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Abstract: Heart failure is the leading cause of death in the US and worldwide. Despite modern ther-
apy, challenges remain to rescue the damaged organ that contains cells with a very low proliferation
rate after birth. Developments in tissue engineering and regeneration offer new tools to investigate
the pathology of cardiac diseases and develop therapeutic strategies for heart failure patients. Tissue
-engineered cardiac scaffolds should be designed to provide structural, biochemical, mechanical,
and/or electrical properties similar to native myocardium tissues. This review primarily focuses on
the mechanical behaviors of cardiac scaffolds and their significance in cardiac research. Specifically,
we summarize the recent development of synthetic (including hydrogel) scaffolds that have achieved
various types of mechanical behavior—nonlinear elasticity, anisotropy, and viscoelasticity—all of
which are characteristic of the myocardium and heart valves. For each type of mechanical behavior,
we review the current fabrication methods to enable the biomimetic mechanical behavior, the advan-
tages and limitations of the existing scaffolds, and how the mechanical environment affects biological
responses and/or treatment outcomes for cardiac diseases. Lastly, we discuss the remaining chal-
lenges in this field and suggestions for future directions to improve our understanding of mechanical
control over cardiac function and inspire better regenerative therapies for myocardial restoration.

Keywords: nanofibrous scaffold; composite hydrogel; anisotropy; viscoelasticity; nonlinear elasticity;
myocardial regeneration

1. Introduction

Heart failure (HF) is the leading cause of morbidity and mortality worldwide and in
the US despite many breakthroughs in medicine and biotechnology [1–4]. Approximately
115 million Americans have hypertension, 100 million have obesity, 118 million have
prediabetes or diabetes, and 125 million have atherosclerotic disease, all of which are
well-known risk factors for the development of HF. Myocardial infarction (MI), often
known as heart attack, is an acute coronary syndrome that results in the formation of
non-contracting fibrotic scar tissue and the malfunction or death of cardiomyocytes. The
injury is basically non-reversible because of the low regenerative potential of mammalian
hearts [1,2]. According to the most recent data from the National Health and Nutrition
Examination Survey, an American has an MI approximately every 40 s [3]. Moreover,
hypertension, heart valve dysfunction, arrhythmia, and congenital heart diseases are
other key contributors to HF. To date, neither pharmaceutical administration nor heart
transplantation has been able to sufficiently restore the function of a failing heart. Thus,
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there is an urgent need to develop new therapeutic strategies, such as tissue regeneration,
to rescue damaged cardiac tissues [4,5].

An emerging trend in cardiac regeneration is the use of cell-based therapy with
tissue-engineered bioscaffolds (e.g., a ‘cardiac patch’) to promote the renewal of myocar-
dial tissues. However, traditional cell or gene therapy requires a single injection of billions
of cells or therapeutic molecules, and most of the delivered particles (~90%) are lost in
the bloodstream. Even among the homing cells, approximately 90% of the injected cell
population dies quickly (e.g., within several hours) even when delivered via intramyocar-
dial injections [4,6]. Tissue-engineered scaffold implantation is advantageous because the
scaffold can provide a vehicle for cell colonization, migration, and proliferation, thereby
improving cell viability and its therapeutic effects. Scaffolds could also provide mechanical
support for the myocardium and enable a controlled release of cells or cell products. An
enhancement in other properties of the scaffolds such as electrical conduction, microbi-
ology/biocompatibility, and biodegradation could potentially improve the therapeutic
outcomes as well. Moreover, tissue-engineered scaffolds have been used in in vitro studies
to elucidate the mechanisms of cellular function, screen for pharmacological effects, and
provide a sufficient source of functional tissues before transplantation [4,7–9].

The ability of tissue-engineered scaffolds to recreate the native tissue microenviron-
ment, including the topographical, mechanical, electrical, and biochemical characteristics,
is important. For example, the heterogenous, complex microstructure in the myocardium is
composed of layered and aligned myofibers (cardiac muscles) supported by a dense, highly
vascularized extracellular matrix (ECM). At the molecular level, the cardiac ECM supplies
biochemical signals via various protein binding sites and the diffusion of secreted paracrine
factors. At the cellular level, many cell types sense the local mechanical properties of the
ECM through adhesive contacts that are connected to the cytoskeletons. Through such
cell–matrix interactions, biochemical signaling pathways inside the cell can be activated,
leading to changes in cell shape, cell migration, gene expression, cytokine signaling, and
ECM production. These processes, referred to as mechanotransduction, can contribute to
stem cell differentiation, tissue remodeling, homeostasis, or disease progression. Mechan-
otransduction is critically important in cardiac tissue, wherein both the tissue’s passive
mechanical properties and the dynamic, active mechanical stresses provide important
cues to cardiac cells. At the tissue or organ level, the myocardial ECM provides advanced
biophysical features that are linked to the systolic and diastolic function and facilitate the
coordinated transmission of electrical signals. Alternatively, cardiac cells grown on rigid
(super-physiological or pathological) substrates have rounded (abnormal) shapes, irregular
attachments, reduced contractility, and increased apoptosis [10,11]. Thus, a biomimetic
scaffold that replicates these properties better promotes cell functions and tissue regenera-
tion [1,10,11]. While the applications of tissue-engineered scaffolds in heart diseases are
broad and have diverse purposes, we primarily focused on the mechanical biomimicry of
the scaffolds for myocardium regeneration.

Our aspiration in this review was to call for the development of mechanically
biomimetic tissue-engineered scaffolds by implementing the following mechanical fea-
tures. First, most studies have utilized isotropic substrates such as hydrogels, which fail to
capture the anisotropic elastic behavior of native cardiac tissues. Second, most synthetic
biomaterials exhibit only linear elastic behavior, whereas all biological tissues exhibit non-
linear elastic behavior, including the myocardium and heart valve. Finally, despite the
growing evidence supporting the role of ECM viscoelasticity in regulating cellular behavior,
this mechanical behavior of scaffolds remains largely unexplored in myocardial regenera-
tive research. To advance the development of biomimetic scaffolds, we will discuss how
anisotropic, nonlinear elastic, and viscoelastic mechanical characteristics can be achieved
by current methodologies. We will also discuss the remaining limitations of the scaffolds,
and the current understanding of the impact of these mechanical properties on in vitro cell
behavior or in vivo myocardial regeneration.
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2. Common Methods to Fabricate Scaffolds
2.1. Decellularized Tissue Scaffolds

Exploiting nature’s own products is the driving force for using a native tissue ECM ar-
chitecture repopulated with cardiac and/or vascular cells. Intuitively, an optimal structural
and functional environment for cardiomyocytes is the myocardium itself [12,13]. Typically,
enzymatic and/or detergent-based methods are used to decellularize a part of or the entire
cardiovascular organ to remove the cells while retaining most ECM components. (A de-
tailed review is provided by Gilpin et al. [14]). To date, porcine [15], goat [16], rodent [17,18],
and human [19–21] hearts have been used to derive myocardial ECM for a variety of re-
search purposes [22]. Among them, myocardial ECM derived from porcine hearts is the
most advanced in the translational process, with a product now undergoing clinical trials
for post-MI patients (identifier: NCT02305602) [23]. This approach can provide scaffolds
with attractive biocompatibility and physiologically relevant structural and mechanical
properties. However, this method has limited scalability and inconsistent batch-to-batch
quality, preventing its broad use across labs or clinical trials. In this review, we only focused
on the fabrication methods mentioned below and their applications in cardiac research.

2.2. Hydrogel Scaffolds

In the 1980s, hydrogel materials were pioneered as an advanced culture scaffold
for fibroblasts and skeletal muscle cells, later resulting in the first myocardial muscle
model system with a collagen matrix by Eschenhagen et al. in 1997 [24]. In addition,
fibrin, collagen, laminin, Matrigel, and combinations of various ECM proteins have been
used to develop various hydrogel systems for the functional enhancement of engineered
tissues, with or without using casting molds and anchoring molecules [8,25]. A key
advantage of this method is that the naturally existing ECM components promote cell
growth and the development of cell–cell and cell–matrix connections [22,26]. Hydrogels
have been widely applied in tissue engineering and regenerative medicine [26–28], drug
delivery [29–31], soft electronics [32,33], and biosensors and actuators [34–36]. In gen-
eral, hydrogels are elastic scaffolds with substantially lower stiffnesses than the native
myocardium or heart valves [37]. To overcome the mechanical weakness, composite scaf-
folds have been developed by blending hydrogels and synthetic biomaterials to develop
materials that more closely mimic the mechanical properties of cardiac tissues [38–42].

2.3. Electrospun Nanofibrous Scaffolds

Beginning with the Formhals patent, electrospinning has an almost 90-year history
and numerous applications in modern industry [43]. Studies on polymer fibers in the 1990s
led to the re-recognition of electrospinning and new applications in tissue engineering
and drug delivery, mainly due to technological advancements allowing the resolution
and moderation of nanometer-scale features [44,45]. Electrospinning is one of the most
practical and versatile methods for fabricating micro/nanofibrous polymeric structures with
precise control over matrix architectural features, such as fiber size, orientation, crosslinks,
and fusion, and the resulting properties, including mechanical and electrical conduction
behaviors [46–48]. Electrospinning is a widely used mode of nanofiber production because
it can be employed to generate nanofibers from a wide variety of both synthetic and
biologically derived polymers, polymer blends, and composites [49]. A polymer solution is
ejected through a syringe at a specific flow rate onto a metal collector at a desired distance
from the needle tip. A voltage is applied between the needle tip and the collector to supply
an electric field to draw the polymer fibers [37,50]. The fibrous architecture and properties
can be altered by a variety of parameters in the polymer solution (e.g., molecular weight,
concentration, mixture of polymers); in the operation of the apparatus (voltage, distance
from needle tip to collector plane, injection flow rate, and duration); and in the setup of the
collector or other processing conditions (e.g., humidity) [37,51,52].
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2.4. Three-Dimensional Bioprinted Scaffolds

Three-dimensional printing is the fabrication of three-dimensional objects from dig-
ital models by the layer-by-layer deposition of materials onto a surface. It has emerged
as a technique for developing 3D scaffolds for tissues or organs with a programmable
structure and precise control over the micro/nanostructure and the distribution of tissue
components. The capability of 3D printing in micro- and nanoscale fabrications for cardiac
tissue engineering was discussed in detail by Kankala et al. [53]. The mixture of cells can
be achieved either through a cell seeding procedure followed by the printing of complex
scaffolds or the simultaneous delivery of biomaterials and cells to construct 3D cell-laden
scaffolds [54,55]. There are three primary ways to achieve 3D bioprinting: inkjet bioprinting,
laser-assisted bioprinting, and extrusion bioprinting. The advantages and disadvantages of
these methods were reviewed by Xie et al. [56].

3. Anisotropic Tissue-Engineered Scaffolds

Most biological tissues exhibit some degree of anisotropy in their mechanical charac-
teristics. That is, the tissue’s mechanical behavior is different in different directions. This
feature results in direction-dependent cellular activities such as cytoskeleton rearrangement
and alignment, integrin activation, and ECM deposition. In terms of bulk mechanical
behavior, tissue anisotropy varies from almost zero (isotropy) in tissues such as the liver
to a high degree of anisotropy in tissues such as ligaments and tendons. Cardiac tissues,
including the myocardium and heart valves, are anisotropic as well. The ventricular wall
is a multi-layer tissue with complex microstructures in which cardiac muscle fibers are
interconnected hierarchically within collagen fibers. The variation of the main fiber angle
across the ventricular wall is responsible for the longitudinal and circumferential motion of
cardiac torsion (Figure 1a) [12,57]. These characteristics result in mechanical and electrical
features that are directionally dependent—a phenomenon known as cardiac anisotropy.
The transmural variation in the myofiber/collagen has been confirmed by the examination
of serial histology sections from the rodent and ovine myocardium [58,59]. With disease
progression (such as hypertension), the fiber alignment is further altered, and the tissue be-
comes more anisotropic [58]. The fiber organization is essential for the organ’s mechanical
and electrical functions, and an alteration may lead to organ dysfunction and eventually HF.
Moreover, the structure of heart valves is complex, yet well-organized, with three distinct
layers (ventricularis, spongiosa, and fibrosa) that each serve a specific function (Figure 1b).
The ventricularis layer, located on the ventricle side, is mostly composed of radially aligned
elastin fibers. In the spongiosa—the middle layer of the native valve ECM—randomly
aligned proteoglycans are present. The fibrosa layer is dominated by dense collagen fibers
with circumferentially oriented structures. As a result, the valve tissues exhibit anisotropic
mechanical, biochemical, and biophysical functions [12,57]. Tissue-engineered scaffolds
for cardiac regeneration or studies of the biomechanical mechanism of HF must employ
a similar microstructural organization. The fabrication methods to produce anisotropic
scaffolds for wide applications in tissue engineering have been recently reviewed [60–62].
In this paper, we mainly focus on the myocardial applications.

3.1. Methodology to Induce Anisotropy in Scaffolds

Mechanical anisotropy in a scaffold can be imparted by fiber alignment and organiza-
tion. To date, the methods to generate aligned, anisotropic scaffolds can be classified into
the following categories: electrospinning with a rotating collector, gap electrospinning, and
3D bioprinting. Brief descriptions of the main strategies and examples of each category are
provided below.

3.1.1. Electrospinning Using a Rotating Collector

Electrospinning utilizing a rotating collector permits the modulation of fiber alignment
through alterations in the geometry and/or rotational speed of the collector. A rotating
cylinder mandrel is the most commonly used method (Figure 2A), although it does not
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provide the highest degree of alignment compared to other methods (Figure 2B–D). In this
method, the linear speed at the surface of the rotating drum (i.e., rotating velocity) should
match the solvent evaporation rate. The kinematics of the mandrel are determined by the
category of processing parameters, which further influence the arrangement of nanofibers
(alignment, fiber size, etc.) on the collecting surface [64,65].
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Figure 2. Schematics of modified electrospinning setups using a rotational collector on a (A) cylinder
mandrel, (B) disc collector, (C) rotating rod, and (D) conical mandrel.

Achieving fiber alignment requires the careful selection of the processing conditions
when using a cylinder rotating mandrel to achieve fiber alignment. First, the induction
of fiber alignment occurs within a narrow range of the rotational speed (e.g., between
3.0 and 10.9 m/s) [65]. When the rotating speed is lower than the take-up speed of the
fiber, randomly oriented fibers are formed on the drum. When the rotating speed is
too high, the depositing fiber jet breaks, and this prevents continuous fibers from being
collected [66]. Secondly, within this range, an increasing rotational speed results in more
aligned nanofibers. The fiber alignment typically presents a normal distribution of the
fiber angles, and the degree of anisotropy is determined by the histogram profile of the
fiber angles on the sheet [58,67]. This feature can be viewed as an advantage because the
myofibers/collagen fibers from the histological measurement of native myocardium exhibit
the same pattern (Figure 3) [68].

To further enhance the fiber alignment, some researchers have utilized a rotating
disc (Figure 2B). In this setup, the thin edge of the collector concentrates the electric field,
permitting the deposition of highly aligned fibers thereon. The charged jet is restricted
within the edge because the electrostatic field between the sharp edge point (+) and needle
(−) becomes the strongest in this location. However, highly aligned fibers can only be
formed in a relatively small region, and this severely limits the size of the scaffold that can
be fabricated [69–71]. Like in the cylinder mandrel setup, one should note that the rotating
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speed not only affects the nanofiber alignment but also the fiber diameter and porosity and,
ultimately, the bulk mechanical properties.
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Figure 3. (A) A representative figure for the 3D distribution function of myo/collagen fiber orientation
in an ovine right ventricle (RV) free wall. The data were obtained from the serial histology section
and picrosirius red staining of RV tissue [68]. (B) Representative results of nanofibrous alignments
in the anisotropic soft and stiff polyester urethane urea (PEUU) scaffolds (collected from rotation
mandrel) from SEM images. Data collected in Wang lab.

Additional modifications to the collector enable the replication of the 3D geometry of
the tissue. For example, a 3D tube construct can be formed for vascular graft applications
using a small-diameter rotating rod (<5 mm) (Figure 2C) [72,73]. This makes it possible to
employ distinct polymers for different layers without the need for further assembly, which
replicates native vessel characteristics [73]. Using a conical mandrel (Figure 2D) allows the
fabrication of scaffolds with curvilinear microarchitectures that mimic heart valves [74].

3.1.2. Gap Electrospinning

Gap electrospinning induces aligned nanofibers by an applied electrical field. By ap-
plying a positive voltage to the polymer solution and a negative voltage to two neighboring
plates separated by a gap, the fibers are deposited and stretched from one plate to the
other due to the residual electrostatic repulsion between the plates (Figure 4A). Numerous
alterations have been made to the basic setup to achieve variations in the microarchitecture,
and these were reviewed in depth by Robinson et al. [62]. However, the maximum length
of nanofiber sheets has been limited to 10 cm, because large distances inhibit the jet crossing
from one side to the other [75–77]. To overcome this limitation, Lei et al. recently applied a
negative voltage to a U-shape collector and successfully produced long aligned fibers (up
to 60 cm) (Figure 4B) [78,79].
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Gap electrospinning offers significant benefits in producing controllable, aligned
electrospun fibers. It is cost-effective since, in most configurations, no extra equipment
is required beyond a typical electrospinning device. In addition, the fiber orientation
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and gradient of alignment can also be adjusted. However, there are a few drawbacks to
the approach. The technology is restricted by the mesh thickness, as the residual charge
increases with the mesh thickness. The rise in residual charge causes electrical repulsion
and, consequently, a loss of fiber alignment [73]. Finally, since the highly aligned scaffold
generally possesses low mechanical strength in the cross-fiber direction, the handling of
the thin scaffold is challenging during the removal of the scaffold from the mandrel.

3.1.3. Three-Dimensional Printing

Three-Dimensional printing can also be used to induce fiber alignment in anisotropic
scaffolds. There are two strategies to deposit aligned fibers: (i) direct depositing into a cus-
tomized pattern to achieve the complex alignment of micro/nanofibers (Figure 5A) [80,81];
and (ii) the shear-induced alignment of threadlike nanofibers or the elongated deformation
of injected components along the printing direction (Figure 5B) [82,83]. Cu et al. [84] printed
a variety of designs featuring different fiber widths (100, 200, 400 µm); filling densities (20,
40, 60%); fiber angles (30◦, 45◦, 60◦); and stacking layers (2, 4, 8 layers) to create anisotropic
scaffolds compatible with cardiomyocytes. They claimed that the scaffolds accurately
represented the transmural fiber alignment and curvature of murine left ventricles.
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The advantages of this method include the simultaneous control over the micro-
geometry and macro-architecture (such as fiber alignment), the feasibility of achieving a
high resolution (~5–50 µm) in the fiber organization, and the proper cell density within
the scaffolds [85]. It is important to note that hydrogels are often used and deposited as
bioinks to enhance the bioactivity of the scaffold; recent 3D bioprinted cardiac scaffolds
were reviewed by Wang et al. (see Table 1 in [86]).

3.2. Advantages and Limitations of Current Anisotropic Scaffolds

The incorporation of anisotropy in tissue-engineered scaffolds not only replicates the
structural features of native cardiac tissues but also allows for mechanistic studies that can
improve our understanding of heart diseases. One important consideration in replicating
tissue anisotropy is the fiber angle distribution. As described above, the ventricular wall
exhibits a normal distribution of myofiber angles in the tissue sections, and this feature
can be achieved by electrospinning with a cylindrical rotating mandrel [12]. In contrast,
other approaches including 3D bioprinting generate uniformly aligned or grid structures
of fibers that are absent in native tissues. The exact cause and consequences of the normal
distribution of myofibers in a single section are not yet fully understood, but a biomimetic
cardiac scaffold should consider this feature during scaffold fabrication. Moreover, multiple
layers of sheets with varied main fiber angles can be produced either by electrospinning
or by 3D bioprinting methods, replicating the myocardium or heart valves with layered,
anisotropic characteristics. However, in native tissues, there is also a functional integration
of aligned constituents across layers. The current engineering techniques have not been
able to provide such in vivo bonding features between aligned layers [87].
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A successful biomimetic scaffold should exhibit not only a similar elasticity but also a
similar degree of anisotropy to the native tissue. We summarize the reported anisotropy of
native cardiac tissues and biomimetic scaffolds in Tables 1 and 2, respectively. Because of the
nonlinear elastic behavior of native tissues, we mainly adopted the tissue elastic modulus
measured at low strains that replicate the stiffness of myofibers (in the myocardium) or
non-collagen components (in valves). The healthy adult myocardium has an anisotropy
degree of 0.3–0.9 in the RV and 0.5–1.9 in the LV, and the fetus myocardium exhibits a
higher degree of anisotropy on both sides of the ventricles (Table 1). In addition, the tissue
anisotropy is enhanced or even changed (from stiffer in one direction to stiffer in the other
direction) with disease progression (e.g., an anisotropy degree of 3.2–5.4 in failing RVs,
Table 1). In contrast, tissue-engineered scaffolds have a wide range of anisotropy degrees,
ranging from ~2 in a PEUU scaffold to ~46 in a PCL scaffold (Table 2). Except for one study,
all the scaffolds presented a high degree of anisotropy (>3) that is absent in the healthy
myocardium or heart valves. Thus, there is a lack of consensus on the degree of anisotropy
for myocardium tissue constructs, for either healthy or diseased conditions. Another
limitation of anisotropic scaffolds is that their Young’s moduli (presented in MPa) are
greater than the native myocardium’s Young’s moduli (presented in kPa). Lastly, inducing
fiber alignment while keeping other parameters identical increases the bulk stiffness of
the scaffold, and thus anisotropic scaffolds are often stiffer than isotropic ones. Therefore,
it is important to keep both the elasticity and anisotropy compatible with those of the
host tissues.

Table 1. Anisotropic mechanical properties of native cardiac tissues reported in the literature. The
degree of anisotropy was calculated as the ratio of the Young’s modulus (E) or peak stress between
longitudinal (L; main fiber/outflow tract) and circumferential (C; cross-fiber/perpendicular to out-
flow tract) directions. To distinguish the different orientation systems, the orientation system with
the outflow tract and its perpendicular directions are labeled with L* and C*, respectively. Unless
stated elsewhere, all data were obtained from healthy animals. LV: left ventricle; RV: right ventricle.

Tissue Animal Model Young’s Modulus (kPa) Anisotropy Degree Ref.

RV

Fetal porcine L (5% strain): 17.42 ± 4.86
C (5% strain): 6.30 ± 4.01 2.8 [88]

Adult human L (low strain): 2.2
C (low strain): 1.8 1.7 [89]

Adult ovine L*: 32–244
C*: 20–248 0.7–0.9 [90]

Adult rat L* (low strain): 7.2 (6.7–18.1)
C* (low strain): 11.8 (7.1–16.5) 0.6 [91]

Adult rat (failing) L* (low strain): 34.2 (18.1–44.6)
C* (low strain): 6.3 (5.4–8.6) 5.4 [91]

Adult ovine L* (low strain): 7.8
C* (low strain): 25 0.3 [92]

Adult ovine (failing) L* (low strain): 86
C* (low strain): 27 3.2 [92]

LV

Fetal porcine L (5% strain): 16.08 ± 7.08
C (5% strain): 6.87 ± 2.91 2.3 [88]

Adult Human L (low strain): 2.7
C (low strain): 1.2 1.9 [89]

Adult Ovine L*: 17–178
C*: 19–197 0.5–0.9 [90]

Aortic valve Adult porcine

L:116
C:170 0.7 [93]

Radial tension: 1.11
Circumferential tension: 0.26 0.4 [94]

Aortic valve Adult human Radial: 2 × 103

Circumferential: 15 × 103 0.1 [95]
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Table 2. Anisotropic mechanical properties of aligned tissue-engineered scaffolds reported in the
literature. The anisotropy degree was calculated by the ratio of longitudinal (L: main fiber) modulus
to circumferential (C: cross-fiber) modulus. * poly(l-lactide-co-caprolactone): PLCL; polycaprolactone:
PCL; polyester urethane urea: PEUU; poly(vinyl alcohol): PVA; glycosaminoglycan: GAG.

Scaffold Young’s Modulus (MPa) Anisotropy Degree Ref.

PCL/gelatin
L: 48.9

4.7 [96]
C: 10.3

PEUU
L: 0.5–1.4

1.4–1.7 [97]
C: 0.2–1.0

PEUU
L: 1.4

4.7 [98]
C: 0.3

PCL
L: 27.0

14.0 [96]
C: 1.9

PLCL*
L: 5.3

6.6 [99]
C: 0.8

Nanofiber yarn/hydrogel
L: 110.0

5.5 [38]
C: 20.0

PVA
L: 254.0

2.8 [65]
C: 90.0

PCL/gelatin
L: 4.8

4.7 [39]
C: 1.0

PCL/gelatin-GAG
L: 2.5

8.2 [39]
C: 0.3

PCL
L: 18.3

45.7 [100]
C: 0.4

PCL
L: 13.8

17.3 [101]
C: 0.8

PCL/chitosan
L: 15.0

3.75 [102]
C: 4.0

3.3. Role of Substrate Anisotropy in Cardiac Tissue
3.3.1. Organ-Level Impact of Substrate Anisotropy

The benefit of using or implanting an anisotropic scaffold for the whole organ function
has been reported previously. Mathematical modeling and in vivo studies have shown
that anisotropic scaffolds, compared to isotropic ones, enhanced the functionality of a
diseased heart by improving depressed LV pump function and increasing systolic function
without compromising the filling (diastolic function) [103,104]. Through mathematical
modeling, Sallin et al. [105] further demonstrated the significance of myocardial fiber
arrangement in the ventricular wall by promoting effective cardiac pumping. When the
heart is modeled as an ellipsoid with myocardial fibers oriented in the circumferential
(diseased) vs. longitudinal (normal) direction with a helical fiber organization, the ejection
fractions are markedly different (30% vs. 60%) and represent those of failing and normal
hearts, respectively. Chang et al. fabricated a 3D dual-ventricle bioscaffold with three layers,
each with distinct helical arrangements. They showed that the cardiomyocytes (CMs)
exhibited appropriate alignments in this scaffold, and the entire construct achieved the
spatiotemporal control of excitation–contraction coupling. Additionally, their observation
of an increased ejection fraction in the longitudinally aligned scaffold agreed with the results
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predicted from Sallin’s model. In this investigation, however, the mechanical behavior
of the scaffolds did not match that of the native myocardium. The collagen fibers in the
natural myocardium coil tightly at small strain rates and uncoil to become stiffer at high
strains. In contrast, this 3D scaffold did not reproduce the nanoscale structure of collagen
fibers, resulting in straight, bundled fibers that were linearly elastic throughout the strain
range [106,107]. We will discuss this limitation in the next Section 4 .

3.3.2. Cell-Level Impact of Substrate Anisotropy

Anisotropic structures of native tissues, resulting from the aligned arrangement of
ECM components or cells, play an essential role in carrying out and maximizing their
direction-dependent physiological functions. Studies probing the cellular responses to
anisotropic mechanical environment have been conducted by comparing the outcomes
obtained from isotropic and anisotropic scaffolds. The first response of cells to aligned
substrates is to change their shape and orientation. Cardiomyocytes cultured on (isotropic)
plastic are oriented randomly. As a result, their contractile force is distributed in all di-
rections. However, when cultured in anisotropic scaffolds, the CMs will adopt the fiber
alignment and be properly positioned on the scaffold [108]. The elongated cell alignment
in turn influences the contractile force as well as cell–cell and cell–matrix interactions.
Aligned CMs are also more mature and exhibit a more physiological behavior than ran-
domly distributed cells. For instance, Wanjare et al. [109] co-seeded human iPSC-derived
cardiomyocytes (iCMs) and endothelial cells (iECs) onto electrospun polycaprolactone
scaffolds with either a randomly oriented or parallel-aligned microfiber configuration.
They showed that, in contrast to randomly oriented scaffolds, the aligned scaffolds led to
iCM alignment along the microfiber direction and promoted iCM maturation by increasing
the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7).
The maximal contraction velocity of iCMs on aligned scaffolds was significantly greater
(3.8 m/s) than that on randomly oriented scaffolds (2.4 m/s). These outcomes demonstrate
that anisotropic scaffolds promote CM maturation and contractility.

Other groups have examined the effect of matrix anisotropy on stem or progenitor cell
function to elucidate cell mechanobiology and its regenerative potential for the heart. For
instance, the role of matrix anisotropy in mesenchymal stromal cell (MSC) behavior and
paracrine functions has been investigated. Matrix anisotropy has been shown to play a role
in MSC morphology, differentiation fate, and other paracrine functions [110–116]. Recently,
Nguyen-Truong et al. [97] examined the effect of RV tissue mechanics on the pro-angiogenic
paracrine function of MSCs, concentrating on the combined effect of RV-like tissue stiffness
and anisotropy. Using random and aligned PEUU electrospun scaffolds with the stiffness
of normal RVs, they found that the MSCs cultured on the anisotropic group consistently
exhibited a higher pro-angiogenic function than those cultured on the isotropic group,
showing a positive influence of anisotropy on MSC paracrine function. However, this
impact of anisotropy was lacking in the stiff scaffold groups resembling diseased RVs. These
results highlighted the importance of the synergistic effect of matrix stiffness and anisotropy
in the regulation of MSC function, which may lead to the mechanical conditions of MSC-
based treatments for heart failure. Similarly, Allen et al. [117] investigated mouse embryonic
stem cell differentiation toward CM regulated by substrate anisotropy. They showed that
the cell alignment exhibited a gradient-based response (nonaligned, semi-aligned, and
highly aligned) to substrate anisotropy and that an aligned substrate accelerated CM
maturation to generate synchronous beating.

4. Nonlinear Elastic Tissue-Engineered Scaffolds

Like many biological tissues, cardiovascular tissues exhibit J-shaped stress–strain
behavior. This feature is known as nonlinear elastic behavior. For instance, the right
ventricle passive stiffness increases nonlinearly with an increased strain/load because of the
recruitment of collagen fibers [91]. Disease progression typically leads to CM hypertrophy
and the accumulation of collagen, resulting in a leftward shift of the stress–strain curve



J. Funct. Biomater. 2023, 14, 269 11 of 24

and elevated elastic moduli in both low- and high-strain regions [92,118]. However, this
feature is absent in most of the biomaterials that exhibit linear elasticity. To overcome this
limitation, researchers have used a variety of approaches to tune the mechanical properties
of materials.

4.1. Methodology to Induce Nonlinear Elastic Behavior in Scaffolds

Inspired by biological tissues, the fabrication of crimped, extendable fibers is the main
strategy to impart nonlinear elasticity on a biomaterial. One way to induce crimped fibers is
by permanently lengthening the sheet along the main-fiber direction first and then returning
the sheet back to the pre-stretched length. Meng et al. applied this method to electrospun
scaffolds made with polylactocaprone (PCL), poly(lactic acid) (PLA), and poly(l-lactide-
co-caprolactone) (PLCL), and they found that the mixture of the three was effective in
the formation of crimped structures [119]. In the aligned PLCL scaffold, the fibrous sheet
was stretched repeatedly, resulting in permanent elongation. Then, the entire sheet was
positioned into the pre-stretched shape, treated with heated ethanol spray, and cooled
down quickly to produce wavy nanofibers. This crimped fibrous structure was confirmed
by SEM imaging, and the nonlinear elastic behavior was measured by uniaxial tensile
mechanical tests. Interestingly, the same methodology failed to generate the crimped fiber
structure in the randomly aligned PLCL scaffolds, and thus the nonlinear elastic behavior
was absent in these scaffolds. However, using similar methods, Niu et al. electrospun
tubular PLCL scaffolds with randomly aligned, axially aligned, and circumferentially
aligned structures [120]. They reported nonlinear elastic behavior in all scaffolds. The
nonlinearity of these scaffolds was compared and found to be similar to that of native blood
vessels (porcine aorta ventralis).

Another way to produce crimped fibers is by controlled heating and/or chemical
treatment, as briefly reviewed by Szczesny et al. [121] and Zhang et al. [122]. However, these
methodologies often generate scaffolds with low porosity, which results in limited crimped
fibers and poor cell infiltration. To improve these aspects, Szczesny et al. electrospun
a dual poly-L-lactide (PLLA)/poly(ethylene oxide) (PEO) solution and heated the sheet
between two glass slides, either before or after washing the scaffolds to dissolve PEO fibers,
with or without poly(vinyl alcohol) (PVA) treatment to increase fiber bonding [121]. They
found that only the wash-and-then-heat group exhibited nonlinear stress–strain behavior,
whereas the PVA-treated scaffolds failed to present nonlinear elastic behavior. In addition,
increased porosity has been found to promote the formation of crimped fibers. In the same
study, the authors showed a potential link between porosity and the fiber crimping of the
scaffold. Recently, Zhang et al. prepared nanofibrous PLCL/PEO scaffolds and found
that the fiber crimping and nonlinear elastic behavior increased with an increase in mesh
porosity [120]. This report was consistent with the previous finding of Szczesny et al.

Finally, certain materials may exhibit nonlinear behavior and can be used to fabri-
cate scaffolds. For example, poly(glycerol dodecanedioate) (PGD) is a shape-memory,
biodegradable elastomer that is linearly elastic at room temperature but has nonlinear
elasticity at body temperature. Ramaraju et al. showed that the incorporation of the small
intestinal submucosa (SIS) into the PGD sheets induced nonlinearity in the scaffolds. The
mechanical properties of PGD can be tuned with native SIS by altering the thermal curing
conditions used. The reason for the nonlinear elastic behavior is thought to be the void
spaces formed during the incorporation of SIS sheets into PGD, but increasing the void
spaces also decreases the stiffness of the scaffolds [123].

4.2. Role of Substrate Nonlinear Elasticity in Cell Behavior

The nonlinear elasticity of matrices changes cell–matrix interactions by regulating cell
adhesion, spreading, and signal transduction. Prior studies have shown that cells grown
on fibrous ECM with mechanical nonlinearity perceive the mechanical signal distance to be
far greater than those grown on synthetic linear elastic polymeric material [119,124,125].
Meng et al. showed that compared to the human umbilical vein endothelial cells (HU-
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VECs) cultured on linear elastic scaffolds, the HUVECs cultured on nonlinear (aligned and
crimped) PLCL scaffolds had a greater density of focal adhesions and a higher expression
of focal adhesion proteins. This indicated a stronger cell–matrix interaction, which more
effectively transduced mechanical signals. These cells also had an increased spreading
area, thereby promoting the formation of an endothelial layer on the vascular scaffold. The
cell proliferation rate on the nonlinear elastic scaffold was lower than that on the linear
elastic scaffold, but it was attributed to the lower Young’s modulus in the nonlinear elastic
scaffold [119]. In a separate study, Zhang et al. showed that a nonlinear elastic scaffold
promoted HUVEC adhesion and proliferation despite the reduced stiffness of the scaffold.
These cellular responses were attributed to the rough surface, increased porosity, and in-
creased hydrophilicity of the nonlinear elastic scaffold rather than mechanical factors [122].
Liu et al. showed that the nonlinearity of the ECM regulated the organization of hASCs
by preparing six gels with different concentrations and critical stresses. Finally, Niu et al.
cultured HUVECs on nonlinear elastic tube scaffolds with three different fiber orientations
(random, circumferential, and longitudinal alignment) [120]. They did not include linear
elastic scaffolds as a control, and thus it remains unknown whether the cell proliferation is
altered by nonlinear elastic properties.

Crimped fibrous scaffolds promote cell spreading and adhesion, but the effect on cell
proliferation remains unclear. However, the mechanisms for altered cell responses are
mostly attributed to the matrix topography (rough surface or porous structure) or surface
chemistry (hydrophilicity) of the crimped fibrous scaffolds. Whether the mechanical
behavior (nonlinear elasticity) is just a side product of the crimped fibers or directly affects
the mechanical transduction of the cells is unknown. The exact role of the nonlinear
elastic behavior of the substrate in the mechanical signaling pathway of cells should be
investigated in future work.

4.3. Limitations of Current Nonlinear Elastic Scaffolds

Above, we summarized the current methods for nonlinear elastic scaffold fabrication
and some known cellular responses to crimped fibrous scaffolds. While it is encouraging
to see the advancement in this biomimetic mechanical property in tissue-engineered scaf-
folds, it should be noted that the previously mentioned studies focused on applications
in soft tissues such as tendons [121], ligaments [126], and blood vessels [127,128]. The
fabrication of biomimetic scaffolds exhibiting cardiac nonlinearity remains a knowledge
gap. Additionally, the methods for forming crimped fibers need to be improved, as both
success and failure to exhibit nonlinear elasticity have been reported in randomly oriented
fibrous scaffolds. For example, Meng et al. showed that micro crimped structure formation
was only observed in aligned scaffolds (PLCL, PLA, and PCL) and was absent in random
scaffolds [119]. However, randomly aligned tubular PLCL scaffolds fabricated by Niu
et al. using a similar technique did present nonlinear elastic behavior [120]. Therefore,
other factors, perhaps related to the fiber orientation and bonding, may play a role in the
formation of crimped fibers and should be investigated. Third, the mechanical mechanism
of the ‘nonlinear elastic response’ of cells is still not fully understood, and most researchers
have attributed the altered cell behavior to morphological or chemical properties from
the crimped fibrous micro-structure of the scaffold. Moreover, prior in vitro studies have
been performed in a static environment wherein the ‘crimped’ fibers may not be loaded
and become straight fibers. Future investigations of the cell responses under dynamic
loading conditions (e.g., from small strain to large strain) will provide a better understand-
ing of the mechanical mechanism. This may be particularly critical for cardiovascular
research, as the tissues are under constant dynamic loads, which is different from other
non-cardiovascular tissues.

5. Viscoelastic Tissue-Engineered Scaffolds

Another less investigated mechanical behavior of scaffolds is viscoelasticity. A vis-
coelastic material has elastic behavior that is time-dependent and strain-history-dependent.
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Viscoelasticity is universally present in biological tissues. Heart valves are viscoelastic [129],
and more evidence has recently shown that the ventricular free wall exhibits viscoelastic
characteristics as well [90]. Using either uniaxial or biaxial tensile tests, hysteresis loops
and/or stress relaxation curves are commonly observed in ventricular tissues [90,127,130].
The cardiac tissue viscoelasticity can be attributed to the complex composition of the tis-
sue, which includes cardiac cells (e.g., cardiomyocytes), ECM molecules (e.g., GAGs and
collagen), extracellular fluids, and the interactions between these components.

Unlike the increased awareness of the importance of viscoelasticity in cancer re-
search [131], the viscoelastic property of myocardial tissues or tissue-engineered scaffolds
is seldom investigated in cardiac research. Thus, in this section, we extend our review
beyond the cardiac field and discuss the methods to induce viscoelasticity in hydrogels
and/or synthetic scaffolds and some known impacts of substrate viscoelasticity on cellu-
lar behavior, in the context of general biological applications. A review of techniques to
characterize native or engineered tissue viscoelasticity is available in [128].

5.1. Methodology to Induce Viscoelastic Behavior in Scaffolds

Hydrogels are the most commonly used biomaterials for constructing viscoelastic
substrates. Hydrogels can be classified based on the source of the polymers—natural ECM
biopolymers (e.g., collagen or fibrin hydrogels); synthetic hydrogels (e.g., polyethylene
glycol (PEG) or polyacrylamide (PAM) hydrogels); and naturally derived macromolecular
hydrogels (e.g., alginate or chitosan hydrogels). Currently, the main approaches used to
modulate the viscoelasticity of hydrogels include: (1) crosslinking polymers; (2) altering
the polymer architecture, such as length and branching; (3) tuning the composition; and
(4) altering the concentration of the polymer or polymer mixture [132].

Crosslinks in polymeric hydrogels can be physical (e.g., ionic or covalent) and can be
static or dynamic. Vining et al. generated various alginate–collagen hydrogels via combined
ionic and covalent crosslinking at different densities to tune the matrix viscoelasticity.
Across a narrow range of moduli (0.25 kPa, 0.5 kPa, and 2.5 kPa), the equilibrium stress
relaxation of the scaffolds was similar to that of the native ECM [133,134]. This parameter
was increased significantly (>3000 s) by the addition of covalent crosslinks, which indicated
a weakening of the viscoelastic behavior of the scaffold. Because ionic crosslinks are
weaker bonds than covalent crosslinks and make it easier to induce frictional energy loss
during deformation, the stress relaxation is more pronounced in ionically crosslinked
hydrogels. Besides physically crosslinked hydrogels, hydrogels such as hydrazone, oxime,
and thioester contain chemically crosslinked hydrogels with dynamic covalent bonds,
creating a covalent adaptable network that possesses viscoelasticity. Morgan et al. tuned the
mechanical properties of the oxidized alginate hydrogels by mixing with different ratios of
dihydrazide (to form hydrazone) and bishydroxlamine (to form oxime) to alter the dynamic
covalent crosslinks [135]. In general, the more oxime crosslinks, the stiffer the gel (larger
storage modulus). A similar trend was found in the viscosity (loss modulus or relaxation
time) of the gels. By changing the composition of crosslinks, the viscoelasticity can also
be tuned. Richardson et al. synthesized a range of hydrazone crosslinked polyethylene
glycol hydrogels [136]. By adjusting the ratio of alkyl-hydrazone and benzyl-hydrazone
crosslinks, the average stress relaxation time of the hydrogels varied from hours (e.g.,
4.01 × 103 s) to months (e.g., 2.78 × 106 s). Pauly et al. prepared agarose hydrogels
containing proteoglycan mimetic graft copolymers with various polysaccharide side chains
(dextran, dextran sulfate, heparin, chondroitin sulfate, and hyaluronan) [137]. Agarose
gels have a strain-rate-dependent compressive modulus. When either the highly charged
polysaccharide heparin or the neutral polysaccharide dextran is added to the gel, the
modulus of the hydrogel is unmodified or reduced; however, when the heparin or dextran
additive is included in the form of a proteoglycan-mimetic graft copolymer, the modulus is
increased. The gels also exhibit stress relaxation behaviors with multiple time constants
for relaxation that can be modulated by the structure and composition of the proteoglycan
mimic additives.
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While hydrogels are the main type of biomaterials used for viscoelastic studies in
the literature, there are a limited number of studies investigating the viscoelastic property
of synthetic scaffolds. For instance, the viscoelasticity of PCL scaffolds can be tuned by
blending natural or synthetic components at different ratios. Kim et al. attempted to
tune the viscoelasticity of PCL scaffolds by adding different concentrations of alginate.
They showed that the fluidic viscosity of the scaffold increased by increasing the alginate
weight fraction in the composites. The storage modulus (G′) of the blended scaffolds was
higher than that of pure PCL scaffolds, and it was increased with an increasing alginate
concentration (0.1 Pa to 40 Pa at 0–30 wt % of alginate) [42]. Moreover, Peter et al. reported
the preparation of a wide range of viscoelastic polydimethylsiloxane (PDMS) scaffolds,
and tuning viscoelasticity was achieved by changing the base:crosslinker ratio of Sylgard
184 and the ratio of Sylgard 184 and Sylgard 527 [40]. Increasing the ratio of Sylgard 184
and Sylgard 527 caused decreases in the storage modulus (G′) and loss modulus (G′′) of
the scaffolds. The use of synthetical biomaterials can overcome the limitations of most
natural-material-based hydrogels, i.e., the achieved viscoelasticity range is relatively small
and in a sub-physiological range (i.e., lower elasticity and viscosity than native tissues).
Shamsabadi et al. used the microsphere sintering technique to fabricate scaffolds for bone
tissue engineering using PCL and bioactive glass (BG) 58S5Z (58S modified with 5wt%
zinc) [41]. The viscoelastic behavior of the 0% BG (scaffold with only PCL) and 5% BG
samples was determined by performing compressive stress relaxation tests. The storage
modulus for both samples increased with the frequency. The loss modulus of the 5% BG
sample was higher only for frequencies <0.4 Hz. The smaller loss modulus for the 5% BG at
higher loading rates indicated its lower viscosity, and because of this, its storage modulus
remained nearly constant in this range. Mondesert et al. fabricated fibrous scaffolds with
repetitive honeycomb patterns. The relaxation of the scaffolds was tested in directions D1
and D2 at a 15% strain [138]. The scaffolds exhibited a slight relaxation in both directions,
showing that the viscosity of the material did not drastically influence the mechanical
behavior. Hence, the viscous behavior of these scaffolds was neglected while analyzing
their mechanical properties.

5.2. Role of Substrate Viscoelasticity in Cell Behavior

Recent pioneering work has revealed some new findings on the impact of substrate
dynamic mechanical behavior (viscoelasticity) on various cellular behaviors, including cell
morphology and spreading, migration, proliferation, differentiation, and ECM deposition.

5.2.1. Cell Spreading and Migration

Cell spreading is closely related to cell–matrix interactions, which affect the distribu-
tion of cell traction forces and mechanotransduction pathways and maintain the mechanical
homeostasis of the cell. To examine how cell spreading is influenced by matrix viscoelastic-
ity, Cameron et al. modulated the viscosity (the loss modulus) of polyacrylamide (PAM)
hydrogels while maintaining the same elasticity (storage modulus) to study the spreading
effect of hMSCs on these hydrogels [139]. Increasing the loss moduli significantly decreased
the length of the focal adhesions (FAs), which affected the spreading of the cells. The
smaller size of the FAs in hMSCs on more viscous substrates showed that the FAs were
less mature and more transient, indicating that the hMSCs were more motile or actively
spreading. An additional study with RGD (Arg-Gly-Asp)-coupled alginate hydrogels
showed that viscoelastic hydrogels induced a larger spreading area of human MSC than
elastic hydrogels while keeping the initial modulus or ligand density constant [140]. Scaf-
folds with increased creep better promoted the spreading of MSCs on a 2D culture [141].
Similar findings were observed in the 3D culture of MSCs. Enhanced creep led to the
increased spreading and osteogenic differentiation of MSCs in the 2D culture, and the
increased substrate stress relaxation promoted cell spreading and proliferation in the 2D
culture and altered the cell morphology in the 3D culture [142]. In accordance with this,
the promotion of cell spreading on various viscoelastic substrates has been reported in
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other cell types such as U2OS cells [140], myoblasts [143], and fibroblasts [142], in both 2D
and 3D cell cultures. Moreover, substrate viscoelasticity also plays a regulatory role in cell
migration, and substrates with faster stress relaxation promote the migration of cells such
as myoblasts [143] and fibroblasts [142].

Both regulatory effects may be explained by focal adhesion (FA) formation and lig-
and clustering [128]. FA formation is probably the key mechanism through which the
viscoelastic property of the substrate affects cell behaviors [140]. For instance, promoted FA
formation was observed in hydrogels with faster relaxation (more viscoelastic). Chaudhuri
et al. used hyaluronic acid and collagen I to form 3D hydrogels and found that the FA in
MSCs was promoted by more viscoelastic hydrogels. The increased accumulation of β1
integrin, indicative of increased FA formation, was observed in the periphery of MSCs
encapsulated in RGD-coupled ionically crosslinked alginate hydrogels with faster stress
relaxation [142].

5.2.2. Cell Proliferation

Viscoelastic matrices promote cell proliferation. Chaudhuri et al. showed that MSC
proliferation was elevated in a PAM-alginate hydrogel with a faster relaxation rate [142].
Ryan et al. modified collagen hydrogels with insoluble elastin to induce prolonged stress
relaxation (i.e., reduced viscosity), which resulted in lower proliferation and a more contrac-
tile phenotype of human smooth muscle cells (SMCs) [144]. Chao et al. seeded chondrocytes
in chitosan-modified PLCL scaffolds with a viscoelastic property close to that of native
bovine cartilage and observed that the cell proliferation was higher compared with that
in unmodified (non-viscoelastic) scaffolds [145]. Peter et al. seeded preosteoblast cells
(MC3T3-E1) on alginate-blended PCL scaffolds, and increased cell proliferation was found
on viscoelastic scaffolds compared to pure PCL (low-viscoelasticity) scaffolds [42]. Finally,
Tamate et al. showed that the proliferation of HeLa cells (cancer cells) was inhibited when
the viscosity of the hydrogel was diminished [146]. The above studies all consistently
demonstrated that substrate viscosity promotes cell proliferation in a variety of healthy
and cancer cells.

5.2.3. Cell Differentiation

The effect of substrate viscoelasticity on cell differentiation has been mostly studied in
MSCs and the application of orthopedic tissue regeneration. For example, hydrogels with
rapid stress relaxation induced the greater osteogenic differentiation of MSCs [147–149]. Vis-
coelastic hydrogels have also been successfully applied to regulate cell–cell and cell–matrix
interactions for the differentiation and regeneration of bone and cartilage tissues with MSC
spheroids [147,150]. The improved osteogenic differentiation of MSCs in faster relaxing
(more viscoelastic) substrates has been related to mechanotransduction regulators such
as the enhanced clustering of integrin ligands or stronger actomyosin contractility [142].
Li et al. prepared PAM hydrogels with different substrate stiffness to study cell proliferation.
The substrate with slower stress relaxation drove the pro-inflammatory polarization of
human bone-marrow-derived monocytes and their differentiation into antigen presenting
cells, indicating an anti-inflammatory role of viscoelastic substrates [151].

5.2.4. ECM Deposition

ECM deposition is a key outcome in the regeneration of connective tissues including
bone and cartilage. Chondrocytes encapsulated in scaffolds with similar viscoelasticity
to native cartilage tissue displayed the greater deposition of a cartilage-like matrix com-
posed of type 2 collagen and aggrecan and the lower expression of type 1 collagen [152].
MSCs encapsulated in a viscoelastic hydrogel consisting of an interpenetrating network
of alginate and fibrillar collagen type I with interferon-γ (IFN-γ)-loaded heparin-coated
beads suppressed the proliferation of human T cells [153]. However, the results showed
that cell proliferation was independent of substrate stiffness and was more dependent on
the crosslinking components of the hydrogel.
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5.3. Limitations of Current Viscoelastic Scaffolds

As an emerging area in tissue engineering and mechanobiology, the research into
substrate viscoelasticity in cardiac applications is in its infancy stage. We summarized
the reported viscoelastic properties of tissue-engineered scaffolds and native biological
tissues in Tables 3 and 4, respectively. Although the tissue-engineered scaffolds include a
large range of viscosity (with the half relaxation time ranging from 10 s to 18,000 s), the
elasticity is only at the low end (with a Young’s modulus <30 kPa and a storage modulus
ranging from 0.04 kPa to 130 kPa). The elastic property is far below that of cardiac tissues
(typically with a Young’s modulus of hundreds or thousands of kPa). Future studies should
match both the elastic and viscous behavior of scaffolds to better replicate the physiological
viscoelastic properties of cardiac tissues. In addition, the DMA technique (to obtain the
storage and loss moduli) is seldom used for the measurement of cardiac tissues (Table 4).
Different viscous parameters have been reported between the two research areas as well.
While the half relaxation time is often provided for tissue-engineered scaffolds, the phase
angle is more often obtained in native tissues. Therefore, it is difficult to compare the
viscoelastic properties of tissue-engineered scaffolds to those of native cardiac tissues from
the current literature. Future tissue engineering research should confirm the similarity of
the viscoelastic properties of scaffolds and native tissues using measurements obtained via
the same methodology.

Table 3. Viscoelastic properties of hydrogels reported in the literature. E refers to Young’s (elastic)
modulus or initial modulus in stress relaxation. G′ is the storage modulus, and G′′ is the loss modulus.

Material Ligand E (kPa) G′ (kPa) G′′ (Pa) Half Relaxation
Time (τ1/2) Ref.

Low and high MW
alginate, alginate + PEG RGD 9–17 N/A N/A Tens to thousands

of seconds [142]

Dynamic covalent
crosslinked alginate None N/A 0.22–2.78 (at 1.6 Hz) N/A N/A [135]

Agarose spheroids
(ionically vs. covalently

crosslinked)

Hydroxyapatite
nanoparticles,

BMP-2
N/A 2–6 0–0.75 20 s–infinity [149]

PCL + alginate None N/A 0.0001–0.04 (at 0.1 Hz) N/A N/A [42]

PDMS None N/A 3–130 (at 100 Hz) 1.5–3k (at 100 Hz) N/A [40]

GelMA or MeHA +
decellularized ECM

Gelatin or
hyaluronic acid N/A 0.5–8 (at 1 Hz) 50–3000 (at 1 Hz) N/A [154]

Alginate hydrogel RGD 9–17 3 (at 1 Hz) 0.1–0.8 (at 1 Hz) 60–3300 s [142]

Polyacrylamide hydrogel RGD 13.5 4.7 (at 1Hz) N/A N/A [134]

Polyethylene glycol-based
hydrogels RGD 10 N/A N/A N/A [143]

HA hydrogels None N/A ~5 (at 10 Hz) ~300 (at 10 Hz) 10–1000 s [132]

Interpenetrating network
of alginate and collagen I

(NbTz)
Collagen N/A ~1 (at 10 Hz) ~500 (at 10 Hz) N/A [133]

PAA Collagen and
fibronectin N/A ~5.5 (at 0.16 Hz) ~10 (at 0.16 Hz) N/A [134]

Interpenetrating network
of alginate and collagen I Collagen I 0.009–0.51 N/A N/A 55–18,000 [133]

Interpenetrating network
of hyaluronic acid and

collagen I
RGD 1.8–27 N/A N/A 10–1000 [155]

Furthermore, while the elastic property of cardiac bioscaffolds is often reported, it
remains unknown whether they are viscoelastic. We recently reported different MSC re-
sponses to varied matrix stiffness and anisotropy degrees using PEUU scaffolds mimicking
healthy and diseased right ventricles. The biaxial elastic behavior was measured in the
main fiber and cross-fiber directions, and anisotropic elastic behavior was confirmed [97].
A re-examination of the two anisotropic scaffold groups that represent healthy (soft) and
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diseased (stiff) right ventricle elasticities was performed via stress relaxation tests. Unsur-
prisingly, viscoelastic behaviors were observed in these sheets. Moreover, we observed
both elastic and viscous anisotropy in these scaffolds (Figure 6). Therefore, it is possible
that the existing cardiac scaffolds present viscoelastic properties, although this behavior
has been ignored.

Table 4. Viscoelastic properties of biological tissues reported in the literature. E refers to elas-
tic/Young’s modulus or initial modulus in stress relaxation. G′ is the storage modulus, G′′ is the loss
modulus, and Wd is the dissipated energy. The phase angle was calculated as G′′/G′.

Material E (kPa) G′ (kPa) G′′ (Pa) Normalized
Stress Wd (kPa) Damping Dynamic

Modulus (kPa)
Phase Angle

(Radians) Ref.

Bones N/A ~90 (at 1 Hz) ~15 k (at 1 Hz) N/A N/A N/A N/A ~1.66 (at 1 Hz) [156]

Cartilage N/A ~45 k (at 5 Hz) ~9 k (at 5 Hz) N/A N/A N/A N/A ~0.2 (at 5 Hz) [157]

Lungs ~1.4 N/A ~600 N/A N/A N/A N/A N/A [158]

Brain N/A ~3.5 ~1 k N/A N/A N/A N/A ~0.28 [159]

Cornea ~19 ~86 ~12 k N/A N/A N/A N/A ~0.139 [160]

Liver ~30 ~170 ~17 k N/A N/A N/A N/A ~0.1 [161]

Right
ventricle ~40–500 N/A N/A ~0.706 ~0.6 ~0.3–0.7 N/A N/A [90]

Heart valve N/A ~25 k (at 5 Hz) ~16 k (at 5 Hz) N/A N/A N/A N/A ~0.25 [162]

Pulmonary
artery N/A N/A N/A N/A N/A ~0.1–0.7 (at

0.01–10 Hz) ~60 (at 0.01 Hz) N/A [127]

Carotid
artery N/A N/A N/A N/A N/A ~0.2–0.3 (at

1 Hz) N/A N/A [163]
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Figure 6. Viscoelastic properties of the previously reported anisotropic elastic scaffolds that mimic
the stiffness of healthy (soft and anisotropic) and diseased (stiff and anisotropic) right ventricles [97].
Viscoelastic properties were measured by equibiaxial stress relaxation at the maximal strain of
15%. The elastic property was measured by the relaxation modulus (A,B), and the viscous property
was measured by the dissipated energy (C,D), as described previously [90]. Results are shown
as mean ± SE. The main fiber direction used was the longitudinal direction. * p < 0.05 between
longitudinal (L) and circumferential (C) directions at the same relaxation time.
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6. Future Work

In summary, future work should focus on addressing the limitations of current scaffold
fabrication techniques, such as the degree of anisotropy and the thickness limitation of
hydrogel-based scaffolds. Additionally, efforts should be made to improve the repeatability
and reproducibility of scaffold fabrication methods to ensure consistency across different
studies or research groups and to allow for the easier comparison of results. Furthermore,
there is a need for the appropriate characterization of scaffold mechanical properties and
comparisons with the measurements obtained from myocardium tissues to ensure that
engineered scaffolds exhibit the most important mechanical behaviors of native tissues.
As biodegradation is expected in many tissue-engineered scaffolds, it is equally critical to
investigate the mechanical changes in scaffolds during this process, data that are lacking in
the current literature. Overall, continued efforts to improve scaffold design and fabrication
techniques will enable the better investigation of the pathology of cardiac diseases and
the development of patient-specific treatments for different types of HF, translating the
research from bench to bedside.

7. Conclusions

Heart failure remains a major cause of morbidity and mortality worldwide, and tissue
engineering offers promising therapeutic strategies for cardiac regeneration. The inclusion
of biomimetic mechanical properties in cardiac scaffolds, such as anisotropy, nonlinear
elasticity, and viscoelasticity, is crucial for promoting cell functions and myocardium
tissue regeneration. This review summarized recent advances in cardiac scaffolds that
achieved these mechanical properties, as well as the advantages and limitations of each
method. The biological responses to tissue-specific mechanical environments were also
discussed. In summary, this review highlighted the importance of considering mechanical
properties in myocardium tissue engineering and regeneration. By developing biomimetic
scaffolds, researchers and clinicians can create new opportunities to promote cardiac tissue
regeneration and improve patient outcomes. These findings offer hope for the development
of new therapeutic strategies to treat heart failure, the leading cause of death in the US
and worldwide.
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