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Abstract: Electrospun nanofibrous constructs based on nanoparticles and biopolymers have recently
been used in tissue engineering because of their similarity to the extracellular matrix in nature. In
this study, electrospun chitosan-carbon quantum dot-titanium dioxide-graphene oxide (CS-CQD-
TiO2-GO) nanofibrous mats were synthesized for use as wound dressings by the electrospinning
method. To increase the biodegradation rate and water resistance, the fabricated nanofibrous mats
were cross-linked. SEM images showed a uniform and coherent structure of CS-CQD-TiO2-GO
nanocomposites and CS-CQD-TiO2-GO electrospun nanofibers mats. FTIR analysis, XRD pattern,
SEM mapping, and EDS spectrum demonstrate the accuracy of the synthesis as well as the elemental
and chemical structure of the nanofibrous mat. The water contact angle indicated that the nanofibrous
mat had a hydrophilic property, which is essential for controlling wound exudates. The tensile
strength and elongation tests showed that the nanofibrous mat has suitable mechanical properties
for wound dressing, including significant flexibility and strength. Interestingly, antimicrobial testing
illustrated that the fabricated nanofibrous mat had antibacterial activity against Gram-negative and
Gram-positive bacteria. Appropriate cell viability and cytocompatibility of treated mouse fibroblast
NIH3T3 cells with the nanofibrous mat were determined using an MTT assay. The animal study
results confirmed the proper potential of the nanofibrous mat in wound dressing applications.

Keywords: chitosan; poly(vinyl alcohol); carbon quantum dot; titanium dioxide; graphene oxide;
wound healing

1. Introduction

Wound healing issues and subsequent economic and health aspects involve millions
of people all around the world [1]. Complex interactions between various cell types,
elements of the extracellular matrix, and soluble factors are required for effective wound
healing [2]. Therefore, the use of novel dressings that actively aid in wound healing has
been taken into consideration [3]. Recent studies indicate that the use of nanoparticles
(NP) in dressings plays an effective role in producing active dressings to accelerate wound
healing [4]. Among efficient nanoparticles, TiO2 shows antibacterial activity against some
Gram-positive and Gram-negative bacteria strains. Good proliferation of animal fibroblast
cells exposed to compounds containing TiO2 also indicates that it is non-toxic [5]. However,
TiO2 is a photo-catalyst nanoparticle and is activated under the influence of harmful UV
irradiation and can only use up to 5% solar energy [6]. Additionally, the low quantum
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efficiency is a result of the low rate of electron transfers to oxygen. Therefore, it has
been suggested that doping TiO2 with carbon-based NPs will improve its separation of
electron-hole pairs and move its absorption to the visible portion of the spectrum [7,8].
Combining TiO2 with metal elements of carbon quantum dots increases the efficiency of
nanoparticles [9]. CQDs as carbon-based NPs have multiple functional groups, such as
carbonyl, hydroxyl, carboxyl, and amino groups, which increase the range of emission
wavelengths and excitation [10]. This allows the CQDs to react easily with TiO2 and reduce
the TiO2 bandgap energy to be activated in the visible light spectrum. The remarkable
properties of carbon such as excellent dispersion, biocompatibility, low toxicity, good cell
permeability, and easy functionalization with biomolecules have made CQDs applicable
in drug delivery systems and wound-dressing [10–12]. The small size of CQDs makes
them an attractive nanocarrier for drug delivery applications, and they have revealed
negligible toxicity in animal studies [13]. Interestingly, recent studies have proven that the
TiO2-CQD compound not only has antibacterial properties but is also a qualified option
as medicine for wound healing [14]. On the other hand, some studies have suggested
that combining graphene oxide (GO) with TiO2 increases the antibacterial power of TiO2
under solar energy. GO is a two-dimensional carbon-based nanostructure that has received
much attention due to its potential of eliciting antibacterial effects, enhancing angiogenesis,
improving cell proliferation, and facilitating rapid wound healing [15]. Furthermore,
GO owns unique chemical and physical properties with diverse functional groups, high
biocompatibility, and proper stability, which make it a favorable material for biomedical
applications [16]. It has been demonstrated that incorporation of nanomaterials such as
GO and reduced GO (rGO) with polymeric biomaterials can improve cell proliferation and
blood vessel formation. Reducing GO minimizes the amount of oxygen as it makes GO
unstable [17]. A recent work reported the angiogenic property of appropriate concentrates
of GO and rGO through in vitro and in vivo angiogenesis assays by controlling reactive
oxygen species (ROS) formation [18]. ROS can function as a signaling molecule in numerous
growth factor-mediated physiological processes, including cell proliferation and wound
healing [19]. However, the inherent aggregation characteristic of GO could result in
dispersion restrictions that are strongly dependent on their surface interaction. To modify
the GO surface, grafting hydrophobic nanoparticles could increase the layer gap and modify
the GO behavior to a loose state while preserving its properties [20]. TiO2 is an acceptable
option for GO dispersion decoration. Thus, we have used GO in polymeric nanocomposite
to accelerate wound healing and enhance cell migration. TiO2-CQD-GO nanocomposites
(NC) have the potential of being both antibacterial and non-toxic. However, the use of
nanocomposites is much more effective in nanofibers mode since nanofibrous structures
exhibit surprising features such as high surface area-to-volume ratio and great porosity [21].
The ability of nanofiber-based NC to mimic the diameter of elongated collagen fibrils in the
natural extracellular matrix makes it an ideal scaffold for tissue regeneration. Nanofibrous
scaffolds offer an alternative artificial extracellular matrix for cell adhesion and proliferation
due to their microporosity, antibacterial activity, surface roughness, hydrophilicity, and
high surface area [22,23]. For instance, PVA nanofibers were fabricated in order to facilitate
wound healing by incorporating carbon nanotubes and Ag nanoparticles [24]. PVA/ZnO
nanocomposite fibers were also utilized for wound healing, which resulted in accelerated
reepithelization, increased angiogenesis, and better cell attachment [25].

This study used chitosan (CS) polymer as a substrate for TiO2-CQD-GO NPs to facili-
tate nanofiber fabrication. Chitosan is a biodegradable and biocompatible polymer that can
imitate the structure and function of the natural extracellular matrix. It is one of the many
options used to produce biomedical nanofibers [26,27]. The electrospinning technique was
used as one of the best methods for the production of polymeric nanofibers [21]. Since
CS is hardly electrospinnable, it needs to be blended with an electrospinnable polymer
such as poly(vinyl alcohol) (PVA) [28]. The reason for the preference of PVA over other
polymers (e.g., poly(ethylene oxide)) is its desirable interactions at the molecular level with
CS [21,29,30]. The novelty of this research was the synthesis of the CS-GO-CQD-TiO2 NC,
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which has been used after electrospinning as an effective antibacterial pad to accelerate
wound healing.

2. Material and Methods
2.1. Chemicals and Materials

RPMI-1640, nitric acid (HNO3), phosphoric acid (H2PO4), sulfuric acid (H2SO4),
phosphate buffer saline (PBS), graphite flakes, KMnO4, fetal bovine serum (FBS), MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide), H2O2, and DMSO (dimethyl
sulfoxide) were brought from Sigma (St. Louis, MO, USA). Diethylenetriamine, anhydrous
tetrahydrofuran, thionyl chloride (SOCl2), poly(vinyl alcohol) (PVA), and dodecyl amine
were bought from Merck, Germany, and the NIH 3T3 fibroblast cells were obtained from
ATCC (Virginia, US).

2.2. Synthesis of Nanoparticles
2.2.1. CQD Synthesis by Hydrothermal Method

Initially, 2 g of diammonium hydrogen citrate was added to 75 g of water and stirred
until completely dissolved. After that, the mixture was put to the hydrothermal autoclave,
which was then heated to 150 ◦C for 18 h. Finally, CQD was acquired at a concentration of
26.66 mg·mL−1 [10,31,32].

2.2.2. Synthesis of Graphene Oxide (GO)

There are various techniques for graphene production, including the
Hummer method [15,33,34]. The initial step in the synthesis of GO monolayer is to add 1 g
of graphite to 20 mL of 98% pure sulfuric acid on the stirrer within an ice bath to completely
dissolve the graphite at a low temperature by a magnet within the sulfuric acid. After
around 30 min, 3 g of potassium permanganate was progressively added to the solution,
which had formed a green sludge. After roughly 30 min, 50 mL of distilled water was added
dropwise. After 10 min, 100 mL of distilled water was added to the solution while swirling
with a magnet. After 30 min, 35 mL of hydrogen peroxide was poured drop-by-drop, and
the graphene oxide solution was removed from the heat stirrer after 24 h [35–38].

2.2.3. Indirect CQD-TiO2 Synthesis Method

An amount of 10 mL of CQD synthesized in the previous step was brought to a
concentration of 2 mg·mL−1. In a separate vessel, 10 mg of TiO2 was dissolved in 100 mL
of distilled water. The two solutions were mixed for 1 h at 27 ◦C to homogenize thoroughly.
Then, 0.2 g of sodium borate hydrate was poured into the solution as a reducing agent to
react on the stirrer at room temperature for 2 h and release hydrogen gas. Finally, CQD-TiO2
was gained at a concentration of 1.4 mg·mL−1 [14].

2.2.4. GO-CQD-TiO2 Synthesis Method

In total, 100 mg GO was added to the synthesized CQD-TiO2 to be completely homo-
geneous on the stirrer for 1 h. Then, 0.02 g of sodium borate hydrate was added and placed
on a stirrer for 2 h to homogenize completely. Then, it was ultrasonicated for 10 min to
dissolve the solution completely. Finally, a GO-CQD-TiO2 nanocomposite was obtained
at a concentration of 6.4 mg·mL−1. The freeze-drying method was also used to powder
the sample. The sample was centrifuged and then refrigerated at −20 ◦C until it became
completely frozen and finally dried.

2.2.5. CS-GO-CQD-TiO2 Synthesis Method

For the preparation of CS-GO-CQD-TiO2 NC, the spraying method was used. For
this purpose, 750 µL of CS-GO-CQD-TiO2 NC solution was prepared with a concentration
of 6.4 mg·mL−1. Then, pure glutaraldehyde (with a volume ratio of 0.05 glutaralde-
hyde/composite) in dark conditions was added to the solution to create cross-links and
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increase the strength of the composite. Finally, the resulting solution was placed on a stirrer
at room temperature for 5 min to obtain a homogeneous solution.

2.3. CS-GO-CQD-TiO2 NC Electrospinning Process

In total, 0.5 g of PVA in 5 mL of DI water was dissolved on a stirrer under vigorous
agitation for 1 h, and a homogeneous solution was obtained. The solution was then filled
with 350 µL of GO-CQD-TiO2 NC solution and uniformly stirred for 30 min with a stirrer.
With the use of a stirrer, 0.25 g of chitosan was dissolved in 0.6 mL of acetic acid and
added to the pre-made nanocomposite solution and, finally, the solution was prepared for
electrospinning. The NC solution was fed into a 5 mL syringe with a 22-gauge needle. Then,
the syringe was placed in the appropriate position, as well as the attachment of two positive
and negative electrodes to the aluminum foil of the collector plate to initiate the flow in the
polymer solution. As a result, the electrospinning process began. Then, a syringe with a
capacity of 5 mL was filled with the solution and located in the electrospinning setup. A
constant flow of solution with a 0.5 mL·h−1 rate, and constant conditions, including 15 kV
voltage, 15 cm distance between the collector and tip of the needle, and 28 ◦C temperature,
were applied. The electrospun sample was placed in the open air for 24 h to ensure the
evaporation of any solvent.

2.4. Cross-Link Process of Nanofibers

The nanofibrous mats were cross-linked to enhance the mechanical characteristics.
Additionally, cross-linking increases nanofiber water resistance ability. Cross-links originate
from interactions between the polar hydroxyl groups of PVA, NPs, and chitosan’s amine
groups and the aldehyde groups of glutaraldehyde [39]. In this paper, glutaraldehyde was
used to make cross-linking in the nanofibers. The sample was exposed to glutaraldehyde
for 24 h in an oven desiccator at 50 ◦C. Because of the toxicity of glutaraldehyde, the
nanofibers were washed with 1% glycine, and distilled water was used to remove unreacted
glutaraldehyde. The samples were then placed in the oven to dry completely [40].

2.5. Morphological, Chemical, and Microstructural Characterization

Synthesized NPs and nanofibers were characterized by zeta potential, Dynamic Light
Scattering (DLS), and Scanning Electron Microscope (SEM) techniques. The dry nanofibers
were used in order to conduct SEM analysis. Furthermore, the nanocomposites were
well dispersed in order to detect the size, zeta potential, and morphology through the
mentioned techniques. Other characteristics were defined by Energy Dispersive X-ray
Spectroscopy (EDS), SEM mapping, Fourier Transform Infrared Spectroscopy (FTIR), and
X-ray Diffraction (XRD).

2.6. Static Water Contact Angles (WCA)

WCA was measured using the sessile-drop method. A specially sized drop (e.g., four
microliters in ASTM D7334 standard) was applied to the sample [41]. The contact angle
test was performed statically on the surface of the nanofibers using a Jikan Gac-10 device.
A distilled water drop of approximately 4 µL microliters was placed on the surface of
nanofibrous mats measuring 2 × 1 cm2 at room temperature. A maximum of three drops
was applied to each sample. Angles were then obtained using Image J: Drop-Analysis
software and the mean of three measurements was reported for each sample. These angles
indicate the wettability of the solid surface by the liquid [10,42].

2.7. Degradability of CS-GO-CQD-TiO2

To investigate the biodegradability of CS-GO-CQD-TiO2, the 1 × 1 cm2 fragment of the
NC was dried, weighed, and placed in a Petri dish containing 10 mL of PBS with pH = 4.7
and stored at 37 ◦C for 30 min. Then, it was kept in the oven for 7, 14, 28, 42, 56, 72, and
96 h. Finally, the sample was incubated at room temperature for 3 days to dry completely,
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and then its dry weight was measured using a digital scale. Degradability was obtained
from the following formula [40]:

Biodegradability (%) =
Primary dry weight − Secondary dry weight

primary dry weight
× 100 (1)

2.8. Antibacterial Properties of CS-GO-CQD-TiO2 Nanofibers

The antibacterial activity of the nanocomposites was evaluated by using two indicator
bacteria. The characteristics of the bacteria used are listed in Table 1.

Table 1. Characteristics of the bacteria used in antibacterial testing.

Bacterium Name Standard Number Gram Reaction

Staphylococcus aureus PTCC1431 positive
Escherichia coli O157:H7 PTCC700728 negative

The liquid MIC of CS-GO-CQD-TiO2 was obtained as reported in a previous article [14].
The sterile paper disk was coated with a minimal inhibitory concentration of CS-GO-CQD-
TiO2 at a rate of 100 g·mL−1. The disc was heated for 1 h at 45 ◦C to dry. E. coli and
S. aureus were cultured uniformly with sterile swabs on Neutron Agarculture medium.
Then, the CS-GO-CQD-TiO2 disks were placed on the surface of each bacterium at a certain
distance from the antibiotic disk. Furthermore, to test the growth inhibition zone made by
CS-GO-CQD-TiO2 NC, gentamicin for S. aureus and tetracycline for E. coli were employed
as controls. Then, using a ruler to measure the growth inhibition zone’s diameter all around
the discs, the data were evaluated using the standard CLSI table.

2.9. Cytotoxicity Induced by CS-GO-CQD-TiO2 Nanofibers

CS-GO-CQD-TiO2 NC was first extracted. Thus, for each 5 mg, the NC, 1 mL of culture
medium was added. After incubation, the samples were added to mouse fibroblast cells at
different concentrations of 0.01, 0.06, 0.1 µg·mL−1, and 0.6 at 3 and 5 day intervals. The
culture medium was used as a control. In total, 106 NIH3T3 fibroblast mouse cells were
cultured in a 96-well plate and then incubated for 24 h at 37 ◦C to evaluate cytotoxicity by
the MTT method. Extracts from each sample were added to the respective wells on a plate,
and the NIH3T3 cells were exposed to them for 24 h. Then, 100 mL of colorless PRMI and
10 mL of a 12 mM MTT solution were added to each well after the growth medium had
been removed. The supernatant medium was removed after 4 h, and 100 L of DMSO was
added to each well. Finally, the amount of OD was calculated at 570 nm. The cytotoxicity
test of samples was repeated three times, and the OD was measured in triplicate.

2.10. Tensile Strength and Elongation Tests

The mechanical characteristics were evaluated by assessing elongation-at-break and
tensile strength with a Texture Analyzer in accordance with the Standard Test Procedure for
Tensile Properties (ASTM) standard method [43]. These tests are carried out under circum-
stances where strips of preconditioned CS-GO-CQD-TiO2 composite that are 1.0 cm (W) ×
5.0 cm (L) in size are fitted between the machine’s grips with an initial grip gap of 50 mm.
The sample was pulled from one side until broken at a cross-head speed of 2.0 mm/min.
To obtain the average values, each test trial contained 5 replicate measurements. The tensile
and elongation tests were shown by MPa (%) and percentage, respectively [3].

2.11. Cell Migration Inhibition Study by Scratch Wound Assay

A scratch wound assay was used to evaluate the effect of CS-GO-CQD-TiO2 on cell
migration. This test was performed with minor modifications similar to the technique
used by Malmir et al. [14]. First, NIH3T3 fibroblast mouse cells were seeded in 24-well
plates, and then they were given the night to attach to the plate bottom. After 2 h of
starvation in 0.1% FBS medium, a sterile 10 µL pipette tip was used to puncture vertical
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wounds at the cell surface. Cells were treated with CS-GO-CQD-TiO2 and then incubated
for 24 h at 37 ◦C. There was a 100 µm solution in each well. As a negative control, cells that
were treated with the medium were used. At the beginning of the incubations and again
after 24 h, the damaged cells were imaged using a Nikon Eclipse Te-2000-U microscope
(4X magnification). Using Image J software, the scratch area’s surface A was measured.
For each well, the results were calculated using the following formula: 100 × (At24/At0).
A Student’s t-test was used in the statistical analysis, which was done using the Sigma
Plot software.

2.12. Animal Study

By injecting 10 mg kg−1 (body weight) of ketamine and xylazine intraperitoneally
while the rats were under anesthesia, the dorsal area of their bodies was shaved from the
scapula to the ileum, leaving a shear wound that measured 20 mm × 20 mm. They were
then split into 4 groups, non-treated rats, phenytoin-treated rats, PVA-treated rats, and
CS-CQD-TiO2-GO electrospun fiber-treated rats. The first day following wound induction,
treatment was begun; topically applied polymers were used, and the wounds were treated.
On the seventh and fourteenth days, all groups’ wounds were inspected and photographed.
Finally, the affected region was cleaned, captured on camera, and estimated with ImageJ
software (version 1.44 p). The following formula was used to calculate the wound healing
rate [9]:

Wound healing (%) =
W0 − W1

W0
× 100 (2)

where W0 and W1 refers to wound area at initial and interval time points, respectively.
A one-way ANOVA test analyzed the data obtained from the wound area measurement.

2.13. Histological Analysis

An identically positioned skin sample was taken from each mouse at the end of the
experiment. The tissue samples were embedded in paraffin, fixed in 4% formaldehyde,
and cut into slices that were about 4 mm thick. Hematoxylin, eosin (H&E), and TRM were
used to stain the sections (Trichrome staining). Their morphological modifications were
then assessed.

2.14. Statistical Analysis

The experiments in this study were repeated at least three times for each analysis,
and the related data were expressed as mean ± standard deviation. ANOVA tests were
performed based on groups using GraphPad Prism software. A p-value less than 0.05 was
considered statistically significant.

3. Results and Discussion
3.1. Particle Size and Zeta Potential of CQD-TiO2

Evaluation of DLS test results for pure CQD, TiO2, and CQD-TiO2 nanoparticles in
Figure 1a,b shows the presence of nanoparticles with an average size of 9.14, 21.54, and
68.7 nm, respectively. CQDs are quantum NPs that may have a diameter of less than
10 nm [44]. Adding other NPs to CQDs leads to an increase in dynamic light scattering [10].
Therefore, the 59 nm diameter of CQD-TiO2 NPs might be a preliminary indication that
TiO2 NPs are linked to CQDs. Figure 1c,d shows the zeta potential of pure CQD, TiO2, and
CQD-TiO2. Particles with a zeta potential greater than 30 mV or less than −30 mV are stable.
The reported zeta potential of −60.5 mV for CQD-TiO2 indicates its good stability [45].
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Figure 1. Dynamic light scattering of (a) CQD and TiO2, (b) CQD-TiO2; zeta potential of (c) CQD and
TiO2, (d) CQD- TiO2.

3.2. Morphology of CS-GO-CQD-TiO2

The SEM images of the CS-GO-CQD-TiO2, electrospun PVA, and CS-GO-CQD-TiO2
NC with a magnification of 10,000 times are displayed in Figure 2. In Figure 2 (top), a
coherent structure with some roughness is seen. This compact structure indicates that the
GO, CQD, CS, and TiO2 NPs were well connected. The roughness seen in Figure 2 (top)
is due to the presence of large chitosan crystals. The addition of CS to NC has minimized
the free volumes and increased the cohesion of the microstructure of the NC [46]. The
results of increased condensation and roughness due to the presence of chitosan in the NC
is consistent with the results of Yaowen Liu et al. [47]. In this regard, the SEM images of the
research of Ahmed et al. showed that the GO NPs are well dispersed in the synthesized
polymer, and filling the porosity of the polymer is effective in its final performance [48].
Another study suggested that, according to SEM images, the presence of CS-GO NPs in
the polymer increased the roughness and height of the polymer [49]. Figure 2 (bottom)
shows the electrospun CS-GO-CQD-TiO2 containing the PVA. The coherent surface and the
obtained nanofibers illustrated the high compatibility of PVA with the NC and a compact
structure lacking phase separation [50]. The absence of air bubbles, cracks, or pores further
supports the excellent compatibility of the CS with PVA, as shown by Tripathi et al. [50].
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3.3. FTIR Analysis of Materials and Nanocomposites

FTIR analysis of GO, CQD-TiO2, and CS-GO-CQD-TiO2 is illustrated in Figure 3a–c.
Comparatively, in Figure 3a, GO plates have different peaks in the range of 1105 cm−1

(C-O), 1200 cm−1 (C-O-C), and 1600 cm−1 (C=O), and are broadband in the range of 3000
to 3700 cm−1. Oxidizing agents have effectively oxidized the graphite as evidenced by the
presence of oxygenated functional groups [51]. Furthermore, the detected bands of GO
(Figure 3a) at 1628 and 1550 cm−1 correspond to the carboxyl group bending vibration
and the C=C skeletal vibration, respectively [52]. In Figure 3b, the C-OH tensile vibration
peak is located between 1000 and 1300 cm−1, and the C-O-C bond exhibits vibration at
1163 cm−1. The absence of peaks in 1350–1460 cm−1, which is related to CQD, indicates that
CQD-TiO2 NPs are well-synthesized, and these results are similar to the recent papers [14].
The shifts of the peaks in Figure 3c indicate that the NPs in the CS-GO-CQD-TiO2 are well-
bonded together. According to relevant studies, chitosan has two firm peaks in 1534 cm−1

and 1640 cm−1, which are related to amide II (N-H bending variations) and amide I (C=O
stretching), respectively [53,54]. The C-O stretching in chitosan may be responsible for the
absorption peak at 1090 cm−1. The C-H stretch vibrations are thought to be responsible for
the peak at about 2900 cm−1 [55].
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Figure 4 reports the FTIR diagram of electrospun CQD-TiO2-GO-CS and PVA. To
facilitate CS-GO-CQD-TiO2 electrospinning, the NC has been combined with PVA [21].
Diana Isela and colleagues also combined chitosan with PVA in their research to facilitate the
electrospun process of chitosan and nanofiber preparation [56]. Figure 4 indicates the FTIR
of PVA. C-H tensile bond vibrations at 2916 cm−1 and the C-O bond at 1372 cm−1 belong
to PVA. These results are in line with the results of Hassan Adeli et al. [40]. Characteristic
absorption peaks of the components were shown by the nanofibrous PVA-CS-GO-CQD-
TiO2 mat. It is possible to attribute the O-H peak shift at the composite nanofibrous mat
to the creation of hydrogen bonds between the hydroxyl or amino groups in CS and the
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3.5. XRD Analysis

Figure 5a–c display the pattern of XRD from GO, CQD-TiO2, and CQD-TiO2-GO,
respectively. According to previously published papers, graphene oxide has a peak in the
2θ ~ 10◦ region with a base distance of d001 = 6.33 Å, which is used for characterization [58].
As shown in Figure 5a, the peak obtained from GO in the range of 2θ = 11.29◦ and 23.44◦ is
a characteristic of oxygen containing functional groups of GO. Another 2θ peak at 42.69◦

can be seen, which is attributed to the turbostratic band of disordered carbon components.
These results are in accordance with Stengl et al. [59]. The XRD pattern of CQD-TiO2 NPs
in Figure 5b shows reflections at 25.19◦, 37.77◦, and 47.96◦, indicative of CQD-TiO2, and
these results are consistent with our previous paper [14]. As illustrated in Figure 3c, the
intensity of peaks was decreased, which can be caused by the amorphous behavior of
synthesized nanocomposites and incorporation of CS; however, broad and weaker bonds
of GO, TiO2, and CQD can be seen in the profile. The weak peak seen at 2θ ~ 10–12◦

in Figure 5c indicates the presence of GO, which is caused by the small size of GO [59].
Studies have also shown that peaks around 25.4◦ are related to TiO2 [60]. Therefore, it can
be concluded that the peak created at 2θ = 24◦ is the result of the overlap of CQD, TiO2,
and GO NPs in the CQD-TiO2-GO NC.
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3.6. SEM Mapping and EDS Analysis

Figure 6a,b show SEM mapping and the EDS analysis of CS-CQD-TiO2-GO electro-
spun nanofibrous mats. SEM mapping for PVA was also carried out (Figure 6c) for the
purpose of comparison. Figure 6a shows the uniform bead-free structure of the electro-
spun nanofibers. Similarly, Koosha et al. observed a uniform bead-free morphology for
electrospun nanofibers of CS/PVA by SEM mapping and the EDS analysis [23]. The EDS
spectrum of the electrospun nanofibers in Figure 6b confirmed the presence of C, O, N,
and Ti elements related to CS, CQD, TiO2, and GO NPs. The presence of the Ti elements in
comparison with Figure 6a,c indicates the significant distribution of the NPs in the PVA.
Furthermore, the characteristic peaks of C, O, N, and Ti elements in Figure 6b were detected,
showing that the NPs were uniformly distributed inside the nanofibers. The elemental
compositions of the NC and nanofibers are reported in Table 2.
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TiO2-GO NC. (c) EDS spectrum of CS-CQD-TiO2-GO electrospun nanofibrous mat. (d) Surface 
Structure and Elemental Analysis of PVA: (A) SEM morphology of PVA; Images (B–D) represent 
carbon, oxygen, and nitrogen elements; Image (E) shows a combination of C, O, and N elements. 
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of CS-GO-CQD-TiO2 NC; Images (B–E) represent carbon, oxygen, titanium, and nitrogen elements;
Image (F) shows a combination of C, O, N and Ti elements. (b) EDS spectrum of CS-CQD-TiO2-GO
NC. (c) EDS spectrum of CS-CQD-TiO2-GO electrospun nanofibrous mat. (d) Surface Structure and
Elemental Analysis of PVA: (A) SEM morphology of PVA; Images (B–D) represent carbon, oxygen,
and nitrogen elements; Image (E) shows a combination of C, O, and N elements.

Table 2. Elemental composition table of NC and CS-CQD-TiO2-GO electrospun nanofiber.

NC CS-CQD-TiO2-GO Electrospun Nanofiber

Element wt.% Element wt.%

C 44.21 C 37.75
N 6.42 N 7.43
O 49.37 O 54.52
Ti - Ti 0.31

3.7. The Hydrophilicity of Different Electrospun Nanofibres

The secretions that are made during an ulcer to the surface of the wound create a
favorable environment for the development of bacteria [61]. One of the critical variables
in making a viable wound dressing is its capacity to assimilate water. The surface hy-
drophilicity of CS-CQD-TiO2-GO electrospun nanofibrous was evaluated using dynamic
water contact angle (WCA) measurements. The WCA of CS-CQD-TiO2-GO electrospun
nanofibrous mats is depicted in Figure 7. The nanofibrous mat’s WCA value was 66.65◦. As
mentioned in the articles, WCA over 90◦ means that the polymer surface is hydrophobic [62].
Therefore, it can be concluded that CS-CQD-TiO2-GO nanofibrous mats are hydrophilic.
Notably, two essential factors affect the WCA value, namely the physical hydrophobicity of
the material itself and the membrane surface roughness [63]. For example, in a previous
paper, it has been shown that a hydrophobic polymer-based composite can be made by
bonding hydrophobic substances to the surface of GO [64].



J. Funct. Biomater. 2022, 13, 300 13 of 25J. Funct. Biomater. 2022, 13, 300 14 of 28 
 

 

 
Figure 7. CS-CQD-TiO2-GO electrospun nanofibrous mat hydrophilicity. The angle θ (WCA) is 
equal to 66.65°. 

3.8. Weight Loss 
The produced nanofibrous mats should have an adequate degradation rate to pro-

vide suitable dressing during the wound healing process [40]. Figure 8 shows the biodeg-
radation rate of the mats immersed in the PBS solution. According to Figure 8, it is evident 
that in the early hours of the sample placement in PBS, the process of degradation of the 
composite with a steeper slope was performed. However, over time, the process has de-
clined. Similar to these results, previous studies have shown that chitosan mats have a 
lower degradation rate than PVA, also revealing that chemical cross-linking between the 
amine groups of glutaraldehyde and chitosan causes slower depolymerization and less 
degradation [65,66]. 

 
Figure 8. Weight loss of CS-CQD-TiO2-GO electrospun nanofiber. At first, biodegradability has in-
creased, and it seems that this slope is almost fixed over time. 

Figure 7. CS-CQD-TiO2-GO electrospun nanofibrous mat hydrophilicity. The angle θ (WCA) is equal
to 66.65◦.

3.8. Weight Loss

The produced nanofibrous mats should have an adequate degradation rate to provide
suitable dressing during the wound healing process [40]. Figure 8 shows the biodegradation
rate of the mats immersed in the PBS solution. According to Figure 8, it is evident that in
the early hours of the sample placement in PBS, the process of degradation of the composite
with a steeper slope was performed. However, over time, the process has declined. Similar
to these results, previous studies have shown that chitosan mats have a lower degradation
rate than PVA, also revealing that chemical cross-linking between the amine groups of
glutaraldehyde and chitosan causes slower depolymerization and less degradation [65,66].
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3.9. Mechanical Properties

The nanofibrous mats should be able to provide suitable mechanical characteristics
and flexibility in the electrospun state for improved clinical operation in wound dressing
application [67]. The resulting nanofibrous mats’ elongation at break and tensile strength
are shown in Figure 9b. The mechanical properties were suitable for the application in
wound dressings and tissue engineering. The human skin elongation varies between 17%
and 207% for elongation at break and between 1 and 32 MPa for tensile strength; however,
because of the diversity of human skin, these values also rely on other variables such
as age, genetic background, and skin color [68]. Figure 9b shows that the electrospun
CS-CQD-TiO2-GO NC with PVA might offer greater tensile strength and elongation at
break than the CS-CQD-TiO2-GO NC (Figure 9a). Notably, the synthesized mats in this
research had very suitable mechanical properties, making the nanofiber flexible during
wound coverage. Their tensile strength due to the presence of TiO2 ceramic NPs is higher
than that reported by Agrawal et al. for PVA/chitosan nanofibers (1.33–6.15 MPa) [65].
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3.10. Cell Viability

It was anticipated that the perfect wound dressing must be significantly biocompatible [69].
An MTT assay was used to detect the cytotoxicity effects of the CS-CQD-TiO2-GO electrospun
nanofibrous on Matson mouse fibroblast NIH3T3 cells. Figure 10 displays the results of this
experiment at 0.06, 0.01, 0.6, and 0.1 µg·mL−1 concentrations based on nanocomposites compared
to the control after 24 h. The NC solution was toxic at concentrations of 0.6 and 0.1 µg·mL−1,
which after one day caused growth inhibition in fibroblast cells. The NC at the concentration of
0.06 µg·mL−1 had almost no toxic effects (cell viability about 90%) on fibroblast NIH3T3 cells.
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However, after 24 h, the concentration of 0.1 g·mL−1 promoted the development and proliferation
of fibroblast cells, proving the safety of the produced NC at this concentration rather than having
toxic effects on the cells. The results demonstrated that CS-CQD-TiO2-GO nanofibrous mats are
biocompatible and suitable for tissue engineering applications. The results are consistent with the
studies of Hassan Adeli et al. on electrospun PVA-CS nanofibers [40].
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Figure 10. The cytotoxic effects of CQD-TiO2-GO-Cs NC on survival and proliferation of NIH3T3
fibroblast cells. The lowest toxicity was observed at the concentration of 0.01 µg·mL−1 (significant dif-
ference in comparison to control group: * p < 0.05 *), and the highest toxicity was at the concentration
of 0.6 µg·mL−1 of the NC (significant difference in comparison to control group: *** p < 0.001).

3.11. Antibacterial Test

Previous studies have shown that Staphylococcus aureus bacteria are the main cause of
wound infections [70]. Moreover, Escherichia coli bacteria are the common cause of burn
wound infection [71]. Therefore, these bacteria can reduce the wound healing process [72].
The MIC concentrations of CQD-TiO2-GO-Cs NC were 0.2 mg·mL−1 for Staphylococcus
aureus and 0.1 mg·mL−1 for Escherichia coli. The paper disc was impregnated with the NC
at the above concentrations. Gentamicin and tetracycline discs were used as controls. The
results in Figure 11A showed that the average halo diameter around the NC disk for S.
aureus was 12 mm, and the halo diameter around the tetracycline antibiotic disk was 21 mm
on average. As shown in Figure 11C, the inhibition zone of S. aureus around the sample and
gentamicin antibiotic disk was approximately equal. In addition, the mean halo diameter
around the NC disk in Figure 11B was 27 mm for E. coli, whereas the mean halo diameter
around the tetracycline antibiotic disk was 29 mm. The gentamicin antibiotic and the NC
disk’s inhibition zones created in Figure 11D were approximately equal. The antibacterial
activity was more effective toward the Gram-negative E. coli than Gram-positive S. aureus
bacteria, presumably because of their different cell wall structures [70].

3.12. Inhibition of Cell Migration and Invasion

A scratch wound assay was carried out to determine whether the treatment of CS-
CQD-TiO2-GO influenced cell migration and invasion. For the controlled cells, considerable
cell migration was seen after 24 h, as illustrated in Figure 12. However, after being treated
with CS-CQD-TiO2-GO, injured NIH3T3 fibroblast mouse cell monolayers swiftly healed
the gap over the course of 24 h, just like in the control group.
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Figure 12. In vitro scratch test to measure the impact of the CQD-TiO2-GO-Cs NC on the migration
of NIH3T3 fibroblast mouse cells. Then, at 0 and 24 h after scraping, cells were examined with an
inverted microscope (4X magnification). The areas without cells are indicated by dotted lines.

3.13. Animal Study

Figures 13–15 display the percentage of improved wound healing over the course of
the 14-day study in all animal groups that received treatment. On the fourteenth day after
receiving CS-CQD-TiO2-GO treatment, the wound area was significantly reduced in mice.
The CS-CQD-TiO2-GO electrospun nanofibrous mats group demonstrated the best wound
healing effect on the 7th day with a 52.102% improvement in comparison to other groups.
As shown in Figure 16, the wound healing of the phenytoin group was compared with
other groups at both 7th and 14th day. The wound area of phenytoin was comparable with
the positive and negative groups and did not show any significant difference, which might
be due to normal wound healing function [73]. On the 14th day, the CS-CQD-TiO2-GO
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electrospun nanofibrous mats group showed a 93.13% wound healing effect compared with
both positive and control groups and phenytoin (p < 0.0001) (Table 3). Motealleh et al.’s
research outcomes are similar to these results [74]. Furthermore, the nanofibrous mats
showed good collagen organization on mice skin, and inflammatory responses were not
observed. Graph of Figure 16 shows the wound healing contraction rate measured on the
first, 7th, and 14th days. The results illustrate that the highest rate of wound healing was in
the group treated with nanofibrous mats after 14 days. Similar to this study, in a paper by
Marulasiddeshwara et al., it was demonstrated that CS-TiO2, CS, and curcumin NPs have
synergistic effects, and TiO2-CS-curcumin NC results in the wound healing of treated mice
after 14 days [75].
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day. Wounds of about 1 cm × 1 cm were created in the skin of all mice, and mice were treated in
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day. The highest rate of wound healing is related to the CS-CQD-TiO2-GO electrospun nanofiber
treated group.



J. Funct. Biomater. 2022, 13, 300 18 of 25
J. Funct. Biomater. 2022, 13, 300 20 of 28 
 

 

 
Figure 15. The rate of wound healing of 5 different mice treated in different groups on 14th day. As 
seen in the picture, the wounds of nanofibrous mat-treated mice have been completely healed. 

 
Figure 16. Graph of wound healing in the experimental groups after 7 and 14 days. According to 
the graph, the highest rate of wound healing was in the group treated with CS-CQD-TiO2-GO elec-
trospun nanofibrous mats after 14 days. The treatment group had significant difference in compar-
ison to other three groups at 14th day (**** p < 0.0001); ** and *** reveal the difference between groups 
at p < 0.01 and p < 0.001, respectively. 

  

Figure 15. The rate of wound healing of 5 different mice treated in different groups on 14th day. As
seen in the picture, the wounds of nanofibrous mat-treated mice have been completely healed.
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Figure 16. Graph of wound healing in the experimental groups after 7 and 14 days. According to the
graph, the highest rate of wound healing was in the group treated with CS-CQD-TiO2-GO electrospun
nanofibrous mats after 14 days. The treatment group had significant difference in comparison to
other three groups at 14th day (**** p < 0.0001); ** and *** reveal the difference between groups at
p < 0.01 and p < 0.001, respectively.

Table 3. Wound healing percentage in experimental groups.

Groups

7th Day 14th Day

Control 38.025 ± 1.484 62.175 ± 1.583
Phenytoin 36.675 ± 3.435 71.34 ± 0.669 a

PVA 38.163 ± 2.257 69.659 ± 1.597 a,e

CS-CQD-TiO2-GO
nanofibrous mats 52.102 ± 1.861 c 93.137 ± 0.885 b,d

Values are presented as mean ± standard deviation, a significantly different from control, p < 0.01, b significantly
different from control, p < 0.001, c significantly different from PVA, p < 0.05, d significantly different from Phenytoin,
p < 0.001, e significantly different from CS-CQD-TiO2-GO electrospun nanofibrous mats, p < 0.001.
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3.14. Histology

Different epidermis layers can be well identified in the histological images in
Figures 17–20. To evaluate the effects of the CS-CQD-TiO2-GO nanofiber on the skin
of injured mice, the wound skin tissue was examined in four groups after 14 days of treat-
ment. The histology of all samples was examined by staining with H&E and TRM dyes.
A similar method was performed by Bolle et al. [76] and Murphy et al. [77]. The negative
control group included samples not receiving any treatment (Figure 17). The positive
control group included the group treated with phenytoin (Figure 18). Figure 19 shows the
group treated with the CS-CQD-TiO2-GO nanofiber and the last group treated with the
CS-CQD-TiO2-GO nanofiber containing phenytoin (Figure 20). According to the results
obtained from microscopic imaging of the four treatment groups and their comparison with
each other, the wound healing stages in the CS-CQD-TiO2-GO nanofiber group containing
phenytoin were more comprehensive than in the other three groups. This group also had
an inflammatory response within 14 days after wound healing. It gradually decreased in
this group, and dead cells in the tissue were much less seen than in the other groups, and
creatine formation was observed on the fourteenth day.
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Figure 17. Microscopic imaging of skin tissue sections stained by two types of H&E and TRM dyes.
The photo shows improved skin tissue 14 days after treatment in the non-wound dressing group.
Yellow arrows indicate the formation of an epidermal layer in the tissue repaired with phenytoin, and
also the green arrows indicate the penetration of inflammatory cells into the repaired tissue. Black
arrow indicates dead cells in the tissue.
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Figure 18. Microscopic imaging of improved tissue incisions 14 days after treatment in the positive
control group (phenytoin). The yellow arrows indicate the formation of an epidermal layer in the
repaired tissue that is treated with phenytoin, and the green arrows indicate the penetration of
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Figure 19. Microscopic imaging of improved tissue incisions 14 days after treatment with CQD-
TiO2-GO-Cs nanofiber. Yellow arrows indicate the formation of an epidermal layer in the restored
tissue treated with CQD-TiO2-GO-Cs nanofiber, and black arrows indicate dead cells in the tissue.
Additionally, the green arrows indicate the penetration of inflammatory cells into the repaired tissue.
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Figure 20. Microscopic imaging of improved tissue incisions 14 days after treatment with CQD-
TiO2-GO-Cs nanofiber containing phenytoin. The yellow arrows indicate the formation of an epi-
dermal layer in the repaired tissue along with the CQD-TiO2-GO-Cs nanofiber containing pheny-
toin. The purple arrows indicate the formation of creatine in the tissue. 

4. Conclusions 
In this study, novel electrospun nanofibrous CS-CQD-TiO2-GO mats were fabricated 

for wound healing application. FTIR analysis, XRD pattern, and SEM morphology indi-
cated proper incorporation of NPs into composite and bead-free and uniform structures 
of the electrospun nanofibrous mats. Furthermore, the EDS spectrum of nanofibers con-
firmed the presence of related elements to CS, CQD, TiO2, and GO. The size and zeta po-
tential of CQD-TiO2 were 68.7 nm and −60.5 mV, respectively. The mechanical properties 
were also investigated and the presence of the ceramic phases played a key role in increas-
ing the tensile strength from around 3.8 to 9.0 MPa. Furthermore, the mats exhibited ef-
fective activities to inhibit bacterial growth of both Gram-positive and Gram-negative bac-
teria and showed proper cytocompatibility. The results of in vivo experiments in mice 
indicated that the CS-CQD-TiO2-GO composite resulted in better reepithelization and 
wound healing compared to the control group. 
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Figure 20. Microscopic imaging of improved tissue incisions 14 days after treatment with CQD-TiO2-
GO-Cs nanofiber containing phenytoin. The yellow arrows indicate the formation of an epidermal
layer in the repaired tissue along with the CQD-TiO2-GO-Cs nanofiber containing phenytoin. The
purple arrows indicate the formation of creatine in the tissue.

4. Conclusions

In this study, novel electrospun nanofibrous CS-CQD-TiO2-GO mats were fabricated
for wound healing application. FTIR analysis, XRD pattern, and SEM morphology indicated
proper incorporation of NPs into composite and bead-free and uniform structures of the
electrospun nanofibrous mats. Furthermore, the EDS spectrum of nanofibers confirmed
the presence of related elements to CS, CQD, TiO2, and GO. The size and zeta potential
of CQD-TiO2 were 68.7 nm and −60.5 mV, respectively. The mechanical properties were
also investigated and the presence of the ceramic phases played a key role in increasing
the tensile strength from around 3.8 to 9.0 MPa. Furthermore, the mats exhibited effective
activities to inhibit bacterial growth of both Gram-positive and Gram-negative bacteria and
showed proper cytocompatibility. The results of in vivo experiments in mice indicated that
the CS-CQD-TiO2-GO composite resulted in better reepithelization and wound healing
compared to the control group.
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