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Abstract: Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) with the potential to
differentiate in a limited number of other tissue types. Some evidence has suggested the modulation
of DPSC growth may be mediated, in part, by exogenous extracellular matrix (ECM) glycoproteins,
including fibronectin (FN) and laminin-5 (LN5). Although preliminary research suggests that some
ECM glycoproteins may work as functional biomaterials to modulate DPSC growth responses, the
primary goal of this project is to determine the specific effects of FN and LN5 on DPSC growth and
viability. Using an existing DPSC repository, n = 16 DPSC isolates were cultured and 96-well growth
assays were performed, which revealed FN, LN5 and the combination of these were sufficient to
induce statistically significant changes in growth among five (n = 5) DPSC isolates. In addition,
the administration of FN (either alone or in combination) was sufficient to induce the expression
of alkaline phosphatase (ALP) and dentin sialophosphoprotein (DSPP), while LN5 induced the
expression of ALP only, suggesting differential responsiveness among DPSCs. Moreover, these
responses appeared to correlate with the expression of MSC biomarkers NANOG, Oct4 and Sox2.
These results add to the growing body of evidence suggesting that functional biomaterials, such as
ECM glycoproteins FN and LN5, are sufficient to induce phenotypic and differentiation-specific effects
in a specific subset of DPSC isolates. More research will be needed to determine which biomarkers
or additional factors are necessary and sufficient to induce the differentiation and development of
DPSCs ex vivo and in vitro for biomedical applications.

Keywords: dental pulp stem cells; extracellular matrix; biomaterials; fibronectin; laminin-5

1. Introduction

Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) with the potential
to differentiate in a limited number of other tissue types [1]. For example, evidence
has demonstrated that DPSCs may be capable of proliferation and wound healing, as
well as differentiation into osteogenic and chondrogenic lineages [2,3]. Some research
has demonstrated DPSCs may have specific capabilities to facilitate differentiation into
osteoblasts [4,5]. However, recent studies have suggested that DPSCs may also harbor the
potential for differentiation into other lineages, separate and apart from the odontogenic
and osteogenic potential for which they are well known [6].

For example, new research has demonstrated the potential of DPSCs to differentiate
into bone, cartilage and fat lineages, while others have revealed the potential for neural
differentiation [7,8]. In fact, evidence is accumulating that DPSCs may have vasculogenic
and smooth muscle cell types [9,10]. These studies reveal the vast potential of DPSCs to
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mediate wound healing and facilitate tissue repair as well as their use in potential future
applications in clinical therapy [11,12].

Most of the research to date has focused on inducing DPSC differentiation using a
variety of exogenous growth factors [13]. For example, many studies have demonstrated the
neurogenic potential of basic fibroblast growth factor (bFGF) and epidermal growth factor
(EGF) alone or in combination to facilitate neurogenic differentiation [14–16]. In addition,
platelet-derived growth factor (PDGF), transforming growth factor (TGF) and vascular
endothelial growth factor (VEGF) have been shown to drive DPSC differentiation towards
vasculogenesis, angiogenesis and smooth muscle cell phenotypes [17–19]. However, most
of these efforts have focused on the potential for DPSCs towards dentinogenesis and
osteogenesis [20–22]. In fact, many studies from this group have also explored the potential
to modulate DPSC phenotypes using BMP and VEGF [23–26].

These studies have revealed that DPSC differentiation may be controlled not only by
growth factor stimulation, but also through simultaneous interactions with the extracellular
environment, including extracellular matrix (ECM) glycoproteins [27,28]. In fact, many
studies now incorporate both growth factors and some type of ECM-related scaffolding
to provide both types of stimulation to induce DPSCs towards specific phenotypes and
differentiation [29–31]. This research has revealed that the ECM, alone or in combination
with growth factors, may be sufficient to induce changes to DPSC differentiation and
phenotypic plasticity [32–34]. Studies from this group have also explored the potential
role of the ECM and other functional biomaterials to modulate DPSC differentiation and
phenotypic plasticity [35,36].

Strong lines of evidence from in vitro cultures and the differentiation of other stem cell
types have suggested this modulation may be mediated, in part, by exogenous extracellular
matrix (ECM) glycoproteins, including fibronectin (FN) and laminin-5 (LN5) [37–39]. More
specifically, laminin-5 (also known as laminin-332) has been demonstrated to induce the
osteogenic and chondrogenic differentiation of MSCs in vitro, even in the absence of growth
factor stimulation, although this line of research has not yet been replicated with DPSCs [40–42].
Similarly, fibronectin has also been demonstrated to modulate the in vitro proliferation
and differentiation of MSCs, although few studies have explored these phenomena among
DPSCs [43–45].

Based upon the evidence that demonstrates ECM molecules, such as laminin-5 (LN5)
and fibronectin (FN), may function to modulate MSC-specific growth and differentiation
responses, the primary goal of this project was to determine the specific effects of FN and
LN5 on DPSC growth, viability and differentiation.

2. Materials and Methods
2.1. Human Subjects Study Approval

This study was conducted in accordance with the Declaration of Helsinki. The study
procedures were reviewed and approved by the Institutional Review Board (IRB) and
the Office for the Protection of Human Subjects (OPRS) at the University of Nevada, Las
Vegas (UNLV) under Protocol #171612-1 “Retrospective Analysis of Dental Pulp Stem Cells
(DPSC) from the UNLV School of Dental Medicine (SDM) Pediatric and Clinical Population”
on 21 February 2021.

2.2. Original Sample Collection Approval and Protocol

The original study protocol for the isolation and collection of DPSCs was also reviewed
and approved by the UNLV IRB and OPRS under Protocol OPRS#0907-3148 “Isolation of
Non-Embryonic Stem Cells from Dental Pulp” on 5 February 2010. Briefly, the inclusion
criteria consisted of UNLV School of Dental Medicine (SDM) patients of record who
voluntarily agreed to participate in the study and provided informed consent or pediatric
assent (if under 18 years of age). Exclusion criteria included any UNLV-SDM patients who
declined to participate or declined to provide either informed consent or pediatric assent.
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Briefly, patients scheduled for an extraction of their premolars or third molars (wis-
dom teeth) as part of their orthodontic treatment were asked to participate. Following
extraction, teeth were sectioned at the cementum–enamel junction (CEJ) and dental pulp
was removed using an endodontic broach and placed into 1.5 mL sterile microcentrifuge
tubes containing sterile 1× phosphate buffered saline (PBS) for transfer to a biomedical
laboratory. DPSCs were subsequently cultured using the direct outgrowth method, as
previously described [46,47]. RNA from each DPSC isolate was screened according to the
guidelines by the International Society for Cellular Therapy (ISCT) for stem cell biomarkers
CD73, CD90 and CD105, as well as the absence of CD45 expression [48,49]. Additional
expression of stem cell biomarkers (Sox-2, Oct-4 and NANOG) was also confirmed during
the initial culturing phase for a minimum of ten passages prior to cryopreservation using
10% dimethyl sulfoxide (DMSO) in media containing 80% fetal bovine serum (FBS) at 80 ◦C.

2.3. Cell Culture

Available DPSC isolates (N = 16) were thawed and placed into culture in 25 cm2 tissue
culture-treated flasks using alpha-MEM (Minimal Essential Medium) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin-streptomycin solution obtained from Fisher
Scientific (Fair Lawn, NJ, USA). DPSC isolates were maintained at 37 ◦C in a humidified
biosafety level 2 (BSL2) tissue culture chamber supplemented with 5% CO2. Cells were
split 1:2 and doubling times were noted and compared with the original ten passages
for confirmation of proliferation phenotypes, which were rapid doubling times or rDT
(1–2 days), intermediate doubling times or iDT (4–6 days) and slow doubling times or sDT
(10–12 days) as described in Table 1.

Table 1. DPSC isolates.

DPSC Isolate Phenotype Doubling Time DPSC Isolate Reference Number

rapid doubling time (rDT)
DPSC isolates 2–3 days dpsc-7089, dpsc-3924, dpsc-5653,

dpsc-5423, dpsc-9765, dpsc-3882

intermediate doubling time
(iDT) DPSC isolates 5–6 days dpsc-5243, dpsc-9894, dpsc-8604,

dpsc-8124

slow doubling time (sDT)
DPSC isolates 10–12 days dpsc-11418, dpsc-9500, dpsc-17322,

dpsc-4595, dpsc-11836, dpsc-11750

2.4. Cell Viability

Viability of the DPSC isolates was measured using the Trypan Blue exclusion assay
and a TC20 automated cell counter from Fisher Scientific (Fair Lawn, NJ, USA). Briefly,
Trypan Blue 0.4% from Gibco/Invitrogen (Waltham, MA, USA) was mixed with an equal
volume of cell suspension and incubated for two to three minutes at room temperature in a
biosafety cabinet. Cells were transferred to dual-chamber disposable TC20 cell counting
slides for processing. Absolute and relative percentage of live cells were acquired, as well
as cell density for both experimental and control experiments.

2.5. Proliferation Assays

Growth and proliferation assays were performed as previously described [35,36]. In
brief, DPSC isolates were placed in 96-well tissue culture-treated plates from Corning
Costar (Corning, NY, USA). Cells were seeded at concentrations of 1.2 × 104 cells per well
and allowed to proliferate for 24 h (1 day), 48 h (2 days) or 72 h (3 days) prior to viability
assessment and subsequent fixation with 10% buffered formalin from Fisher Scientific (Fair
Lawn, NJ, USA). Experimental wells were treated with 10 ng/mL of recombinant human
laminin-5 (NBP256854PEP) or fibronectin (NBP261633PEP) from Novus Biologicals (Little-
ton, CO, USA). Following the experimental assays, viability assessment and fixation, cells
were stained with Gentian Violet 1% aqueous solution from Ricca Chemicals (Arlington,
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TX, USA) and absorbance was read using an ELx808 BioTek (Winooski, VT, USA) plate
reader at 630 nm to compare experimental and control assays.

2.6. Microscopy and Alizarin Red Staining

In addition, parallel experiments using six-well plates were also performed using
DPSC isolates with and without the addition of laminin-5 and fibronectin. To evaluate any
morphological changes and the deposition of calcium associated with osteogenic differ-
entiation, each well was stained with Alizarin Red 1% w/v solution from ThermoFisher
Scientific (Fair Lawn, NJ, USA) using the manufacturer’s recommended protocol. In brief,
wells were washed with 1.0 mL of 1× PBS and then fixed. Media were aspirated and wells
were stained with Alizarin Red for 15 min at room temperature. The stain was aspired and
wells were washed three times with 1.0 mL of distilled water. Cells were visualized using
an Axiovert inverted microscope from Zeiss (Hamburg, Germany).

2.7. RNA Isolation and Analysis

RNA was extracted from all DPSC isolates under experimental (laminin-5, fibronectin)
and control conditions, as previously described [46–49]. Briefly, TRIzol reagent from In-
vitrogen (Waltham, MA, USA) was applied and the cell lysate was transferred to sterile
microcentrifuge tubes with the addition of 0.2 volumes of chloroform, following the manu-
facturer’s recommended protocol. After incubation on ice for ten minutes, each sample
was centrifuged at 10,000× g or relative centrifugal force (RCF) at 4 ◦C for 15 min. The
upper RNA in aqueous phase was transferred to a sterile microcentrifuge tube with the
addition of isopropanol to facilitate precipitation. Each sample was centrifuged again and
the pellet washed with ethanol prior to a final centrifugation. RNA was resuspended using
nuclease-free distilled water and assessed using a NanoDrop 2000 Spectrophotometer from
Fisher Scientific (Fair Lawn, NJ, USA). Absorbances at A260 nm and A280 nm were used to
calculate sample purity and concentration.

2.8. qPCR Screening

RNA from each DPSC isolate was reverse-transcribed using the Verso 1-step RT-PCR
kit (AB1454LDB) from Thermo Scientific (Fair Lawn, NJ, USA) and a Mastercycler gradi-
ent thermal cycler from Eppendorf (Hamburg, Germany), following the manufacturer’s
recommended protocol [48,49]. cDNA synthesis was confirmed using the NanoDrop
2000 spectrophotometer as described above. qPCR screening was performed on all samples
using the SYBR Green Master Mix kit also from ThermoFisher Scientific (Fair Lawn, NJ,
USA). Briefly, reactions of 20 µL were prepared using ABsolute SYBR Green Master Mix
(12.5 µL), nuclease-free water (7.5 µL), forward and reverse primers (1.5 µL each), and
DPSC isolate cDNA (1.0 µL) using the QuantStudio real-time PCR system from Applied
Biosystems (Waltham, MA). Setting included 15 min of enzyme activation at 95 ◦C followed
by 40 cycles of 15 s of denaturation at 95 ◦C, 30 s of annealing at primer-pair-specific
temperature, and 30 s of final extension at 72 ◦C using the following validated primer sets
as shown in Table 2.

Table 2. Validated primer sequences.

Primer Sequence

Glyceraldehyde 3-phosphate dehydrogenase GAPDH forward 5′-ATC TTC CAG GAG CGA GAT CC-3′

GAPDH reverse 5′-ACC ACT GAC ACG TTG GCA GT-3

Beta-actin forward 5′-GTG GGG TCC TGT GGT GTG-3′

Beta-actin reverse 5′-GAA GGG GAC AGG CAG TGA-3′

ISCT control CD45 forward 5′-CAT ATT TAT TTT GTC CTT CTC CCA-3′;

ISCT control CD45 reverse 5′-GAA AGT TTC CAC GAA CGG-3′

ISCT control CD73 forward 5′-AGT CCA CTG GAG AGT TCC TGC A = 3′
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Table 2. Cont.

Primer Sequence

ISCT control CD73 reverse 5′-TGA GAG GGT CAT AAC TGG GCA C = 3′

ISCT control CD90 forward 5′-ATG AAC CTG GCC ATC AGC A-3′

ISCT control CD90 reverse 5′-GTG TGC TCA GGC ACC CC-3′

ISCT control CD105 forward 5′-CCA CTA GCC AGG TCT CGA AG-3′;

ISCT control CD105 reverse 5′-GAT GCA GGA AGA CAC TGC TG-3′

MSC biomarker Sox-2 forward 5′-ATG GGC TCT GTG GTC AAG TC-3′;

MSC biomarker Sox-2 reverse 5′-CCC TCC CAA TTC CCT TGT AT-5′;

MSC biomarker Oct-4 forward 5′-TGG AGA AGG AGA AGC TGG AGC AAA-3′

MSC biomarker Oct-4 reverse 5′-GGC AGA TGG TCG TTT GGC TGA ATA-3′

MSC biomarker NANOG forward 5′-GCT GAG ATG CCT CAC ACG GAG-3′

MSC biomarker NANOG reverse 5′-TCT GTT TCT TGA CTG GGA CCT TGT C-3′

Alkaline phosphatase (ALP) forward 5′-CAC TGC GGA CCA TTC CCA CGT CTT-3′

Alkaline phosphatase (ALP) reverse 5′-GCG CCT GGT AGT TGT TGT GAG CAT-3′

Dentin sialophosphoprotein (DSPP) forward 5′-CAA CCA TAG AGA AAG CAA ACG CG-3′

DSPP reverse 5′-TTT CTG TTG CCA CTG CTG GGA C-3′

The expression data from these targets were normalized to the endogenous control
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) using the QuantStudio software
to allow for correction of sample-to-sample variations in RT-PCR efficiency, as well as to
correct for any errors in sample quantification.

2.9. Statistical Analysis

Data from the RNA isolation, cDNA synthesis and proliferation assays were measured
using absorbance readings. These data were compiled and summarized using Microsoft
Excel (Redmond, WA, USA). Descriptive statistics including averages and ranges were
compiled and comparisons between DPSC isolates, as well as between control and experi-
mental treatments were made using two-tailed Student’s t-tests, which are appropriate for
parametric data. Significance levels were set at alpha = 0.05.

3. Results

Several DPSC isolates (n = 16) from an existing biorepository were thawed and placed
into cultures (Figure 1). Several DPSC isolates (n = 6) exhibited slow doubling times (sDT)
between 10.2 and 13.1 days, intermediate doubling times (iDT) between 4.2 and 5.9 days,
or rapid doubling times (rDT) between 1.9 and 2.6 days (Figure 1A). A further evaluation
of these data demonstrated that the rDT DPSC isolates exhibited an average doubling time
of 2.16 (STD = 0.265) days, which was significantly different from the average doubling
time among the iDT DPSC isolates, which was 5.18 days (STD = 0.727), p = 0.0022. The
average doubling time of the iDT DPSC isolates was also significantly different from that
of the slow DPSC isolates, which was 11.4 (STD = 1.29) days, p = 0.00011.

Due to the variability in growth rate and doubling times, the baseline viability for all of
the DPSC isolates was also evaluated (Figure 2). These data demonstrated that the viability
among the DPSC isolates varied between a low of 37% (dpsc-5423) and a high of 62%
(dpsc-3924) with an average of 47.31% ± 7.53 (Figure 2A). To evaluate if any differences
were found between the DPSC isolates with different growth rates, the viability data were
grouped and averaged by the doubling time (Figure 2B). This analysis revealed that the
average viability for the rDT DPSC isolates (52.67% ± 8.41) was not significantly different
from the average viability for the iDT DPSC ioslates (45.25% ± 7.82), p = 0.204. In addition,
the average viability for the sDT DPSC isolates (44.33% ± 7.24) was not significantly
different from that of the iDT (p = 0.695) or the rDT (p = 0.159) DPSC isolates.
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Figure 1. Doubling time (DT) of experimental DPSC isolates (n = 16). (A) Slow doubling times or sDT
(10.2 to 13.1 days), intermediate doubling times or iDT (4.2 to 5.9 days) and rapid doubling times or
rDT (1.9 to 2.6 days) were observed among the DPSC isolates. (B) rDT DPSC isolate average doubling
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(p = 0.0022), and that of the sDT DT, which was 11.4 ± 1.29 days (p = 0.00011).
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Figure 2. Baseline viability of experimental DPSC isolates (n = 16). (A) Viability ranged between 37%
(dpsc-5423) and 62% (dpsc-3924), with an average of 47.31% ± 7.53. (B) Sorting by DPSC growth rate
demonstrated rDT average viability (52.67% ± 8.41), iDT average viability (45.25% ± 7.82) and sDT
average viability (44.33% ± 7.24) were not significantly different, p > 0.05.
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Each of the DPSC isolates was then plated on the extracellular matrix (ECM) glyco-
protein recombinant human fibronectin (FN) to determine if there were any observable
differences in cellular phenotype (Figure 3). These data clearly demonstrated statistically
significant differences among some, but not all, of the DPSC isolates. More specifically, five
(n = 5) DPSC isolates exhibited statistically significant changes in growth under FN-induced
assay conditions. These included three rDT DPSC isolates: dpsc-5653 (+19.68%), dpsc-9765
(+21.32%), dpsc-3882 (+20.45%); one iDT DPSC isolate: 8604 (+19.94%); and one sDT DPSC
isolate: dpsc-11418 (+27.86%), p = 0.0000033.
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Figure 3. DPSC growth assay with fibronectin (FN). Five (n = 5) DPSC isolates exhibited statistically
significant changes in growth under FN–induced assay conditions, including rDT DPSC isolates
dpsc-5653 (+19.68%), dpsc-9765 (+21.32%), dpsc-3882 (+20.45%); iDT DPSC isolate 8604 (+19.94%);
and sDT DPSC isolate: dpsc-11418 (+27.86%), p = 0.0000033. (** denotes statistical significance).

Next, each of the DPSC isolates was then plated on the extracellular matrix (ECM)
glycoprotein laminin-5 (LN5) to determine if there were any observable differences in
cellular phenotype (Figure 4). Similar to the FN assay, these data revealed statistically
significant differences among some, but not all, of the DPSC isolates. More specifically,
the same five (n = 5) DPSC isolates exhibited statistically significant changes in growth
under LN5-induced assay conditions. This included three rDT DPSC isolates, dpsc-5653
(+20.81%), dpsc-9765 (+21.60%), dpsc-3882 (+20.08%); one iDT DPSC isolate 8604 (+29.60%);
and one sDT DPSC isolate dpsc-11418 (+28.27%), p = 0.000045.
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significant changes in growth under LN5-induced assay conditions, including rDT DPSC isolates
dpsc-5653 (+20.81%), dpsc-9765 (+21.60%), dpsc-3882 (+20.08%); iDT DPSC isolate 8604 (+29.60%);
and sDT DPSC isolate dpsc-11418 (+28.27%), p = 0.000045. (** denotes statistical significance).

Finally, each of the DPSC isolates was then plated on a combination of the extracellular
matrix (ECM) glycoproteins fibronectin (FN) and laminin-5 (LN5) to determine if there
were any observable differences in cellular phenotype (Figure 5). Similar to the previous
ECM growth assays, these data revealed statistically significant differences among some,
but not all, of the DPSC isolates. More specifically, the same five (n = 5) DPSC isolates once
again exhibited statistically significant changes in growth under the ECM combination (FN
and LN5)-induced assay conditions. This included three rDT DPSC isolates, dpsc-5653
(+24.20%), dpsc-9765 (+37.40%), dpsc-3882 (+19.95%); one iDT DPSC isolate, dpsc-8604
(+47.03%); and one sDT DPSC isolate, dpsc-11418 (+30.15%), p = 0.0032.

To more closely evaluate the changes in DPSC growth from these ECM-specific experi-
ments, the proliferation data from the five DPSC isolates and the three assays (FN, LN5,
Combination) were graphed and plotted for analysis (Figure 6). These data revealed that
three of the DPSC isolates exhibited similar and significant increases in growth to each
of the functional ECM biomaterials (FN, LN5, Combination), including two rDT DPSC
isolates, dpsc-5653 (19.68%, 20.81%, 24.20%) and dpsc-3882 (20.45%, 20.08%, 19.95%), as
well as one sDT DPSC isolate, dpsc-11418 (27.86%, 28.27%, 30.15%). However, two DPSC
isolates exhibited a differential result with much more robust growth observed in the
combination assays, including the rDT DPSC isolate dpsc-9765 (21.32%, 21.60%, 37.40%), as
well as the iDT DPSC isolate dpsc-8604 (19.96%, 29.60%, 47.03%).
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Figure 5. DPSC growth assay with ECM of combined fibronectin (FN) and laminin-5 (LN5). Five
(n = 5) DPSC isolates exhibited statistically significant changes in growth under the combination of
FN/LN5-induced assay conditions, including rDT DPSC dpsc-5653 (+24.20%), dpsc-9765 (+37.40%),
dpsc-3882 (+19.95%); one iDT DPSC isolate, dpsc-8604 (+47.03%); and one sDT DPSC isolate, dpsc-
11418 (+30.15%), p = 0.0032. (** denotes statistical significance).
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Figure 6. Comparison of individual and combination DPSC growth assays. Three DPSC isolates
exhibited similar growth under all three experimental conditions, including rDT dpsc-5653 (19.68%,
20.81%, 24.20%), rDT dpsc-3882 (20.45%, 20.08%, 19.95%), and sDT dpsc-11418 (27.86%, 28.27%,
30.15%). However, more robust growth was observed under combination treatment with rDT
dpsc-9765 (21.32%, 21.60%, 37.40%) and iDT dpsc-8604 (19.96%, 29.60%, 47.03%).
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To evaluate whether any of the changes in growth among the DPSC isolates in response
to FN, LN5 or their combination were related to other phenotypes, the data regarding the
cellular viability in all the experimental assays were compiled (Figure 7). These data clearly
demonstrated that the plating of the DPSC isolates on FN had non-significant, positive
effects on cellular viability which averaged 4.57% and ranged between 2.10% and 6.19%. In
addition, assays with LN-5 also demonstrated positive, non-significant effects on viability,
which averaged 4.67% and ranged between 2.16% and 7.81%. Finally, the combination of
FN and LN5 induced positive effects on cell viability, which averaged 6.01% and ranged
between 2.82% and 6.71% with two statistically significant exceptions: dpsc-9765′s viability
increased by 18.98% (p = 0.033) and dpsc-8604′s viability increased by 21.30% (p = 0.032).
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Figure 7. Comparison of individual and combination DPSC viability assays. FN increased cellular
viability (average 4.57%; range from 2.10% to 6.19%), which was not significantly different from
baseline viability or that of LN5 (average 4.67%; range from 2.16% to 7.81%), p = 0.832. Combination
treatment increased cell viability an average of 6.01% (range from 2.82% to 6.71%) with two statistically
significant exceptions: dpsc-9765′s viability increased by 18.98% (p = 0.033) and dpsc-8604′s viability
increased by 21.30% (p = 0.032). (** denotes statistical significance).

To evaluate if these phenotypic changes were associated with any changes in differ-
entiation status, RNA was extracted from each DPSC isolate and converted to cDNA for
a subsequent qPCR analysis (Table 3). These experiments revealed that the RNA concen-
trations from the DPSC isolates averaged 507.5 ± 37.93 ng/µL, which ranged between
458 and 547 ng/µL. The evaluation of the RNA purity as determined by the absorbance
ratio of A260 nm and A280 nm revealed an average ratio of 1.82 with the range observed
between 1.73 and 1.94. These data demonstrated that all the DPSC isolates exceeded
the minimum RNA concentration and purity requirements for cDNA synthesis (as deter-
mined by the manufacturer’s protocol of 100 ng and A260:A280 > 1.65). The synthesis of
cDNA revealed an average concentration of 1547.6 ± 98.3 ng/µL, which ranged between
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1451 and 1641 ng/µL. The absorbance readings revealed the average A260:A280 ratio was
1.86, which ranged between 1.79 and 1.93.

Table 3. Summary of RNA and cDNA analyses.

DPSC Isolate RNA Concentration
(ng/µL)

RNA Quality
A260:A80 Ratio

cDNA Concentration
(ng/µL)

cDNA Purity
A260:A280 Ratio

rDT isolates 506 ± 39 1.79 1586 ± 115 1.83

iDT isolates 520 ± 32 1.78 1533 ± 101 1.89

sDT isolates 500 ± 41 1.86 1524 ± 80 1.87

Average 507.5 ± 37.93 ng/µL 1.82 1547.6 ± 98.3 ng/µL 1.86

Range 458–547 ng/µL 1.73–1.94 1451–1641 ng/µL 1.79–1.93

To more closely evaluate the phenotypic changes observed with these DPSC isolates,
the isolated mRNA was screened using qPCR (Figure 8). These data confirmed the presence
and expression of International Society for Cellular Therapy (ISCT) positive control stem
cell biomarkers CD73, CD90 and CD105, as well as the absence of CD45. In addition, the
qPCR results confirmed the mRNA expression of the metabolic pathway positive control
Glyceraldehyde 3-phosphate dehydrogenase or GAPDH and the structural positive control
beta actin among all the DPSC isolates. Finally, the expression of mesenchymal stem cell
(MSC) biomarkers NANOG, Oct4 and Sox2 was confirmed, although their expression
levels varied greatly. More specifically, a higher expression was observed among the rDT
isolates for all three MSC biomarkers, with the differential higher expression of all three
only observed among iDT dpsc-8604 and sDT dpsc-11418. Only one other iDT isolate
expressed higher levels of Sox2 (dpsc-9894), while two sDT isolates expressed higher levels
of Oct4 (dpsc-17322, dpsc-11836).
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vealed that two rDT DPSC isolates already produced ALP and DSPP (dpsc-5423, dpsc-

Figure 8. qPCR screening of DPSC mRNA for biomarkers. The expression of ISCT positive control
stem cell biomarkers CD73, CD90 and CD105 was confirmed, as well as the absence of CD45.
Expression of metabolic (GAPDH) and structural (beta actin) mRNA controls were observed among
all DPSC isolates. The expression of MSC biomarkers NANOG, Oct4 and Sox2 was confirmed, with
higher expression observed among the rDT isolates, as well as iDT dpsc-8604 and sDT dpsc-11418.
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To evaluate any potential changes in differentiation towards osteogenic or chondro-
genic lineages, the alkaline phosphatase (ALP) expression was evaluated along with the
dentinogenesis marker dentin sialophosphoprotein (DSPP) (Figure 9). This analysis re-
vealed that two rDT DPSC isolates already produced ALP and DSPP (dpsc-5423, dpsc-3882),
although no other rDT, iDT or sDT isolates exhibited any detectable expression. However,
the administration of FN was sufficient to induce the expression of ALP among all the rDT
DPSC isolates, as well as one iDT isolate (dpsc-8604) and three sDT isolates (dpsc-11418,
dpsc-17322, dpsc-11750). In addition, FN administration also induced DSPP expression
among four rDT isolates (dpsc-5653, dpsc-5423, dpsc-9765, dpsc-3882), one iDT isolate
(dpsc-8604) and one sDT isolate (dpsc-11418).
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Figure 9. Screening of DPSC mRNA expression pre- and post-treatment. Baseline expression of
alkaline phosphatase (ALP; bone and chondrocyte marker) and dentin sialophosphoprotein (DSPP,
tooth biomarker) were expressed only in rDT dpsc–5423 and dpsc-3882. Administration of FN and
LN5 induced expression of ALP among all rDT isolates, one iDT (dpsc-8604) and three sDT isolates
(dpsc-11418, dpsc-17322, dpsc-11750). Only administration of FN or the combination of FN and LN5
induced expression of DSPP among some rDT (dpsc-5653, dpsc-5423, dpsc-9765, dpsc-3882), iDT
(dpsc-8604) or sDT (dpsc-11418) isolates.

The administration of LN5 was also sufficient to induce the expression of ALP among
all of the rDT DPSC isolates, as well as one iDT isolate (dpsc-8604) and three sDT isolates
(dpsc-11418, dpsc-17322, dpsc-11750), similar to the effects observed with FN. However,
LN5 did not induce any expression of DSPP among any DPSC isolate, while the expression
of DSPP was lost under LN5 administration with dpsc-5423 and dpsc-3882.

Finally, the combined administration of FN and LN5 was sufficient to induce the
expression of ALP for all the rDT DPSC isolates, as well as one iDT isolate (dpsc-8604) and
three sDT isolates (dpsc-11418, dpsc-17322, dpsc-11750), with the most robust increases
observed for dpsc-9765 and dpsc-8604. In addition, the combined administration of FN and
LN5 also induced DSPP expression for four rDT isolates (dpsc-5653, dpsc-5423, dpsc-9765,
dpsc-3882), one iDT isolate (dpsc-8604) and one sDT isolate (dpsc-11418).

To evaluate whether FN and LN5 plating was associated with any changes in cellular
morphology, the cells were imaged using light microscopy (Figure 10). A qualitative
analysis of the rDT DPSC isolate dpsc-5653 under the control (Figure 10A) and experimental
LN-FN combination treatments (Figure 10B) demonstrated that the cellular proliferation is
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more robust under the ECM treatment. In addition, the DPSC under the ECM treatment
exhibited more pronounced filopodia and lamellipodia, suggesting additional pathways
may be activated by these experimental conditions. Additional assays confirmed the
presence of calcium deposition by Alizarin Red staining (data not shown).
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Figure 10. Cellular microscopy DPSC isolate dpsc-5653 under control and experimental conditions.
(A) Untreated and control (CTL) dpsc-5653 in culture were compared with experimental ECM-treated
(LN-FN) cells (B) demonstrating more robust proliferation under ECM treatment with some changes
in cellular morphology, including extensive filopodia and lamellipodia.

4. Discussion

The primary objective of this study was to evaluate the specific effects of the extracel-
lular matrix (ECM) glycoproteins fibronectin (FN) and laminin-5 (LN5) on DPSC growth,
viability and differentiation. This study revealed that both FN and LN5 may be sufficient
to induce phenotypic changes in growth and viability among DPSCs, but these changes
were not uniform among all the DPSC isolates evaluated. In addition, the evaluation of the
changes in differentiation biomarkers also suggests that a subset of DPSC isolates exhibited
significant proliferative responses to both FN and LN5, as well as their combination.

These observations support the limited number of other previous studies that have
found DPSCs may be growth-responsive to FN administration [50,51]. Similarly, these
results also confirm observations of DPSC responsiveness to LN administration in the few
studies that have been completed to date, although these studies did not specifically use
LN5 [52,53]. These data add to the growing evidence that ECM glycoproteins may be a
significant component of the functional biomaterials needed to induce phenotypic plasticity
and differentiation among DPSCs in vitro [54,55].

Although many other studies have observed that the most rapidly dividing DPSCs
also tend to be the most responsive to differentiation stimuli, such as the ECM, this study
found that some intermediate and slowly dividing DPSCs were also capable of responding
to FN, LN5 or their combination, which may be an important finding that needs to be
further explored to determine the factors that govern these responses [56,57]. For example,
this study found that a higher expression of the MSC biomarkers NANOG, Oct4 and Sox
was observed among all of the rDT isolates, with differential higher expression of all three
biomarkers only observed among the iDT isolate dpsc-8604 and the sDT isolate dpsc-11418.
This correlates with the other experimental data that demonstrated the only iDT and sDT
isolates responsive to FN, LN5 or their combination were dpsc-8604 and dpsc-11418. These
data appear to support our previous study that demonstrated DPSC responsiveness may
be related to the expression of multiple MSC pluripotency biomarkers [36].

This study also found that FN was sufficient to induce the expression of both ALP and
DSPP among multiple DPSC isolates. This may support other lines of evidence that suggest
FN may be an important mediator of dentinogenesis and tooth development [51]. However,
DPSC responses to LN5 appear to only induce ALP expression, suggesting that this may be
an important mediator of differentiation towards bone or chondrogenic lineages [58]. This
also supports our previous work that found LN5 may be sufficient to induce osteogenic
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gene expression in other MSCs, although no exploration of this phenomenon has yet been
conducted with DPSCs [59].

Although these findings have revealed significant results that demonstrate DPSC phe-
notypic responsiveness to ECM-specific stimuli, there are some limitations associated with
the design of this study which also need to be addressed. For example, this study involved
the use of an existing DPSC biorepository, which may have influenced the outcomes of the
study due to the long-term effects associated with cryopreservation and storage [60,61]. In
addition, this study was only able to evaluate DPSCs from a single repository; therefore,
these results should be confirmed using other DPSC biorepositories and ex vivo samples [62].
Finally, other factors, such as the expression of microRNAs, may be important factors to
consider in future studies of DPSC responsiveness to the ECM as in other recent studies of
MSCs [63–65].

Finally, these results also represent part of a larger shift in research concerning DPSC
differentiation and their potential therapeutic use in the field of regenerative medicine [66,67].
For example, this group has recently published preliminary data demonstrating the po-
tential for growth factor stimulation to direct neuronal differentiation in these DPSC
isolates [49]. These observations support other recent studies demonstrating significant
progress towards the neuronal differentiation of DPSCs [68–70].

5. Conclusions

This study demonstrated that specific ECM glycoproteins, including FN and LN5,
are sufficient to induce phenotypic plasticity among some DPSC isolates. In addition, this
study found that additional factors, including MSC biomarkers, may explain, in part, these
responses, although more research will be necessary to ascertain whether these factors are
sufficient to induce similar responses among other populations of extracted DPSCs. These
results add to the growing interest in functional biomaterials, such as FN and LN5, which
are capable of modulating not only cell growth and viability but also the differentiation
and gene expression of MSCs and DPSCs.
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