liposomes were stored at 4 ◦C
and, for the experiments, were diluted up to 100 µg/mL. For the antibacterial studies. the
liposomes were prepared in practically the same manner, with small modifications, i.e., the
pure PBS used RT solution in PBS (C = 2 mM) and was added to the lipid film. After mixing
well, the lipid–RT solution was heated up to 40 ◦C and then passed 15 times through an
extruder (Avanti Polar Lipids) that possessed 100 nm pore diameter membranes. The
final concentrations of DMPC and RT in the formulated nanosystem were 20 mg/mL and
2 mM, respectively.

2.3. Analysis of ζ-Potential and Particle Size—Light Scattering

The size, size distribution, and ζ-potential of the obtained structures were investigated
using dynamic and electrophoretic light scattering (DLS and ELS). The physicochemical
parameters were measured immediately after preparation (t = 0 days), as well as over
time (t = 5 days), for the monitoring of the system’s physical stability. For DLS and ELS,
100 µL or 50 µL aliquots were 30-fold and 60-fold diluted in HPLC-grade water, respec-
tively. Measurements were performed at 25 ◦C at a detection angle of 90◦ using a photon
correlation spectrometer (Zetasizer 3000 HSA, Malvern, UK) and were analysed with the
CONTIN method (MALVERN Pananalytical Ltd., software). Details on the methods have
been previously published [27].

2.4. Preparation of Lipid Bilayers

Pure lipid DMPC and mixed DMPC:RT bilayers were prepared by mixing the appro-
priate amounts of DMPC and tannin. DMPC bilayers were DSC-analysed as they were but
also after hydration with tannin PBS solution in different concentrations (described below).
Specifically, DMPC bilayers were prepared with the evaporation of the DMPC solution
in chloroform (10 mg/mL) at 60 ◦C and were further dried at 40 ◦C for 30 min. A mixed
DMPC:RT bilayer was prepared by adding the appropriate amount of tannin in methanol
to the DMPC solution in chloroform and followed the same evaporation method. This
sample was designed to include the tannin incorporated inside the DMPC bilayers. The
obtained laminated bilayers were hydrated into the appropriate aqueous medium (PBS)
and then studied using differential scanning calorimetry (DSC).

2.5. Differential Scanning Calorimetry (DSC)

DSC thermograms of DPMC bilayers, neat, with incorporated tannin or with post-
evaporation-added tannin were obtained by utilizing a DSC822e Mettler Toledo (Schw-
erzenbach, Switzerland) calorimeter, calibrated with pure indium (Tm = 156.6 ◦C). A Sealed
40 µL aluminum crucibles were used as sample holders. The systems under investigation
were bilayers composed of DMPC and the tannin molecule in various molar concentrations,
i.e., to get 1 µM; 5 µM and 10 µM of RT per 100 µg/mL of lipids. Initially, around 3 mg
of dried samples was weighted and placed in a crucible, followed by hydration with,
accordingly, 30 µL of PBS, with or without dissolved tannin and sealing of the crucible.
Then each prepared sample was left to equilibrate for a 15 min period prior to measurement.
In the case of the incorporated tannin, the dried sample already included the molecule and
was hydrated with PBS. The reference for the measurement of every sample was an empty
aluminium crucible. Two heating–cooling cycles were performed, and reproducibility of
the sample analyses was achieved. The temperature range used was from 5 ◦C to 35 ◦C
and the scanning rate was 2.5 ◦C/min. Before each cycle, the samples were subjected
to a constant temperature of 5 ◦C for 5 min. to ensure equilibration. The calorimetric
data obtained (characteristic transition temperatures Tonset,m/s and Tm/s, enthalpy changes
∆Hm/s, and widths at half peak height of the Cp profiles ∆T1/2,m/s) were analysed using
Mettler Toledo STARe software. It is noted that the transition enthalpy is expressed as
kilojoules per moles of DMPC and is considered positive during an endothermic process.
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2.6. RT–DMPC Interaction Studies: Fluorescence Analysis of Lipid Order, Nanodomain Formation,
and Biophysical Parameters

Lipid order parameters were defined by the measurement of fluorescence anisotropy
®changes of TMA-DPH and DPH. Liposomes (C = 100 µg/mL) were incubated for 20 min
with 1 µM of TMA-DPH (dissolved in methanol) or DPH (dissolved in tetrahydrofuran)
and the fluorescence anisotropy for pure liposomes and, after the addition of RT (in the
concentration range 0.5–10 µM), was measured. Fluorescence excitation and emission
wavelengths were λexc. = 340 nm, λem. = 430 nm (for TMA-DPH), and λexc. = 348 nm,
λem. = 426 nm (for DPH). Based on the “r” values, the lipid order parameter (S) was
calculated as we described previously [8].

Nanodomain formation was studied using fluorescence staining by Laurdan. Briefly,
DMPC liposomes (C = 100 µg/mL) were stained by Laurdan (at final concentration of
400 nM), mixed, and incubated for 5 min. Next, the fluorescence signal from the pure
liposomes and liposomes in the presence of sumac tannin was analysed using λexc. = 350
nm and 2 emission wavelengths: 1 λem. = 440 nm and 2 λem. = 490 nm.

Biophysical parameters characterizing DMPC–RT interactions were calculated based
on fluorescence quenching of TMA-DPH. Liposomes at final concentration of C = 100 µg/mL
were labelled using TMA-DPH at final concentration of 400 nM and incubated for 20 min
at 25 ◦C. After incubation, fluorescence of liposomes without and in the presence of sumac
tannin was measured by using λexc. = 340 nm and λem. = 430 nm.

2.7. Antibacterial Activity of RT–DMPC Hybrid Nanosystems

As controls, pure DMPC liposomes and pure RT (both in PBS) were used. The an-
timicrobial activity was examined on the six bacteria strains: Staphylococcus aureus ATCC
700699; Staphylococcus aureus 8325-4; Staphylococcus epidermitis ATCC 14990; Bacillus cereus
ATCC 13061; Escherichia coli ATCC 35218; and Pseudomonas aeruginosa ATCC BAA-1744.
Analyses were performed according to Czajkowska-Szczykowska et al. [28]. Briefly, the
compounds (RT–DMPC nanocomplex and pure RT as control) were added to a Mueller
Hinton broth (MHB) medium for the bacteria to a final RT concentration of 500 µM and
5 mg/mL (7.4 mM) of DMPC. The samples were then serially 2-fold diluted (12-times) in
96-well microtiter plates with final volumes of 100 µL. Next, 100 µL of bacteria solution
was added to get the final bacteria cell concentration at 1 × 106 colony-forming units
per mL (CFU/mL). The plates were incubated at 37 ◦C for 24 h. The minimum inhibitory
concentration (MIC) value was determined as the lowest concentration of an antibacterial
agent that inhibited bacterial growth, as indicated by the absence of turbidity.

3. Results and Discussion
3.1. Physicochemical and Thermodynamic Characterization of Liposomes That Contain RT

It is widely known that polyphenols interact strongly with both the cells and model
membranes [8,26,29–32]. These interactions lead to changes in membrane physicochem-
ical parameters such as fluidity, surface charge, transition temperature, and lipid order
parameters [8,26].

We have previously shown that RT exhibits a wide range of biological activity on
different type of cells, including antibacterial and antiglycation [8,13].

Therefore, the interaction of RT with DMPC nanovesicles, which are used as a simple
model of cell membranes due to their high abundance in mammalian membranes [25],
has been studied to better investigate and understand the physicochemical nature of
this activity.

In order to verify if RT can influence the electrical properties of lipid membranes,
their size, size distribution, and ζ-potential were measured using electrophoretic and
dynamic light scattering (ELS and DLS). Measurements were performed immediately after
preparation (0 days) as well as after 5 days to check the physical stability of the DMPC
liposome–RT mixture.
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The day of the liposome preparation (day 0), both the pure DMPC-vesicles and DMPC–
RT mixtures formed homogenous, almost transparent colloidal suspensions. For the pure
DMPC liposomes, analysis of ζ-potential demonstrated an almost neutral net charge, which
slightly increased in the presence of the tannin (Figure 2A). The slightly positive value can
be attributed to the utilized hydration medium, i.e., PBS; however, the surface charge in all
cases was practically zero and provided no electrostatic interactions between the particles.

J. Funct. Biomater. 2023, 14, x FOR PEER REVIEW 6 of 15 
 

 

dynamic light sca ering (ELS and DLS). Measurements were performed immediately af-
ter preparation (0 days) as well as after 5 days to check the physical stability of the DMPC 
liposome–RT mixture. 

The day of the liposome preparation (day 0), both the pure DMPC-vesicles and 
DMPC–RT mixtures formed homogenous, almost transparent colloidal suspensions. For 
the pure DMPC liposomes, analysis of ζ-potential demonstrated an almost neutral net 
charge, which slightly increased in the presence of the tannin (Figure 2A). The slightly 
positive value can be a ributed to the utilized hydration medium, i.e., PBS; however, the 
surface charge in all cases was practically zero and provided no electrostatic interactions 
between the particles. 

 
Figure 2. Zeta-potential changes of pure DMPC and DMPC–RT mix (A), hydrodynamic diameter 
(B), and polydispersity index (PDI) (C). The X-axis demonstrates the final RT concentration. 

The size of liposomes and DMPC–RT nanosystems was approximately 100–110 nm 
in all cases (Figure 2B). Analysis of the polydispersity index (PDI) (Figure 2C) allowed us 
to conclude that all liposomes (without and in the presence of RT) had rather homogenous 
size distribution. 

As demonstrated in Figure 2B, both the pure liposomes and the hybrid DMPC–RT 
nanoparticles possessed roughly the same hydrodynamic diameter (approx. 100 nm). 
When comparing the PDI values, a range of 0.44–0.49 was noticed, indicating that all the 
formulated DMPC–RT complexes were mostly uniform with a homogenous size distribu-
tion (i.e., PDI = 0 stands for perfectly uniform liposomes, PDI = 1 stands for high polydis-
persity of the liposomes) [33]. 

In order to verify if the obtained liposomal–RT systems were stable over time (i.e., no 
aggregation observed), the measurements of the hydrodynamic diameter (Dh) and PDI 
were additionally performed on days 1 and 5 after the day of preparation. The obtained 
results are presented in Table 1. 

  

Figure 2. Zeta-potential changes of pure DMPC and DMPC–RT mix (A), hydrodynamic diameter (B),
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The size of liposomes and DMPC–RT nanosystems was approximately 100–110 nm in
all cases (Figure 2B). Analysis of the polydispersity index (PDI) (Figure 2C) allowed us to
conclude that all liposomes (without and in the presence of RT) had rather homogenous
size distribution.

As demonstrated in Figure 2B, both the pure liposomes and the hybrid DMPC–RT
nanoparticles possessed roughly the same hydrodynamic diameter (approx. 100 nm). When
comparing the PDI values, a range of 0.44–0.49 was noticed, indicating that all the formu-
lated DMPC–RT complexes were mostly uniform with a homogenous size distribution (i.e.,
PDI = 0 stands for perfectly uniform liposomes, PDI = 1 stands for high polydispersity of
the liposomes) [33].

In order to verify if the obtained liposomal–RT systems were stable over time (i.e., no
aggregation observed), the measurements of the hydrodynamic diameter (Dh) and PDI
were additionally performed on days 1 and 5 after the day of preparation. The obtained
results are presented in Table 1.

Table 1. Hydrodynamic diameters and polydispersity index (PDI) values of DMPC and DMPC–RT
liposome systems over time.

t (Days)
DMPC DMPC:RT1 DMPC:RT5 DMPC:RT10

Dh (nm) PDI Dh (nm) PDI Dh (nm) PDI Dh (nm) PDI

0 113.5 ± 0.5 0.453 ± 0.009 113.6 ± 1.0 0.441 ± 0.006 97.5 ± 2.7 0.492 ± 0.005 107.2 ± 1.6 0.466 ± 0.009
1 131.5 ± 2.3 0.568 ± 0.012 132.6 ± 1.9 0.512 ± 0.006 389.9 ± 10.0 0.742 ± 0.233 215.9 ± 4.1 0.703 ± 0.096
5 146.9 ± 2.0 0.646 ± 0.012 143.0 ± 2.4 0.515 ± 0.018 203.2 ± 3.1 0.623 ± 0.008 237.5 ± 2.2 0.680 ± 0.120

As observed in Table 1, pure liposomes (DMPC) and liposomes with the lowest
concentration of RT (DMPC:RT1) are generally stable over time. Both the diameters and
the PDI values are similar to day 0, after 1 and 5 days. A different effect was observed for
liposomes with a 5 µM and 10 µM concentration of sumac tannin. For both systems, an
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increase in hydrodynamic diameter and PDI, in comparison to day 0, was observed. This
shows that, in the presence of these concentrations of RT liposomes have a much lower
stability and a tendency to form large aggregates with low homogeneity.

Polyphenols, including tannins, have the ability to change their thermodynamic
parameters through interactions with membranes [26,32]. In order to define the influence of
RT on the thermodynamic parameters of DMPC liposomes, DSC analysis was performed,
and the results are presented below (Figure 3).
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The pure DMPC phospholipids present one pretransition point between 12–13 ◦C
(Please see line a in Figure 3) and a transition point at around 23.6 ◦C, typical for this
lipid [34]. The presence of RT led to the disappearance of the pretransition of DMPC, which
means that the RT molecules interact with the polar head groups and affect their mobil-
ity [35]. This is certainly associated with the H-bonding between the hydroxyl molecule
groups and the lipid phosphate groups. This result is consistent with our previous findings
regarding 1,2,3,4,6-penta-O-galloyl-β-D-glucose and 1,2-di-O-galloyl-4,6-valoneoyl-β-D-
glucose [26]. RT led to a concentration-dependent decrease in the onset and peak tempera-
tures of the DMPC main transition, as well as to the concentration-dependent change of the
peak width that generally increased, except for the heating of DMPC:RT10. This indicates
that the cooperativity of the system decreases as the amount of added tannin is increased,
giving rise to new phases, probably due to raft/domain formation [36]. This is also caused
by the inhomogeneous distribution and interaction of tannins onto the membrane.

Additionally, the existence of shoulders in all the lipid–tannin systems was observed as
a result of the tannin effect that led to phase separation, especially in the highest RT amount
(line d in Figure 3), where a new peak was almost formed at 17.5 ◦C. To better demonstrate
the observed alterations of the thermal effects, the main thermodynamic parameters, i.e.,
transition enthalpy (∆Hm), temperature at which the thermal effect starts (Tonset,m), gel
to liquid–crystalline phase transition temperature (Tm), and width of the transition at
half-peak height (∆T1/2,m), were calculated and are presented below (Table 2) [37].

Table 2. Calorimetric profiles of DMPC:RT bilayers in PBS (pH = 7.4) after heating.

Sample RT [µM] Tonset,m
(◦C)

Tm
(◦C)

∆T1/2,m
(◦C)

∆Hm
(kJ/mol)

Tonset,s
(◦C) Ts (◦C) ∆T1/2,s

(◦C)
∆Hs

(kJ/mol)

DMPC - 22.94 23.37 0.77 29.47 10.84 12.32 1.62 1.33
DMPC:RT1 1 21.00 22.61 1.50 29.41 - - - -
DMPC:RT5 5 19.26 21.75 2.41 29.54 - - - -
DMPC:RT10 10 18.60 21.16 2.35 29.29 - - - -
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The transition enthalpy (∆Hm) did not alter at all for any of the tannin concentrations.
The decrease in enthalpy combined with the decrease in the transition temperature would
mean fluidization of the system and less efficient lipid transition. However, in this case, the
amount of energy required for transition was distributed in the various formed domains,
which exist and transit in a wide temperature range [38]. As a result, we conclude that
RT does not penetrate the inner part of the membranes when mixed with bilayers but
rather interacts on their surface, promoting the observed thermodynamic alterations. To
summarize, the interactions induced by the RT molecules lead to domain formation, with
the resulting lipid domains absorbing and emitting cumulatively the same energy amount
with the initial transition.

The appearance of shoulders occurs at higher temperatures than the main transition
for the DMPC:RT1 and DMPC:RT5 bilayers but at lower temperature for DMPC:RT10.
This indicates that there is a limit in tannin concentration, above which the interactions,
adsorption, and domain formation on lipid bilayer is altered. This might reflect on the
biological effect of the particular tannin molecules on biological membranes, where different
domains are formed and relates to the thermodynamic equilibrium and metastability of
the membrane. This transition resembles a “flip-flop” phenomenon in the minimum free
energy of the system between the tannins and the lipid bilayer, where the molecules need
to rearrange and interact differently with membranes in order to reach thermodynamic
equilibrium, thus promoting the formation of a different in nature rafts/domains.

3.2. Influence on Lipid Order Parameter and Lipid Nanodomain Formation

As described above, sumac tannin has a strong ability to change the thermal profile of
DMPC phospholipids, leading to the promotion of lipid nanodomain (ND) formation. In
order to confirm this assumption, studies of lipid order parameters and of ND formation in
DMPC liposomes under the influence of RT were performed, and the results are presented
below (Figure 4).
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Based on the obtained results, it can be concluded that RT has the ability to change
the lipid order parameters both in the hydrophilic as well as in the hydrophobic parts of
DMPC liposomes. For both the polar and the nonpolar regions of liposomes, an increase
in the order parameter was observed in comparison to the control system. This process
is connected to the rising of the liposomal membrane rigidity. The same influence on the
liposome’s rigidity was observed in our previous work, where PGG and 1,2-di-O-galloyl-
4,6-valoneoyl-β-D-glucose (T1) interacted with DMPC liposomes [26]. On the other hand,
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the difference in the strength of the effect was noticed for the DMPC polar/nonpolar parts
of the liposomes. These alterations are mostly connected with lipophilicity of polyphenols.
For example, the rather nonpolar character of the PGG and T1 used evokes larger changes
in the hydrophobic parts of the liposomes [26]. A similar relationship has been described
for quercetin [32], which, as a hydrophobic compound, induced a larger decrease in
fluidity at the nonpolar parts of the liposomes, as well as for curcumin [39], which, as a
highly hydrophobic compound, induced a strong increase in lipid order parameters at the
hydrophobic parts of the erythrocyte membranes. RT, as a more hydrophilic compound,
triggered stronger changes in the polar regions of the liposomes (Figure 4A).

A strong influence of RT on the liposomal membrane (Figure 4A) as well as the changes
in the temperature transition point, due to the presence of tannin (Figure 3), allows us
to assume that formed lipid nanodomains are the result of sumac–liposome interactions.
Therefore, fluorescence studies using a Laurdan fluorescent label were performed, and the
results are demonstrated in Figure 4B. The increasing concentrations in sumac induced an
increase in the generalized polarization (GP). This process is associated with the membrane
fluidity and the lipid hydration [40,41] and corresponds to the increase in packing density
of the polar regions of the liposomal membrane and domain formation, as DSC studies
suggest, as well as having good correlation with TMA-DPH results. This is probably the
consequence of the dehydration of DMPC polar heads. Similar results were observed for
PGG interaction with liposomes [26].

3.3. Fluorescence Analysis of Sumac–Liposome Interactions

In order to better characterize the interaction between sumac and DMPC liposomes,
based on the measurement of TMA-DPH fluorescence quenching, the biophysical parame-
ters of the Stern–Volmer constant (KSV), quenching constants (kq), and binding constant
(logKb) were calculated. TMA-DPH (marks polar parts of liposomes) has been used as a
fluorescence donor since the RT interacted with the hydrophilic area of the studied vesicles.

Fluorescence quenching is most often described by the Stern–Volmer (SV) equation
(Equation (1)) [42]:

F0

F
= 1 + KSV [Q] (1)

where F0 is the fluorescence without quencher,

F is the fluorescence in the presence of the quencher;
KSV is the Stern–Volmer constant;
[Q] is the quencher concentration.

Based on the above equation, the Stern–Volmer graph was plotted (Figure 5A). When
high linearity of SV plot is observed, the single class of fluorophores is accessible for the
quencher molecules and the two main quenching modes occur, i.e., static mechanism
(with quencher–quenching molecule complex formation) or dynamic mechanism (based
on collisional encounters between quencher and quenched molecules) [42]. Based on these
studies, a high linearity was observed only for the first three points, giving a Stern–Volmer
constant of KSV = (7.65 ± 1.21) × 105 M−1. Using this KSV value, the quenching constant
(kq), which allows us to obtain the information about the quenching mechanism, can be
calculated based on the following equation (Equation (2)) [42]:

kq =
KSV

τ0
(2)

where: kq is the quenching constant,

KSV is the Stern–ˆVolmer constant;
τ0 is the average lifetime of fluorophore molecules (5 × 10−9 s).
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Figure 5. Stern–Volmer plot (A), modified Stern–Volmer plot (Lehrer plot) in normal (B) and double-
logarithmic scale (C) of TMA-DPH fluorescent-stained DMPC liposomes.

The quenching constant was calculated to be kq = (1.53 ± 0.24) × 1014 M−1s−1, which
is larger than the value of 2 × 1010 M−1s−1 and is the maximum scatter collision con-
stant value. Thus, the interactions lead to the formation of complexes between RT and
DMPC liposomes.

As mentioned above, the SV plot (Figure 5A) is not linear for the whole spectrum of
RT concentration and present an up-down curvature towards the X-axis. This suggests
the presence of two fluorophore populations with one of them not being accessible to the
quencher [43]. In order to more holistically describe the sumac–liposome interaction, the
modified Stern–Volmer equation (the so-called Lehrer equation, Equation (3)) was applied,
leading to the regression line (red line) presented in Figure 5B.

F0

F0 − F
=

1
faKSVa

1
[Q]

+
1
fa

(3)

where

F0 is the fluorescence observed in absence of quencher;
F is the fluorescence observed in presence of quencher;
KSVa is the effective Stern–Volmer constant for the accessible fluorophores;
fa is the fraction of accessible fluorophore.

According to Equation (3), the accessible Stern–Volmer constant was calculated to
be KSVa = (1.86 ± 0.22) × 106 M−1, and the fa was 0.66 ± 0.05. When the fluorophore is
completely accessible for the quencher, the fa value is equal or higher than 1 [44]. Since,
in our studies, the fraction of accessible fluorophore is lower than 1 (i.e., 0.66 ± 0.05),
it can be concluded that RT did not access all TMA-DPH molecules. The dissociation
constant Kd, as the inverse of fa·KSVa, was also calculated with Equation (3), with a value of
Kd = (8.26 ± 0.56) × 10−7 M. Apart from the dissociation constants, the binding constant
(logKa) was also calculated by using the double-logarithmic equation (Equation (4)) and
with the resulting regression line being presented in Figure 5C.

log10
F0 − F

F
= n log10 [Q] + log10Ka (4)

where

F0 is the fluorescence observed in absence of quencher molecules;
F is the fluorescence observed in presence of quencher molecules;
Ka is the binding constant;
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Q is the quencher concentration.

Based on Equation (4), the logKa was calculated at logKa = 2.66 ± 0.26. Based on the
calculated dissociation (Kd) and association (logKa) constants, it can be concluded that
RT shows high affinity for interaction with DMPC liposomes. The results are in good
agreement with the above data obtained from DSC and correspond well with the changes
of the lipid order parameter, indicating that RT interacts with the surface of liposomes.
A similar, strong interaction with DMPC liposomes was observed during our previous
work with PGG and T1 [26]. Earlier, Reis et al. had already demonstrated that PGG
as well as EGCG (epigallocatechin gallate) interact with large, unilamellar di-stearoyl-
glycerophosphatidylcholine:cholesterol (DSPC:Chol) liposomes [31]. However, the Kd and
the logKa values for PGG calculated by Reis et al. were somewhat different compared to
the ones for RT. These discrepancies may be the result of different liposome composition
(DSPC:Chol vs. DMPC), fluorescent labels (2-AS vs. TMA-DPH), or the structure of
molecules (PGG has 5 gallic acid residues whereas RT carry 7 gallic residues) between the
different studies.

3.4. Antibacterial Activity of Sumac–Liposome Nanocomplexes

The aforementioned results clearly prove that RT strongly interacts with DMPC lipo-
somes, leading to the formation of an RT–liposome hybrid nanosystem. It is well known
that liposomes can be widely used as nanocarriers of drugs [45,46], as well as different
types of natural plant compounds, e.g., resveratrol, quercetin, fisetin, sylimarin [47], ulvan
(polysaccharide from green seaweeds) [48], and curcumin [39]. Tannins are plant polyphe-
nols that present strong antibacterial activity [49,50]. The RT investigated during our work
also demonstrates antistaphylococcal activity, as described previously [8]. In order to verify
the effect of the encapsulated liposome RT against bacteria, the hybrid sumac–liposome
nanoparticles were formulated, and their antibacterial activity was analyzed by measuring
the minimum inhibition concentration (MIC). The results are presented in Table 3.

Table 3. Antibacterial activity of RT and hybrid nanocomplex (RT–liposome complex) demonstrated
as MIC values (µM; concentration in relation to sumac tannin).

S. aureus
ATCC 700699

S. aureus
8325-4

S. epidermitis
ATCC 14990

B. cereus ATCC
13061

E. coli
ATCC 35218

P. aeruginosa
ATCC

BAA-1744

MIC [µM]

RT 62.5 15.625 62.5 62.5 250 250
RT-DMPC

nanoparticles 15.625 1.95 7.81 31.25 >500 >500

As observed in Table 3, the formulated hybrid RT–DMPC nanoparticles have much
stronger antibacterial activity against Gram-positive bacteria, especially S. aureus 8325-4
and S. epidermitis ATCC 14990 (8 times lower MIC in comparison with RT alone). A weaker
activity was noticed against S. aureus ATCC 700699 and B. cereus ATCC 13061, with the
antibacterial effect being, however, still higher than that of pure sumac (4 times and 2 times,
respectively). These observations suggest that such complexation of RT with liposomes
increases its antimicrobial activity. Similar results were obtained in the recently published
work of our team with curcumin, where the complexation with lipid–polymer liposomes
increased the antibacterial activity of curcumin against S. aureus NCTC 5655 [39]. The
increase in activity after complexation with the liposomes was also demonstrated by the
Risaliti team regarding liposomes loaded with Salvia triloba and Rosmarinus officinalis essen-
tial oils [51]. The liposome complexes demonstrated a higher antibacterial activity against
Gram-negative Klebsiella pneumoniae in comparison to unformulated Salvia and Rosmarinus
oils [51]. However, contrary to the findings of Risaliti et al., our hybrid RT–liposome
nanoparticles, compared with RT, had much lower antibacterial activity in relation to
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Gram-negative bacteria, i.e., E. coli ATCC 35218 and P. aeruginosa ATCC BAA-1744. These
differences may be attributed to discrepancies in the strains of bacteria used, in phospho-
lipids used, in liposome preparations, and in the type of active compounds examined.

Based on the above results, it may be concluded that the formulation of hybrid
RT–liposome nanoparticles allowed us to obtain a new biomaterial which shows high
antibacterial activity against Gram-positive strains.

4. Conclusions

This present work focused on the study of the interactions between 3,6-bis-O-di-O-
galloyl-1,2,4-tri-O-galloyl-β-D-glucose (RT, sumac tannin) and DMPC liposomes as well
as on the formulation and evaluation of the antimicrobial activity of a new, hybrid RT–
liposome biomaterial. According to obtained data, it can be concluded that RT has a strong
affinity to liposomes and interacts with them, leading to the formation of RT–liposome
complexes. This leads to alteration of the thermodynamic properties of DMPC-liposomes
and an increase in the lipid order parameter, which is associated with an increase in the li-
posomal membrane rigidity and formation of lipid nanodomains. The RT–liposome hybrid
nanobiomaterials demonstrated much stronger antibacterial activity against Gram-positive
bacteria, such as S. aureus, S. epidermitis and B. cereus, in comparison to RT alone. On the
other hand, changes in size and the polydispersity index of liposomes in the presence of RT
over time allowed us to conclude that the complexes do not exhibit high colloidal stability.
In conclusion, we proved that using the high affinity of RT to liposomes, new, functional
nanobiomaterials with strong antibacterial activity and potential pharmacological applica-
tions can be formulated, but further research is still required to optimize these formulations
and establish them as therapeutic products.
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