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Abstract: In the last few years, the progress made in the field of nanotechnology has allowed re-
searchers to develop and synthesize nanosized materials with unique physicochemical characteristics,
suitable for various biomedical applications. Amongst these nanomaterials, metal oxide nanoparticles
(MONPs) have gained increasing interest due to their excellent properties, which to a great extent
differ from their bulk counterpart. However, despite such positive advantages, a substantial body
of literature reports on their cytotoxic effects, which are directly correlated to the nanoparticles’
physicochemical properties, therefore, better control over the synthetic parameters will not only lead
to favorable surface characteristics but may also increase biocompatibility and consequently lower
cytotoxicity. Taking into consideration the enormous biomedical potential of MONPs, the present
review will discuss the most recent developments in this field referring mainly to synthesis methods,
physical and chemical characterization and biological effects, including the pro-regenerative and
antitumor potentials as well as antibacterial activity. Moreover, the last section of the review will
tackle the pressing issue of the toxic effects of MONPs on various tissues/organs and cell lines.

Keywords: metal oxide nanoparticles; nanotechnology; pro-regenerative potential; cancer therapy;
antimicrobial activity; nanotoxicity

1. Introduction

In the last few decades, the field of nanotechnology has become one of the most active
areas of customizable materials science [1], with wide practicability in various clinical
applications, due mainly to the specific size-dependent properties exhibited by the resulting
nanomaterials as a direct consequence of a controlled synthesis procedure [2]. Amongst the
already in use nanomaterials, nanoparticles (NPs) have received a great deal of attention
due to their small size and large surface area [3], properties which provide researchers
with novel ways of diagnosing and treating diseases that prior to this were thought to
be unapproachable due to the size limitations. With multiple advantages such as high
stability, simple preparation methods, excellent engineering control over aspects ranging
from size, shape, porosity, etc. and cellular penetration capability, MONPs have grown into
valuable materials for the drug and health-related industry [4]. Through the design and
development of engineered MONPs, the limitations imposed by their bulk counterparts
could be finally overcome, allowing researchers to make astounding breakthroughs in fields
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such as specific drug delivery, bio-imaging, biomolecule sensors, etc. [5,6]. Moreover, due
to their reduced size, metal oxide nanoparticles can interact on a more in-depth level with
various cellular structures compared to their bulk counterparts, and, more importantly, they
do not cause systemic toxicity due to their highly improved biocompatibility [5,6]. Currently,
various types of MONPs are used in clinical practice as antibacterial and wound healing
dressings, biosensors and anticancer and image contrast agents [7]. Of these, zinc oxide NPs
(ZnO NPs), cerium oxide NPs (CeO2 NPs), iron oxide NPs (Fe2O3 NPs), silver oxide NPs
(AgO NPs), magnesium oxide NPs (MgO NPs), titanium oxide NPs (TiO2 NPs), nickel oxide
NPs (NiO NPs), zirconium oxide NPs (ZrO NPs) and cadmium oxide NPs (CdO NPs) are
the most promising candidates for biomedicine, with a considerable amount of research data
available in recent literature regarding their biological in vitro and in vivo activity.

ZnO NPs are a nontoxic, biocompatible biomaterial, with unique abilities that may
vary depending on their size, shape, orientation, morphology and aspect ratio [8]. They
are widely used in commercial products such as sunscreens, ointments, food packaging
and everyday-care products. Moreover, ZnO NPs exhibit a strong antibacterial effect,
mainly attributed to their distinct characteristics, that is also dependent on dose, time and
synthesis method [8] In addition, due to their inherent anticancer activity, ZnO NPs have
been approved by Food and Drug Administration (FDA) as a new and potent antitumor
therapy [9]. It is generally accepted that in addition to the generation of high levels of
reactive oxygen species (ROS), ZnO NPs can exhibit a selective cytotoxic effect against
cancer cells through the induction of an impaired equilibrium of zinc-dependent protein
activity [10]. However, ZnO NPs were shown to induce toxic effects in different cells and
organisms, thereby requiring further studies meriting their therapeutic benefits over the
potential toxicological risk [11].

CeO2 NPs represent another type of MONPs widely used in biomedical applications
due to their unusual antioxidant properties and anticancer activity. The basis for CeO2
NPs activities lies in the thermodynamic efficiency of redox-cycling between 3+ and 4+
states on their surface [12] and their unusual ability to absorb and release oxygen [13]. It is
worth noting that these NPs can also exhibit pro-oxidant effects at lower pH values [14]
and high concentrations [15], and data found in the literature suggest that, depending on
their synthesis procedure, dosage and exposure time, they can induce cytotoxic effects [16].

TiO2 NPs are prevailingly used in bone and tissue engineering due to their ability to
induce cell migration, adhesion, osseointegration and wound healing [17,18]. However,
they also serve as an excellent antibacterial agent [19,20], playing an important role
in bacteria growth inhibition via ROS production in the presence of ultraviolet (UV)
light [21,22]. Moreover, due to their ability to generate high levels of ROS, they also
exhibit anticancer activity [23].

One of the most promising nanoscale biomaterials is represented by Fe2O3 NPs, which
can either be used as standalone agents (functionalized with other bioactive molecules/agents),
embedded in composites, or bound to different types of cells [24]. Generally, Fe2O3 NPs
are mostly used as drug-delivery platforms for pro-regenerative purposes or anticancer
therapies, where the selectively targeted release of an active drug is accomplished by either
the use of specific binding proteins or by the influence of external magnetic fields [25,26].
In addition, various cells can be magnetically marked with these NPs, therefore allowing
for a non-invasive in vivo monitoring of the efficiency of a therapy [27,28].

MgO NPs are primary non-poisonous nanomaterials, with biomedical applicability
as drug-delivery systems for anticancer therapy and antibacterial dressings, especially as,
being soluble, adverse effects due to remaining in the tissue are avoided [29].

NiO NPs are a class of nanomaterials with a wide variety of flexible properties
and vast applicability in the biomedical field through their antibacterial, antifungal and
anticancer activities [30].

Because of their favorable biodegradable, mechanical and optical characteristics, ZrO
NPs have piqued the interest of researchers, but despite their high biomedical potential,
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literature data regarding their role as antitumor, antibacterial and pro-regenerative materials
are scarce [31].

Owing to their excellent antibacterial properties, which stem from their small size
and morphology combined with the release of ions and ROS, CdO NPs play an important
role in treating various bacterial and fungal diseases [32]. In addition, due to their unique
physicochemical properties, CdO NPs exhibit better antitumor activity compared to any
other heavy metal oxide nanoparticle, but only at lower concentrations [33].

Currently, MONPs are held at an enormous market value due to the significant
improvements brought in various fields of nanobiomedicine and their immense potential
for future applications.

The present review addresses in the first chapter, the various synthesis methods
and characterization of the resulting MONPs, while the following chapters focus on the
biological effects exhibited by the MONPs, particularly the pro-regenerative potential,
anticancer activity and antibacterial properties. In addition to the positive aspects of
MONPs, their very controversial biotoxicology is also discussed in detail alongside the
future of these nanoparticles and if their positive therapeutic benefits can outweigh the
potential risk caused by the toxic side effects.

2. Metal Oxide Nanoparticles: Synthesis, Characteristics, Surface Modification
and Characterization
2.1. Synthesis Methods and Key Characteristics of Metal Oxide Nanoparticles

The synthesis of nanoparticles can be achieved with either a “top-down” or “bottom-
up” approach. In the top-down approach, bulk materials are broken down into NPs by size
reduction (via various lithographic techniques, milling, grinding, laser ablation, sputtering,
etc.). In the bottom-up approach, NPs are obtained by chemical, physical and biological
techniques (plant material, microbes, biological products, etc.).

Typically, chemical and physical synthesis routes (i.e., bottom-up approaches) are
employed in the synthesis of MONPs, and result in an efficient quantity of obtained
nanoparticles, but have the disadvantage of higher cost, presence of poisonous chemicals
(e.g., absorbed on the NPs surface) leading to adverse effects when used in biomedical
applications, the need to use of stabilizers, etc. [8,34–36].

Such synthesis routes include but are not limited to: (i) (chemical) precipitation,
(ii) wet chemical synthesis, (iii) hydrothermal, (iv) solvothermal, (v) sol-gel, (vi) solid-state
pyrolytic methods, (vii) thermal decomposition and (viii) microwave-assisted synthesis.

In order to overcome the disadvantages of MONPs synthesized through the usual
classical routes that lead to adverse effects in biomedical applications, the green synthesis
of MONPs, or biosynthesis, has gained significant attention due to the use of environmen-
tally friendly and non-toxic reagents with diminished adverse/toxic effects, and result
in increased biocompatibility. This approach includes, for example, the use of various
biopolymers, plant leaf extracts, algae, surface active biosurfactants, etc. which offer higher
specificity, biodegradability and biocompatibility [8,37,38]. Figure 1 shows an overview of
the various synthesis routes used for manufacturing metal oxide nanoparticles.

Chemical precipitation is based, as the name suggests, on using a precipitating reagent
(such as sodium hydroxide ammonium hydroxide or urea) in the metal precursor aqueous
solution, and the resulting precipitate is annealed at high temperatures and converted to
the corresponding MONPs. While such a synthesis method results in small-sized NPs,
with a narrow distribution, and high purity, it can also lead to NPs with poor crystallinity
and the risk of contamination can occur (from the intermediate formation). In the case of
spontaneous precipitation, the process takes place without the addition of a precipitating
reagent. Such precipitation methods are used for various MONPs, see for ZnO [39–42],
CeO2 [43–45], Fe2O3 [46–48], TiO2 [49], MgO [50,51] and NiO [52]. The wet chemical
synthesis method is based on the chemical precipitation method with the addition of an
additive to stabilize the formed NPs; for example, such a synthesis method is used for ZnO
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NPs, with starch as the stabilizing agent [53], or for other MONPs (e.g., in the synthesis of
CeO2 [54,55], Fe2O3 [56], TiO2 [49], MgO [57] NiO [58,59], ZrO [60] and CdO [61,62]).
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Hydrothermal synthesis of MONPs is widely used due to the extensive control exer-
cised over the morphology/particle size and lowering of particle aggregation, combined
with suitability for large-scale production and high purity. Nevertheless, long reaction
times are involved and several post-processing steps are required, as will be further dis-
cussed. The synthesis typically involves sealing a metal precursor aqueous solution into a
Teflon line stainless-steel autoclave, together with a precipitating agent (e.g., NaOH) previ-
ously added dropwise to achieve the desired pH. The autoclave is then kept at a constant
temperature (e.g., 80–200 ◦C) for a specific duration (e.g., 1–20 h), [63] followed by several
washing steps and finally, annealing. Examples of hydrothermally grown MONPs include
ZnO [64,65], CeO2 [66], Fe2O3 [67], TiO2 [68], MgO [69,70], NiO [71,72] and CdO [73].

The solvothermal synthesis is similar to the hydrothermal method, except other sol-
vents are used in place of water. Typically, the reaction vessels or autoclaves are operated
in a temperature range of 100 to 1000 ◦C and a pressure range of 1 to 10,000 bar [74].
The solvents used typically include diethanolamine (ZnO NPs [75]), ethanol (α-Fe2O3
NPs [76]), methanol (ZnO NPs [77]) 1,4-butanediol (γ-Fe2O3 NPs [78]), toluene (TiO2
NPs [79], NiO [80]) and ethylene glycol (Fe3O4 NPs [81]). Nevertheless, in some syntheses,
the use of a stabilizer is necessary, and when targeting biomedical applications, it should
also be biocompatible (e.g., trisodium citrate [81]).

The sol-gel method is a conventional and industrial method widely used for the syn-
thesis of various NPs [82], offering, especially, good control over their size, high purity and
homogeneity and low temperatures (on the downside, the use of organic solvents, avail-
ability of necessary precursors and long reaction times pose challenges). The key lies in the
production of a homogeneous sol from the precursors and its conversion into a gel, followed
by the removal of the solvent from the gel and subsequent drying. The molecular precursor
is usually the corresponding metal alkoxide, which is dissolved in water or alcohol and
converted to a gel by heating and stirring by hydrolysis/alcoholysis [82]. Appropriate
drying methods are necessary depending on the desired properties and application of the
resulting NPs. A noteworthy point is the broad size-distribution of particles obtained via
sol-gel processes. Examples of MONPs synthesized by sol-gel include the synthesis of
ZnO NPs either by a modified sol-gel method resulting in a 25 nm NPs, which is smaller
than with previously reported sol-gel processes [41], or by typical sol-gel processes [83].
Additionally, several other MONPs can typically be obtained via the sol-gel method, e.g.,
α-Fe2O3 [84], MgO [63], NiO [85,86] and CdO [87].
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Solid-state pyrolytic methods are based, as the name suggests, on the pyrolysis of
the metal precursor, while the pyrolysis temperature controls the particle size and the
additional chemicals and resulting by-products, and their dissolution can control the NP
agglomeration [37]. For example, different sizes of ZnO NPs (8 to 35 nm) were obtained by
adjusting the pyrolysis temperature of the reaction mixture [88].

MONPs obtained via thermal decomposition rely on heating the metal precursor
above their decomposition temperature in a solvent with a high boiling point [89]. Such
NPs have the advantage of being highly monocrystalline (i.e., a post-synthesis annealing is
not necessary), but the yield of NPs is quite low. Typically, precursors are organometallic
compounds dissolved in organic solvents, also containing surface-stabilizing agents, and
the synthesis takes place at high temperatures in an inert atmosphere. Generally, an optimal
precursor has to have a low decomposition temperature in order to result in a high surface
area and low crystallite size. Moreover, high temperatures are avoided as they could lead
to particle sintering, thus precluding the formation of NPs. The size of the NPs can be
tuned through the reaction parameters, e.g., precursor, temperature, etc. This method
is typically used in the synthesis of nanoparticles of ZnO [90], Fe2O3 [91,92], CeO2 [93],
TiO2 [94], MgO [95], NiO [96,97] and CdO [98].

Microwave-assisted synthesis of nanomaterials has also gained tremendous ground, as
the rapid heating of the reaction system can be achieved by microwave radiation, resulting
in an enhancement of the reaction rate (a several orders of magnitude increase due to
generation of localized reaction sites) and, thus, in a reduction in the reaction time [89].
Though such a synthesis method cannot be scaled up (no control over the temperature
and pressure of the process), due to the high NPs formation yield, reduced agglomeration
and fast reaction rates it is advantageous for further research. Various MONPs were syn-
thesized using microwave-assisted techniques, see microwave polyol synthesis (ZnO [99],
CeO2 [100]), microwave heating method (α-Fe2O3, β-Fe2O3, Fe3O4 [101], CdO [102]), solid-
state microwave irradiation (NiO [103] NPs), microwave-assisted, solution-based synthesis
of TiO2 [104,105] or NiO [106], microwave-assisted hydrothermal methods (ZnO [107]),
low-power microwave-assisted heating (ZnO [108]), surfactant-free microwave-assisted
mixing (ZnO [109]), etc.

In addition, there are other reported synthesis methods, generally not valid for the
synthesis of all MONPs, but for specific metal oxides. These include mechanochemical
synthesis (mechanochemical reactions in different milling times—Fe2O3 NPs [110]), co-
precipitation via flow chemistry (Fe2O3 NPs [111]), continuous flow synthesis (TiO2 [112]
or γ-Fe2O3 [113] NPs), successive ionic layer absorption and reaction (NiO [114]), direct
chemical synthesis (NiO [115]), anodic arc plasma (NiO [116]) and so on.

The green synthesis of MONPs has received increased attention due to the use of
environmentally friendly and non-toxic reagents, in contrast to other wet chemical syn-
thesis methods, which employ noxious/toxic chemicals that can later be translated into
the final products, therefore affecting the use of such NPs in pharmaceutical and other
medical/biomedical applications. The advantages of green synthesis, besides the increased
biocompatibility of the obtained NPs, are based on the control of the NPs morphology,
lower costs and the fact that the enzymes and proteins found in the source materials are
good reducing and capping agents [117]. In this respect, microbes (fungi, algae, bacte-
ria), plant extracts of leaves, roots, fruits, or flowers (terpenoid, alkaloid, tannins, phenol,
polyphenol, etc.) or various biological products (starch, egg protein, honey, agarose, pectin,
etc.) are used [118–120]. Microbial synthesis of MONPs was shown to be an advantageous
method due to its reduced toxicity compared to the typical high-pressure and chemical pro-
cesses [121], but also because the microbes are not detrimentally affected by the synthesis
conditions [122]. The green synthesis of MONPs using plant extracts is based on the fact
that the plant extracts are employed in the bioreduction of metal ions and to synthesize
and stabilize the NPs; similarly, the process is simple, fast and environmentally friendly.
Overall, in green synthesis, the reaction rates are slower and only a limited variety of NP
shape and size can be obtained. Due to the above-mentioned advantages, this synthesis
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method is widely used for the growth of MONPs for biomedical applications, targeting
various NPs such as Ag [121,123], or other metal oxides, as described in recent works or
reviews (ZnO [8,37,117], Fe2O3 [124,125], CeO2 [117,119], TiO2 [117,126,127], MgO [128],
CuO [129], NiO [117,130], ZrO [131,132] or ZrO2 [133] and CdO [62,134]).

On a final note, for more details with respect to the synthesis approach and method-
ology (used precursors, additives, stabilizers, or reactions conditions), the following re-
views are recommended for the synthesis of various MONPs, i.e., for ZnO [8,37,120],
CeO2 [119,135–137], Fe2O3 [124], TiO2 [120,138], MgO [63,128,139,140], CuO [129,141],
NiO [30,142,143] and CdO [144] NPs.

Additionally, in view of the biological effects (interactions with biofluids, cells,
biomolecule, etc.) of such MONPs, these are influenced by a wide range of factors, such
as NPs size, aggregation state, morphology and stability and, therefore, the synthesis
methods are typically tailored towards achieving control over the NPs morphology, size
and stability. For example, the physical and chemical properties of MONPs that have
an impact on the interactions with cells are the (i) NPs morphology (shape, size), which
controls aspects such as overcoming cell barrier, internalization and toxicity [145–148];
(ii) NPs surface area and surface energy, as this influences the number of active sites and
can control reactivity [82,149]; (iii) crystal structure, which together with size, defects,
media composition and aggregation, influences the dissolution of the metal ions, which can
cause toxic effects [150,151]; (iv) surface chemistry, such as surface charge (zero-point of
charge, acidity constant), dispersibility and aggregation, influence surface cascade reactions
consequential for healing and subsequent biointegration [150–157]; (v) photocatalytic
properties and chemical composition of the MONPs, as some nanoparticles can generate
hydroxide or peroxide radicals and, furthermore, can (photo)release metal ions that may
either promote adsorption reactions and/or facilitate favorable/unfavorable localized
‘-cidal’ effects [158–160].

2.2. Functionalization of Metal Oxide Nanoparticles for Biomedical Applications

The previous section discussed the various synthesis methods of MONPs, with an
overview of ZnO, Fe2O3, CeO2, TiO2, MgO, NiO, ZrO and CdO NPs. While some of
these NPs already present some biological effects in their bare nanoparticulate form, the
performance and use of others type of NPs can be maximized by additional modifications.
These modifications involve the surface functionalization of NPs such that they can elicit
specific responses that may be biologically or chemically more favorable.

It should be noted that most of the synthesis processes result in hydrophobic NPs, as
a result of synthesis conditions and due to the use of surfactants. This, in turn, limits the
solubility of the NPs in aqueous or biological media [161]. There are many approaches for
surface modifications and these include functionalization with drugs, polymers, biopoly-
mers, inorganic materials, or bioconjugation (Figure 2). This is achieved by methods such
as coating, conjugation strategies, in situ synthesis, self-assembly, surface encapsulation, or
the synthesis of core-shell nanoparticles. After the surface modification, the functionalized
nanoparticle is compatible with the biological environment, predominantly due to the
hydrophilic nature of the coated shell [155,162].

With respect to drug functionalization, the key advantages of using MONPs are
twofold. The first is connected to the possibility of localizing the drug to the target cell
or area, which significantly increases the potency of the drug, while reducing the dosage
and, thus, removing the issue of toxicity to the tissue. Secondly, having a surface coating
(shell) on the MONPs can stabilize the nanoparticles, influence the size of the colloid
particle and their bio-kinetics and distribution in the body, as well as diminishing their
toxicity [155,161,163]. A wide range of specific drugs can be employed, such as anticancer,
anticonvulsants, immunosuppressants, antibiotics, anti-inflammatory, antiviral, antifungal,
or alternative, drugs. The drugs can either be covalently bound to the MONPs surface or
via electrostatic interactions or via sequential functionalization [164] such that loading and
release kinetics are governed by affinity to binding substrates and localized environments.
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MONPs can be modified by polymers and/or biopolymers, which also contributes to
nanoparticle stability in physiological conditions, increase their activity towards biological
interactions, and can be further used to introduce more diverse functionalities [161,165,166].
Such polymer coatings can be achieved by either replacing an initial coating on the
MONPs (e.g., ligands) or by directly coating the polymer. Typical examples of poly-
mers used include poly(ethylene glycol), poly(lactic-co-glycolic acid), poly(vinyl alcohol),
poly(lactic acids), poly(vinylpyrrolidone), poly(alkyl cyanoacrylates), poly(e-caprolactone),
poly(methyl methacrylate), poly(ethyleneimine) and poly(dopamine) [155,161,167]. To
further tackle the issue of toxicity of polymers at higher concentrations of longer treatment
duration, an alternative is represented by using biopolymers such as peptides, proteins,
dextran, chitosan, heparin, cellulose, lignin, etc. [155,161].

The use of inorganic moieties or materials such as surfactants, e.g., sodium dodecyl
sulfate and sodium oleate, inorganic ligands such as carboxylates, silanes, phosphates
and so on, or silica, is also widely employed for establishing a coating on the MONPs.
For example, silica significantly increases NPs stability, biocompatibility and surface
functionality with respect to biomedical applications, and is used for coating the surface
of magnetic nanoparticles [161].

Another approach used for the functionalization of the MONPs is bioconjugation,
which consists of the conjugation of NPs surfaces with biomolecules whose tailored prop-
erties evoke favorable interactions in the biological environment [168]. Often, linker
molecules are necessary to obtain good adhesion and functionality of the immobilized
biomolecules [169]. These conjugations enable the NPs to reach and effectively interact
with site-specific cells [161,170].

Furthermore, the functionalization method also depends on the chemical nature and
surface properties of the chosen nanoparticles, and thus there is no universal method valid for
all MONPs. For detailed information with respect to specific functionalization approaches
targeting the discussed MONPs of the present review, readers are referred to the following
literature reports—ZnO [155,161], Fe2O3 [155,161,163,171], CeO2 [172], TiO2 [23,155,173,174],
MgO [139,140] NPs, or recent functionalization approaches (NiO [175] NPs).

2.3. Characterization of Metal Oxide Nanoparticles for Biomedical Applications

The typical characterization techniques for MONPs also in view of targeting biomedi-
cal applications are based on evaluating the: (a) morphology and composition—scanning
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electron microscopy (SEM) and transmission electron microscopy (TEM), combined with
energy dispersive X-ray (EDX) analysis; (b) crystallographic structure—X-ray diffrac-
tion analysis (XRD); (c) molecular groups and chemical bonding—Fourier-transform in-
frared spectroscopy (FTIR), or time-of-flight secondary ion mass spectrometry (ToF-SIMS);
(d) NPs’ chemical and compositional properties—X-ray photoelectron spectroscopy (XPS);
(e) synthesis mechanism—thermogravimetric analysis and differential thermal analysis
(TGA–DTA); and (f) evaluation of the bandgap adsorption peak—UV-Vis spectroscopy.
Moreover, other typical characterization techniques include the evaluation of the zeta poten-
tial, which is crucial in evaluating the effective electric charge of the nanoparticles (without
or with further functionalization of the NPs). The different characterization techniques are
also chosen as a function of the MONPs evaluated, due to the specifics of the metal oxide
material and/or their further modifications.

2.3.1. MONPs—Morphology Evaluation

From the above characterization methods, electron-microscopy techniques are crucial
for the evaluation of the nanostructure and the NPs morphology with respect to particle
size (mean and distribution), as well as providing detailed structural information at the
atomic scale [176].

Representative TEM images of different MONPs obtained by various synthesis meth-
ods are shown in Figure 3. Namely, Figure 3a shows a representative high-resolution
transmission electron microscopy (HRTEM) image of ZnO NPs obtained by a green synthe-
sis using E. prostrata leaf extract as a capping agent—the NPs have an average size of 29 nm,
ranging from 16 to 85 nm, showing also a triangular, radial, hexagonal, rod, or rectangular
shape [177]. The SAED pattern is also included (selected area electron diffraction pattern)
confirming the high crystallinity of the NPs. Figure 3b shows the HRTEM image demon-
strating the formation of small-sized CeO spherical particles (diameter ~5 nm), obtained
by a simple wet chemistry method [178,179]. Balaji et al. [180] have synthesized different
sizes of biogenic ceria (CeO2) NPs, with diameters of 50, 20, 10 and 5 nm, by hydrothermal
synthesis in the presence of E. globulus leaf extract—Figure 3c shows the HRTEM image of
the CeO2 NPs with 20 nm diameter. Moreover, the authors confirmed the formation of CeO2
particles with a fringe space of 3.1 Å, also corroborated by the XRD data, demonstrating
a (111) plane (3.24 Å) of CeO2 NPs [180]. Rufus et al. [181] have reported on the green
synthesis of α-Fe2O3 NPs (environmentally benign, by the use of guava leaves, Psidium
guajava) via a simple precipitation method. While SEM confirmed the quasi-spherical
shape of the NPs, with diameters in the 20–48 nm range and an average diameter of 35 nm
(weight of iron and oxygen from EDX was 62.55% and 37.45%), further TEM characteriza-
tion corroborated the irregular shape of the NPs with an average size of ~38 nm (Figure 3c)
and a rhombohedral structure (lattice fringe width of 0.27 nm corresponding to the (104)
facets of the rhombohedral structure—Figure 3d).

TiO2 NPs obtained by thermal decomposition from titanium oxysulfate and urea
(precursor ratio 1:0.4) are shown in Figure 3e [94], and the diameter of the NPs can be
controlled by the urea amount—in this case, the NPs had diameters in the 20–40 nm range.
MgO NPs obtained by a sol-gel method with the addition of a surfactant (in order to
prevent agglomeration) are shown in Figure 3f, having some light agglomeration but with a
narrow distribution of the particle size (average size 15.7 nm) [70]. Hydrothermally grown
NiO NPs with an average size of 29 nm are shown in Figure 3h (authors confirmed the
NPs size by STM measurements) [182]. Green-synthesized ZrO NPs, using the leaves of
L. speciosa., are shown in Figure 3i, with an average particle size of 56.8 nm with a tetragonal
morphology (this could be due to the green synthesis, as the biomolecules are capping the
NPs) [131]. CdO NPs obtained by a recently reported annealing of polyvinyl alcohol and
para-aminobenzoic acid complexes (from an aqueous solution containing metal chloride as
a precursor) [183], with an average diameter of 58 nm, are shown in Figure 3j.
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Figure 3. Morphology of MONPS: (a) HRTEM image showing green-synthesized ZnO NPs
(E. prostrata leaf extract) together with the SAED pattern (reprinted from ref. [177]. (b) HRTEM
image demonstrating spherical crystalline CeO NPs, diameter ~5 nm, representative crystallites with
lattice fringes in white circles (reprinted with permission from ref. [178]. Copyright 2021 Elsevier).
(c) HRTEM image of green-synthesized 20 nm CeO2 NPs (hydrothermal method mediated by
E. globulus leaf extract (reprinted from ref. [180]). (d,e) green-synthesized α-Fe2O3 nanoparticles
(guava leaves, Psidium guajava): (d) TEM micrograph, (e) HRTEM image of a single nanocrystal
showing lattice fringes with a spacing of 0.27 nm (reprinted with permission from ref. [181]. Copyright
2016 Royal Society of Chemistry). (f) TEM image of TiO2 NPs obtained by thermal decomposition
(reprinted from ref. [94]). (g) HRTEM image of MgO NPs obtained by a sol-gel method (reprinted
from ref. [70]. Copyright© 2019 Alfaro et al.). (h) TEM image of hydrothermal NiO NPs (reprinted
from ref. [182]. Copyright 2017 AIP Publishing). (i) HRTEM image of ZrO NPs obtained by a green
synthesis (reprinted from ref. [131]. Copyright 2017 Elsevier). (j) TEM image of CdO NPs obtained
by the annealing of formed complexes (reprinted from ref. [183]).

Figure 3 clearly shows the variety in NPs shape and size, consequently dependent on the
synthesis procedure, together with the progress made into avoiding NP agglomeration via
the use of additional capping or stabilizing agents (e.g., plant-based extracts to further ensure
the NPs eco-friendliness and biocompatibility, and, thus, their use in biomedical application).

2.3.2. MONPs—Crystallographic Structure Evaluation

X-ray diffraction represents a widely used characterization technique in material
science in order to determine the crystallographic structure of the materials, and it is also
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a crucial evaluation tool for MONPs. Especially as some synthesis techniques require an
annealing/thermal treatment step, known also as post-synthesis, to crystallize the NPs (e.g.,
chemical precipitation), while other methods result directly in the formation of crystalline
NPs (e.g., hydrothermal synthesis).

XRD is especially needed in the case of synthesis methods where the effect of the thermal
treatment on the crystallinity of the NPs has to be evaluated. For example, for the green
synthesis of ZnO NPs in the presence of cyanobacterium from A. Platensis [184], a wurtzite
structure was confirmed (Figure 4a (peaks at 2 theta degree 31.7◦, 34.5◦, 36.1◦, 47.4◦, 56.3◦,
63.1◦ and 67.9◦, which matched to the (100), (002), (101), (102), (110), (103) and (112) planes,
respectively), with an average crystal size of ≈45 nm (computed from the XRD analysis
by the Debye–Scherrer equation)). In the green synthesis of CeO2 NPs in the presence of
Prosopis farcta leaf extract [185], the authors evaluated the impact of the temperature on the
synthesis and determined a fluorite cubic structure of the CeO2 NPs; a similar structure was
reported when synthesis was performed with Eleagnus angustifolia leaves [186].

Overall, XRD represents a necessary characterization technique to evaluate the crys-
tallinity, lattice parameters, Miller indices and crystallite size for most of the studied
MONPs (e.g., ZnO [177,184,187], Fe2O3 [84], MgO [188], NiO [182], ZrO [131,132] and
CdO [183]), irrespective of the synthesis method.

2.3.3. MONPs—Chemical and Compositional Evaluation

The chemical and compositional structure of the MONPs, without or with further
functionalization, can be evaluated by several complementary techniques. FTIR can be
used to identify the chemical bonds and characteristic functional groups, especially in
view of functionalized MONPs or biomedical composites [189,190]. For example, for the
green-synthesized ZnO NPs (cyanobacterium from A. Platensis [184] of Figure 4a), the
functional groups and chemical structures can be determined by FTIR (Figure 4b). Peaks
are observed and their assignments were: 3415 cm−1—N–H overlap with a stretching O–H
band, 3000 cm−1—stretching CH2 of asymmetric and symmetric carbohydrates and/or lipids,
1600 cm−1—stretching C=O vibration of proteins or remaining acetate, 1410 cm−1—C–N
stretching bond of amino acid, 1341 cm−1—vibration bending of the C–H (absorption wave
of CH2 or CH3 of proteins), 1025 cm−1—C–O–C ether of polysaccharides, 676 cm−1—C=C
bonds and 503 cm−1—Zn–O absorption band [184]. In addition to confirming the formation
of the ZnO nanoparticles, data show the role of organic substances present in the A. platensis
extract in the reduction, capping and stabilization of the biosynthesized ZnO NPs [184].

EDX can be used to evaluate the elemental composition of the NPs, and EDX coupled
with TEM provides local chemical composition and mapping of the NPs. Similarly, for
the ZnO NPs synthesized via a green route (cyanobacterium from A. Platensis [184]) of
Figure 4a,b, EDX was employed to evaluate the quantitative elemental structure and
confirmed the presence of Zn, O, Na, C and Al with weight percentages of 56.6, 20.4, 15.3,
4.5 and 3.2%, respectively (Figure 4c); thus, confirming the ZnO NPs formation through the
use of the metabolites in the A. platensis filtrate [184].

XPS provides information on the chemical and compositional properties of surfaces
and is especially employed to confirm the composition of the NPs, as well as their further
modification/functionalization. Typically, the adventitious carbon peak is used to cali-
brate the measured spectra, nevertheless, recent works have shown the limitations and
how to reliably determine the chemical states [194–196] and to accurately fit the peaks of
interest [196,197]. Using, as an example, the green-synthesized ZnO NPs [184], the authors
confirmed the presence of Zn(II) [184,198]. Namely, Figure 4d shows the high-resolution
Zn 2p peak and its deconvolution into the doublet with Zn 2p3/2 at 1021.4 eV and Zn
2p1/2 at 1044.2 eV, and the doublet with the 2p3/2 at 1023.25 eV and 2p1/2 at 1045.55 eV
(with satellite peaks at 1036.25, 1037.3, 1039, 1040.05, and 1041.65 eV, verifying the oxide
species) [184,198]. Additionally, for MONPs, deconvolution of the O1s peak can also be
performed to verify the presence of the metal oxide, and in the case of biosynthesis or
further functionalization peak fitting of the C1s peak is also crucial. For example, for the
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biosynthesized ZnO NPs, the authors verified the hydrocarbon composition produced in
their reaction medium with peak fitting of the C1s (five peaks at 284.48, 285.75, 287.9, 287.05
and 288.9 eV for C(H, C), C–N, C–O, C=O and C–O–C [184]), and the oxide structure by
fitting the O1s peak (overlap of the O in ZnO with that in NaO; Na KL1 at 536.75 and O(C,
H), O=C and C–O–C at 531, 532.2 and 535.3 eV, respectively) [184].

J. Funct. Biomater. 2022, 13, x FOR PEER REVIEW 11 of 50 
 

 

rides, 676 cm−1—C=C bonds and 503 cm−1—Zn–O absorption band [184]. In addition to 

confirming the formation of the ZnO nanoparticles, data show the role of organic sub-

stances present in the A. platensis extract in the reduction, capping and stabilization of the 

biosynthesized ZnO NPs [184]. 

 

Figure 4. Green-synthesized ZnO NPs in the presence of A. platensis (cyanobacterium): (a) XRD 

patterns, (b) FTIR spectrum, (c) weight percentage from EDX (data from ref. [184]), and (d) 

high-resolution XPS peak of Zn2p (a,b,d: reprinted from ref. [184]). High-resolution XPS spectra for 

(e) Ce3d of CeO NPs (reprinted with permission from ref. [178]. Copyright 2021 Elsevier), (f) Fe3d 

in Fe2O3 NPs (solvothermal synthesis in the presence of double capping agents) (reprinted from ref. 

[191]), (g) Ti2p in TiO2 NPs synthesized by microwave-assisted method (reprinted from ref. [192]), 

and (h) Mg1s and Mg2p in MgO NPs (biosynthesis in the presence of metabolites from Penicillium 

chrysogenum) (reprinted from ref. [193]). 

EDX can be used to evaluate the elemental composition of the NPs, and EDX cou-

pled with TEM provides local chemical composition and mapping of the NPs. Similarly, 

for the ZnO NPs synthesized via a green route (cyanobacterium from A. Platensis [184]) of 

Figure 4a,b, EDX was employed to evaluate the quantitative elemental structure and 

confirmed the presence of Zn, O, Na, C and Al with weight percentages of 56.6, 20.4, 15.3, 

4.5 and 3.2%, respectively (Figure 4c); thus, confirming the ZnO NPs formation through 

the use of the metabolites in the A. platensis filtrate [184]. 

XPS provides information on the chemical and compositional properties of surfaces 

and is especially employed to confirm the composition of the NPs, as well as their further 

Figure 4. Green-synthesized ZnO NPs in the presence of A. platensis (cyanobacterium): (a) XRD
patterns, (b) FTIR spectrum, (c) weight percentage from EDX (data from ref. [184]), and (d) high-
resolution XPS peak of Zn2p (a,b,d: reprinted from ref. [184]). High-resolution XPS spectra for
(e) Ce3d of CeO NPs (reprinted with permission from ref. [178]. Copyright 2021 Elsevier),
(f) Fe3d in Fe2O3 NPs (solvothermal synthesis in the presence of double capping agents) (reprinted
from ref. [191]), (g) Ti2p in TiO2 NPs synthesized by microwave-assisted method (reprinted from
ref. [192]), and (h) Mg1s and Mg2p in MgO NPs (biosynthesis in the presence of metabolites from
Penicillium chrysogenum) (reprinted from ref. [193]).

Figure 4e–h further show the typical high-resolution XPS peak of the corresponding
metal element from the CeO, Fe2O3, TiO2 and MgO NPs. From these MONPs, the spectra
of Ce 3d and Fe 2p are quite complex. Namely, Figure 4e presents the Ce 3d peak of CeO
NPs [178] with the 3d doublet (3d5/2 and 3d3/2) indicating the Ce3+ and Ce4+ states with
60% of the cerium being present as Ce3+ (Ce3+ peaks of two spin-orbit features: ~880.6,
885.5, 898.8 and 903.7 eV and Ce4+ peaks of three spin-orbit features: 882.5, 887.1, 897.2,
900.7, 906.8 and 916.3 eV). The XPS spectra clearly show the presence of both chemical
states, and the presence of the peak at 916.3 eV enables the clear differentiation between
the Ce3+ and Ce4+ states, as this peak arises only for the Ce4+ state [199–201]. In addition,
the authors [178] evaluated the O1s spectra and reported a typical asymmetry as a result
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of the O2− ions from different chemical environments (e.g., oxygen bound to Ce4+, Ce3+

and H+) thus further corroborating the dual oxidation states. In the case of Fe 2p, Figure 4f
shows a typical Fe 2p peak and its deconvolution, for monodisperse magnetic γ-Fe2O3
nanoparticles obtained by the solvothermal method (with double capping agents) [191].
The differentiation between iron oxides is possible as the spectrum of Figure 4f is typical to
the Fe3+ state of the γ-Fe2O3 NPs, consistent with literature data [202,203], that is with Fe
2p3/2 at 710.85 eV and Fe 2p1/2 at 724.42 eV, with their corresponding satellites at 732.78
and 718.44 eV [191].

Typically, the Ti 2p peak corresponding to TiO2 (NPs, or other nanomorphologies)
is more straightforward with respect to the peak shape and chemical state, due to the
presence of only one oxidation state of titanium. For example, Figure 4g shows a typical
Ti 2p spectrum of TiO2 NPs, obtained, in this case, by a microwave-assisted method [192],
and confirms the presence of Ti 2p3/2 and Ti 2p1/2 at 458.8 and 464.5 eV, respectively
(attributed to Ti4+ of anatase TiO2 [204,205]). The authors also evaluated the O1s peak,
which was deconvoluted into three peaks including 530.1 eV—assigned to oxygen bonded
to titanium (O-Ti), 531.6 eV—oxygen bound to carbon (impurities from the synthesis,
i.e., urea or acetylacetone) and 532.8 eV—adsorbed oxygen (O-H bonds of chemisorbed
water) [192]. Similarly, in the case of MgO NPs, for example, obtained by (biosynthesis
harnessing the metabolites secreted by Penicillium chrysogenum [193], the presence of MgO
as the main species was confirmed. Briefly, the Mg1s spectrum was deconvoluted into
MgO at 1304.44 eV (94.74%) and Mg(OH)2 at 1306.28 eV (5.26%), and the Mg 2p confirmed
this point with Mg-O bonds at 49.49 eV (95.89%) and Mg-OH bonds at 48.74 eV (4.11), as
shown in Figure 4h—consistent with literature data [205,206] and further confirmed with
the deconvolution of the Mg 2s spectra [193].

For NiO NPs, the typical Ni 2p peaks, i.e., Ni 2p3/2 and Ni 2p1/2, can be observed
at binding energies of 853.7–855.42 eV with a split spin-orbit of 17.3 eV [205], and,
additionally, with satellite peaks at 861.5, 867.16 and 879.3 eV [207]. In the case of CdO
NPs, the Cd 3d peaks attributed to the cadmium oxide are expected at 405 eV (Cd 3d5/2)
and 412 eV (3d3/2) [205,208].

Characterization techniques for establishing the chemical and compositional structure
of MONPs are crucial for linking the structure of the NPs with their biological effects,
and, in addition, prove necessary when the NPs are loaded with active molecules or
have functionalized surfaces [209]. Even when used independently as ‘active’ agents in
various composites targeting specific effects such as in the case of drug-loading/release,
linking process and subsequent interactions, characterization techniques offer insights into
interaction chemistry/behavior, etc.

3. Biological Effects
3.1. Pro-Regenerative Potential

Over the last few years, in the field of biomedical research, nanotechnology has offered
numerous promising approaches for increasing the transition of regenerative medicine from
research to clinical practice [24]. Amongst the variety of materials used in nanotechnology,
NPs, especially MONPs, are a widely spread class of materials with unique physical and
chemical properties that possess numerous advantages and multiple applications in the
biological and biomedical fields [210] (Figure 5). One such application is in wound healing.
Trauma, distinct skin conditions, burns, or removal of the skin due to surgical procedures,
resulting in superficial or deep wounds, which can be prone to pathogenic colonization
and further complications if not protected and treated properly [7]. In this context, suitable
wound dressing materials that possess antibacterial properties and the ability to promote
wound healing are necessary [211].
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Taking this aspect into account, several wound dressings loaded with MONPs have
proved able to decrease the infection and contraction time of the wound, without any
significant side effects [212]. One such example of MONPs is ZnO NPs, which have been
used with success in numerous wound dressings due to their strong antibacterial activity
and stimulating effect on epithelial cells [213]. Raguvaran et al. [214] loaded ZnO NPs
onto sodium alginate-gum acacia hydrogels (SAGA-ZnO NPs) and observed that, at low
concentrations, these MONPs exerted wound-healing effects on sheep fibroblasts, whereas
high concentrations proved to exhibit a cytotoxic effect. Moreover, the loaded hydrogel
reduced the inherent toxic effect of the ZnO NPs, while keeping the antibacterial and
healing properties of the NPs.

It is a well-known fact that wound healing is a complex process in which the pres-
ence of oxidative stress due to an over-production of ROS can lead to injured cells and
tissues [215]. Keeping this in mind, numerous in vitro and in vivo studies focused on the
suitability of MONPs for skin-wound repair and regeneration through the inhibition of
ROS generation. For example, Davan et al. [216] observed in a rat model that spherical
shape CeO2 NPs (with a size of 160 nm) were capable of enhancing the wound closure
rate and collagen deposition, without scarring tissue. Similar results were observed in
wound dressings loaded with CeO2 NPs; for example, Naseri-Nosar et al. [217] loaded
poly(ε-caprolactone) (PCL)/gelatin films with CeO2 NPs and the results suggested that the
film containing 1.5% CeO2 NPs is favorable in terms of L929 cells proliferation. In another
study, Wu et al. [218] designed tissue adhesives using assembled ultra-small CeO2 NPs
onto the surface of mesoporous silica NPs and the in vitro results showed the ability of
the newly developed product to impair the exacerbation of ROS-mediated side effects and
promote the wound healing process. Moreover, the in vivo results indicated a significantly
low ROS level and a reduced local inflammatory activity, coupled with an improved wound
healing and lack of scar tissue.

Another type of MONPs used for wound dressing studies are Fe2O3 NPs. One such
study by Pai et al. [219] demonstrated that a composite thin film of poly(ε-caprolactone)
-Fe2O3 NPs exhibited a strong antibacterial activity and promoted NIH 3T3 mouse fi-
broblasts proliferation. Similarly, Grumezescu et al. [220] prepared an absorbable wound
dressing based on anionic polymers such as sodium alginate and carboxymethylcellulose
and Fe2O3 NPs, and the results showed low cytotoxicity to human progenitor cells coupled
with a powerful antibacterial activity. Another study showed the promising potential for
wound healing of a silk fibroin-Fe2O3 NPs dressing that is biocompatible with human
adipose stem cells (ASCs) [221]. Anghel et al. [222] developed a wound dressing coated
with a nanofluid containing Fe2O3 NPs and two natural microbicidal compounds and
observed that the coating exhibited anti-adherence and anti-biofilm properties against
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Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). Moreover, Fe2O3
NPs possess unique magnetic characteristics which can be used in order to achieve an
accelerated wound-healing process. For example, Wu et al. [223] functionalized Fe2O3 NPs
with basic fibroblast growth factor (bFGF) and reported an increased cell proliferation and
macrophage polarization towards a pro-healing M2 phenotype. In a rat model, the administra-
tion of Fe2O3 NPs-loaded mesenchymal stem cells (MSCs) and their magnetically enhanced
migration to the injury site improved skin regeneration and enhanced the anti-inflammatory
effects and angiogenic process compared with only the injected MSCs [224].

In addition to their potential as wound dressings, MONPs (ZnO, CeO2 and Fe2O3)
have been used in bone-regeneration applications due to their ability to augment the bone-
healing process. For example, in a study by Tang et al. [210], Scutellaria baicalensis (SB)-ZnO
NPs, i.e., with the addition of the Chinese herb Scutellaria baicalensis (generally used to treat
bone and joint ailments), were investigated for their effects on osteoblast differentiation
and osteoclast formation. The reported results indicated the ability of the SB-ZnO NPs to
improve bone regeneration via osteoblast proliferation and differentiation enhancement
and inhibition of osteoclast formation. Khader and Arinzeh [225] incorporated ZnO NPs in
a PCL scaffold and the in vitro results suggested that the slow release of ZnO NPs from the
structure of the composite benefited both the osteogenic and chondrogenic differentiation
of MSCs. Garino et al. [226] evaluated the behavior of ZnO nanocrystals (NCs), with a
diameter of 20 nm and partially chemically functionalized by anchoring amino-propyl
groups, in terms of biocompatibility, cell proliferation and differentiation—it was sug-
gested that the proposed NCs were capable of promoting bone tissue proliferation even
at high concentrations. In another study, Zhou et al. [227] evaluated the effects of CeO2
NPs on the proliferation, differentiation and mineralization of primary osteoblasts and the
results indicated that the biological activity of bone cells is size, concentration- and expo-
sure time-dependent, with positive results at higher concentrations and with smaller size
nanoparticles. Moreover, Yuan et al. [228] demonstrated that CeO2 NPs (average diameter
17 nm) are capable of inhibiting osteoclast formation and activity at high concentrations
through the over-production of ROS. Similar results were reported by Wei et al. [178],
where 5 nm CeO2 NPs were observed to enhance MSCs proliferation, osteogenic differen-
tiation and mineralization. Li et al. [229] deposited CeO2 NPs on a titanium surface and
investigated the underlying mechanism of new bone formation both in vitro and in vivo.
The results showed that the prepared oxide NPs found in a mixed Ce3+/Ce4+ valence
state promoted the new bone formation and mineralization even in the absence of specific
osteogenic agents. Similar results were observed in another study [15], where in the absence
of osteogenic agents, glass foam-based scaffolds coated with CeO2 NPs were able to en-
hance the collagen production and osteogenic differentiation of human mesenchymal stem
cells (HMSCs), in comparison to CeO2 NPs-free scaffolds. In addition, Singh et al. [230]
developed PCL nanofiber scaffolds functionalized with Fe2O3 NPs and observed improved
cell adhesion and osteogenic activity of osteoblasts; while Cojocaru et al. [231] reported
improved biocompatibility and bone cell proliferation for the newly developed biodegrad-
able composite based on chitosan, calcium phosphate, hyaluronic acid and Fe2O3 NPs.
Similarly, Lee et al. [232] loaded a nanoscaffold based on halloysite nanotubes with Fe2O3
NPs and observed that due to the osteoinductive abilities of the Fe2O3 NPs, the developed
nanoscaffold was able to elicit an improved osteogenic differentiation of human adipose
tissue-derived mesenchymal stem cells (hADMSCs) through the enhancement of osteoblast
formation. Moreover, Zeng et al. [233] fabricated magnetic biomimetic hydroxyapatite
(HA) scaffolds immersed in Fe2O3 NPs solutions and observed that, after cell proliferation,
the murine pre-osteoblast MC3T3-E1 cell line and the rat osteosarcoma ROS 17/2.8 cell
line experienced a promotion of the proliferative and differentiation processes. Similarly,
in a study by Tanasa et al. [234], the presence of an applied magnetic field in scaffolds
based on silk fibroin, poly(2-hydroxyethyl methacrylate) and Fe2O3 NPs (7 nm) led to
an improvement in the proliferative state and differentiation capacity of the MC3T3-E1
pre-osteoblast cells.
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However, despite the on-going progress made in this field, there are still many chal-
lenges that need to be overcome in order to obtain a successful transition from research to
clinical practices; thus, further studies regarding the physicochemical characterization and
in vitro and in vivo cytotoxic potentials of the MONPs are still required.

3.2. Antitumor Effect
3.2.1. General Considerations

Cancer, a heterogeneous disease, which affects billions of people and is considered
to be one of the main causes of mortality worldwide, represents a serious health problem.
With the recent World Cancer Report by the World Health Organization stating that in
2020 the incidence of cancer increased to 19.3 million from 18.1 million in 2018, the growth
trend is bound to continue, reaching up to almost 28.4 million cases per year in 2040 [235].
According to the National Cancer Institute (National Institute of Health), patients diagnosed
with cancer are currently presented with several treatment options, which may include
surgery, radiation therapy, hormone therapy, targeted therapy, biomarker testing, stem cell
transplantation, etc. However, each of these therapies possesses the potential to impact the
patients’ life quality, especially radiation and chemotherapy, which can cause side effects
due to their difficulties in differentiating between cancer and normal cells, resulting in
systematic toxicity [236]. The surgical approach might appear as a better option, but it has
its limitations too, namely in the form of post-surgical scars and the inability to remove
all of the tumoral mass, therefore requiring additional side therapy such as radiation,
chemotherapy, or, in extreme cases, both. In this context, targeted therapies minimize the
side effects whilst improving patient care. New approaches for cancer treatment continue to
be studied and developed, and one such strategy includes the use of MONPs against tumor
development and progression, due to their intrinsic antitumor effects [10]. The exhibited
anticancer activity of MONPs is related to their unique physicochemical properties, which
are either related to their intrinsic features, such as their antioxidant action or depend on
activities based on the application of external stimuli [10]. In addition, MONPs possess the
ability to transport anticancer drugs to a specific tumor location. This specific targeting is
achieved by using either an active or passive process. Passive targeting is mainly based
on the enhanced permeability and retention effect, meaning that the leaky vasculature
found in tumoral tissue allows MONPs to diffuse rapidly and kill cells [237]. However,
some adverse effects are associated with drug delivery via passive targeting; for example, the
leaky vasculature found in the tumoral mass can also be present in inflamed tissue; therefore,
rendering the targeted drug delivery less than ideal due to the lack of precision. Conversely,
drug delivery via active processes can reduce the side effects caused by passive targeting, due
to the fact that the NPs are functionalized and directed specifically against the cancer cells.
Thus, through biomolecule or ligand binding to the surface of the NPs, the targeted delivery
of anticancer agents to tumor cells instead of normal ones, can be improved [10].

3.2.2. Applications of ZnO NPs in Cancer Therapy

In anticancer therapy, MONPs are used experimentally to kill tumor cells both in vitro
and in vivo. Amongst several biomedical applications, the use of ZnO NPs in cancer
therapy has been well explored. The antitumor activity of ZnO NPs stems from both the
ability to generate ROS and their electrostatic properties [37]. The selective toxicity of ZnO
NPs against cancer cells has been demonstrated in an in vitro study through the use of
co-cultured C2C12 myoblastoma cells and 3T3-L1 adipocytes. The results showed that
the levels of ROS and p53, bax/bcl-2 ratio and caspase (CASP)-3 enzyme activity were
increased in co-cultured C2C12 cells in comparison with the 3T3-L1 adipocytes, suggesting
that the ZnO NPs selectively induced apoptosis in the C2C12 cancer cell [238]. In addition,
Wahab et al. [239] demonstrated the specificity of ZnO NPs by investigating their toxic
effects against malignant T98G human gliomas and KB epidermoids in comparison to
non-tumoral HEK kidney cells. The ZnO NPs were found to exhibit a strong cytotoxic effect
against the T98G cancer cells, a moderate effect against the KB cells and an insignificant



J. Funct. Biomater. 2022, 13, 274 16 of 47

effect on the healthy kidney cells. Similarly, Premanathan et al. [240] reported that ZnO NPs
are capable of inhibiting the proliferation of human myeloblastic leukemia cells in compari-
son to normal peripheral blood mononuclear cells. In addition, Pandurangan et al. [241]
investigated the cytotoxicity of ZnO NPs in human cervical carcinoma cells and it was
demonstrated that the cancer cells’ viability was significantly reduced, therefore suggesting
the possible cytotoxic effect of ZnO NPs through the overproduction of ROS. Furthermore,
ZnO NPs (80, 150, 260 and 400 nm in average diameter) were reported to exhibit a cytotoxic
effect on ovarian cancer cells, through the induction of acute oxidative and proteotoxic
stress, which led to cell death via apoptosis [242]. In another study, Shahnaz et al. [243]
observed that ZnO NPs (12–26 nm) were able to induce cytotoxic effects on the HCT-116
colon cancer cell line in comparison to the Vero cell line. In addition to studies with ZnO
NPs as standalone agents, numerous studies focused on modified ZnO NPs due to their
improved stability and increased selectivity for specific cells. Results showed that surface
modifications using Triton-X, polyethylene glycol (PEG), or hyaluronan did not affect the
antitumor activity of the ZnO NPs but did improve their safety towards normal cells due
to their biocompatible coating [244–246]. In other studies, ZnO NPs have been coated
with doxorubicin (DOX), cisplatin and paclitaxel (PTX) and the results indicated that their
cytotoxic effect increased significantly in combination with this type of MONPs [53,239].
Wu and Zhang [247] investigated the anticancer effect of both chitosan-coated and uncoated
ZnO NPs in HeLa cells exposed to different concentrations and the results obtained showed
that both coated and uncoated NPs exhibited reduced cytotoxicity when exposed to smaller
concentrations, whereas the chitosan-coated positively charged ZnO NPs caused enhanced
cytotoxicity at higher concentrations, possibly through the increased cellular internalization
and subsequent ROS production, which caused cellular death by apoptosis. Given the
fact that ZnO NPs possess inherent antitumor properties, researchers have used them
as drug-delivery platforms for several active biomolecules and drugs. ZnO NPs-based
drug-delivery systems (DDS) possess several advantages, such as (i) low risk of systemic
toxicity due to the inhibition of a premature release of the loaded drug; (ii) they offer the
loaded drugs an increased aqueous solubility and improved hydrophobicity; (iii) they
increase the drugs’ efficiency by transporting them to the targeted cells/tissues/organs via
an active process; and (iv) show a low risk of cytotoxic effects towards normal or healthy
cells/tissues/organs.

Presently, only four types of DDS based on ZnO NPs are mainly adopted: (i) meso-
porous silica nanoparticles (MSN)-based DDS; (ii) porous ZnO NPs where the active drugs
are loaded inside the pores; (iii) ZnO NPs/polymer core-shell nanocomposites where
the drugs are loaded into the hydrophobic shell; and (iv) ZnO NPs/drug complex [248].
Zhang et al. [249] developed a multifunctional MSN-based charge reversal and ZnO quan-
tum dots (QDs) targeted drug-delivery system for combined cancer therapy. In order
for the MSNs to be able to escape easily and more rapidly from endosomes, they were
functionalized with cell-penetrating deca-lysine peptide, while the positively charged ZnO
QDs were used to cap the DOX-loaded MSN pores through electrostatic interactions. The
results indicated a synergistic anticancer effect in Hep G2 cells through the targeted release
of DOX from the uncapped MSN pores into the cytosol. Similarly, Cai et al. [250] designed
ZnO QDs functionalized with hyaluronic acid (HA) for pH-responsive delivery of DOX in
A549 cells. The mechanism behind this drug-delivery platform is based on the recognition
of highly expressed CD44+ cells and the release of drugs through the rupture of the metal-
DOX complex due to the dissolution of ZnO NPs in the acidic intracellular compartment. It
was demonstrated that the HA-functionalized ZnO QDs-DOX exhibited higher cytotoxicity
compared to the non-targeted ZnO QDs-DOX due to the increased intracellular uptake.
In another study, Wang et al. [251] reported the successful delivery of certain immune-
stimulating agents such as ovalbumin and polyinosinic-polycytidylic acid, with the help of
hollow ZnO nanospheres for cancer immunotherapy, showing that the combination of the
drug-loaded NPs significantly reduced the tumor growth and metastasis to the inguinal
lymph node in the E.G7-OVA cell line. Akbarian et al. [252] developed a DDS for paclitaxel
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(PTX) based on chitosan-coated ZnO NPs and observed that the PTX-loaded ZnO-chitosan
NPs exhibited a cytotoxic effect on MCF-7 cells, and a minimal effect on normal fibroblasts,
suggesting that these newly developed ZnO-chitosan NPs could be used as a promising
drug-delivery platform for PTX. A biocompatible co-polymer encapsulated ZnO NPs with
an interior hydrophobic core designed for efficient encapsulation of curcumin proved
to exhibit a higher cytotoxic effect against human gastric cancer cells in comparison to
nanocurcumin [253], while a ZnO/ferulic acid stable nanohybrid showed a synergistic
antitumor potential in human carcinoma Huh-7 and HepG2 cell lines through the induction
of ROS, oxidative stress and DNA damage, followed by cycle arrest in the S phase and
intrinsic apoptosis pathways. Moreover, the in vivo results indicated a significant reduction
in the number of hepatic nodules and tumor-associated toxicity in hepatocellular carcinoma
(HCC) bearing mice [254].

Abbasian et al. [255] synthesized cationic cellulose based ZnO nanocomposites and
investigated the targeted and pH-responsive delivery of methotrexate (MTX) into MCF-
7 breast cancer cells. The anticancer agent MTX was loaded into the newly developed
nanocarriers via electrostatic interactions generated between the drug’s carboxyl groups
and the cationic moiety of the NPs and by the formation of ZnO complexes at the chelating
sites of MTX. The results showed a higher cytotoxicity against the MCF-7 cells in com-
parison to the free MTX, probability due to its increased intracellular uptake. Table 1
summarises additional in vitro and in vivo studies focused on investigating the antitumor
potential of ZnO NPs either as stand-alone agents or as drug-delivery platforms.

Table 1. Supplementary in vitro and in vivo studies focusing on evaluating the anticancer activity of
ZnO NPs as standalone agents or as drug carriers.

MONPs Cell Line Observations Ref.

ZnO NPs

human prostate cancer cells (PC3 cell line);
non-small cell lung cancer cells

(A549 cell line)

↓ serum levels of tumor markers;
↓ levels of hepatocyte integrity and

oxidative stress markers
[256]

human skin melanoma (B16F10 cell line);
human skin melanoma (A375 cell line)

↓ ERK (extracellular signal-regulated
kinases) enzyme and other
cancer-associated kinases

[257]

human colon carcinoma (LoVo cell line) severe oxidative stress→ DNA damage [258]

human cervical carcinoma cells
(HeLa cell line) ↑ mRNA expression of p53; ↑ levels of ROS [241]

hepatocellular carcinoma (Hep-G2 cell line) dose-dependent cytopathic effects [177]

Caco-2 ↑ ROS and 8-oxodG levels; micronuclei and
DNA damage [259]

cervical cancer cells (SiHa cell line) dose-dependent cytotoxic effects via
mitochondria apoptotic and necrotic death [260]

human breast cancer cells (MCF-7 cell line) dose-dependent cytotoxicity against tumor
cells when treated for 24 h [261]

human breast cancer cells
(MDA-MB-231 cell line)

dose-dependent antitumor activity within
the concentration interval of

12.5–200 µg/mL after a 24 h treatment
[246]

Human skin melanoma (A375 cell line)

↓ cell viability; ↑ROS generation;
↑ apoptosis confirmed by

chromosomal condensation assay
and caspase-3 activation;

↓ density and a round morphology

[262]
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Table 1. Cont.

MONPs Cell Line Observations Ref.

ZnO NPs
human lung cancer cells (A549 cell line)

dose-dependent cytotoxic effect via ROS
overproduction; ↑membrane damage;
↑ oxidative stress; ↓mitochondrial

membrane potential

[263]

wild type EGFR A549 and EGFR-mutated
CL 1–5 cells

↑ cytotoxic effect in CL 1–5 cells compared
to A549 cells [264]

ZnO/SiO2 core-shells NPs human prostate adenocarcinoma (LNCaP
and Du145 cell lines)

↑ radiation-induced reduction in the cell
survival rate [265]

PEG-ZnO NPs breast cancer cells (MCF-7; MDA-MB-231;
MDA-MB-468; T-47D cell lines)

↑ cytotoxic effect against all breast cancer
cells at a concentration of 25 µg/mL when

treated for 24 h
[244]

daunorubicin-ZnO NPs

human lung cancer cells (A549 cell line)

no premature drug leakage; relevant
therapeutic concentrations; liposome

incorporated NPs demonstrated a
pH-responsive release of the active drug

[266]

sensitive leukaemia cells (K562 cell line)
resistant leukaemia cells (K561/A02)

↑ sensitivity of the drug-resistant tumor
cell line; ↑ accumulation of daunorubicin;
↑ cell membrane permeation; ↑ uptake of

daunorubicin into both cell types

[267]

DOX-ZnO NPs human breast cancer cells (MCF-7 cell line) ↑ cytotoxicity for the drug-loaded NPs [53]

isoorientin-DOX ZnO NPs hepatocellular carcinoma (HepG-2)

dose- and time-dependent antitumor
activity; ↑ synergistic anticancer activity;
↑ cell death through mitochondrial

dysfunction; Akt and ERK1/2 inhibited
phosphorylation and JNK and P38

enhanced phosphorylation; no significant
damage to normal healthy liver cells

[268]

photofrin-ZnO NPs human lung cancer cells (A549 cell line) ↑ ROS production and cell death [269]

Folic acid (FA)-
functionalised-PTX-ZnO

NPs

human breast cancer cells (MCF-7 and
MDA-MB-231)

combined passive and active targeting of
paclitaxel; ↑ efficacy of paclitaxel against

subcutaneous tumors in vivo
[270]

DOX-ZnO/PEG
nanocomposites human cervical cancer cells (HeLa)

↑ antitumor activity; ↑ cancer cell injury via
ROS under UV irradiation; ↑ intracellular
concentration of DOX with an enhanced

anticancer effect

[271]

↑ indicates enhancement; ↓ indicates inhibition.

3.2.3. Applications of CeO2 NPs in Cancer Therapy

Cerium oxide NPs are a novel and very interesting compound, which are currently
pursued in various in vitro and in vivo studies for their potential use in cancer treatment
(Table 2). Being originally investigated for their antioxidant activity and ability to protect
normal cells/tissues from radiation-induced damage associated with cancer therapy in the
intestine [272], head and neck [273], breasts [274] and lungs [275], the use of CeO2 NPs has
expanded beyond the prevention of adverse side effects of other cancer treatments. For
example, data found in the literature indicates the inherent toxicity of CeO2 NPs towards
various cancer cells such as pancreatic carcinoma cells [276], hepatocellular carcinoma
cells [277], epithelial cancer cells [278], melanoma cells [279], ovarian cancer cells [280], etc.
Taking this into account, the use of CeO2 NPs in cancer therapy is ever-growing, with the
NPs being used both as the primary treatment and as an adjuvant treatment for the already
in-use therapies [281]. In 2006, Lin et al. [282] evaluated the antitumor activity of different
concentrations of CeO2 NPs in A549 human lung cancer cells and observed a dose- and
time-dependent cytotoxicity towards the tumor cells through the induction of ROS and
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implicitly oxidative stress. Similarly, the inherent toxic effect of CeO2 NPs was reported on
human colon cancer cells (HCT-15) in a dose- and time-dependent manner [283].

Table 2. Overview of in vitro and in vivo studies focusing on evaluating the anticancer activity of
CeO2 NPs as standalone agents or as drug carriers.

MONPs Cell Line Observations Ref.

CeO NPs

human lung cancer cells (A549 cell line) ↑ free-radical production; ↑oxidative stress;
↑ cytotoxic effect against cancerous cells [282]

human prostate cancer cells (PC-3 cell line) ↑ antitumor affect against cancer cells; no
injury caused to normal healthy cells [284]

ovarian cancer cells (A2780 cell line);
A2780 xenograft murine model

concentrations in the range of 25–50 µM
exhibited an anti-angiogenic effect in

ovarian cancer cells; ↓ tumor size in vivo
[280]

human colon cancer cells (HCT 15 cell line) ↓ cell viability via ROS overproduction [283]

human neuroblastoma cells
(IMR31 cell line)

↑ ROS production that resulted in oxidative
stress; ↑ cytotoxicity and genotoxicity [285]

Fibrosarcoma (WEHI146 cell line) ↑ antitumor activity by increasing ROS
generation and inducing apoptosis [286]

camptothecin-CeO2 NPs human pancreatic cancer cells
(BxPC-3 cell line) ↓ cell viability [287]

chlorin e6-CeO2 NPs
Human breast cancer cells (MCF-7/ADR

cell line); MCF-7/ADR xenograft
murine model

exhibited photodynamic therapy against
drug-resistant breast cancer cells and

in vivo tumors
[44]

DOX-CeO2 NPs human ovarian cancer cells (A2780;
SKOV-3 and CAOV-3 cell lines)

↓ cell proliferation rates; ↑ apoptosis of
cancerous cells compared to free DOX [288]

curcumin-CeO2 NPs neuroblastoma cells (IMR-32; SMS-KAN;
SK-N-AS, LA-N-6)

induced significant cell death in all of the
mentioned cancer cells [289]

DOX-CeO2 NPs human liver cancer cells (HEPG-2 cell line) induced a synergistic antitumor activity on
cancer cells [290]

↑ indicates enhancement; ↓ indicates inhibition.

Kumari et al. [285] investigated the cytotoxic effect of CeO2 either as NPs or as mi-
croparticles for 24 h in human neuroblastoma cells and the results indicated that the tumor
cells treated with NPs showed a higher production of ROS and subsequently a higher
cytotoxic effect in comparison to the microparticle structure. Another cell line sensitive to
CeO2 NPs toxicity is WEH1164, which was demonstrated by Nourmohammadi et al. [286]
to exhibit a dose-dependent sensitivity. Furthermore, Renu et al. [284] prepared cerium
oxide NPs via two different methods in order to obtain ceric oxide NPs with a +3 oxidation
state (hydrolysis) and cerous oxide NPs with a +4 oxidation state (hydrothermal) and the
results demonstrated that the hydrothermal NPs possessed a higher cytotoxicity towards
prostate cancer cells compared to the hydrolysis NPs, mainly due to their increased cellular
uptake. However, when compared to normal mouse fibroblast cell line L929, no toxic effects
could be observed. Furthermore, Giri et al. [280] investigated the in vivo effect of CeO2 NPs
on A2780 xenograft tumor mice models and after intraperitoneal administration of NPs for
every third day up to 30 days. They observed that the tumor weight and the abdominal
circumference in the treated mice were significantly reduced compared to the untreated
mice. These results suggested that such NPs possess the ability to inhibit metastasis and the
angiogenic process in ovarian cancer cells and implicitly reduce ovarian tumor growth. In
another in vivo study, Hijaz et al. [43] evaluated the anticancer effect of CeO2 NPs modified
with folic acid in A2780 xenograft tumor mice models and it was reported that the folic
acid-tagged NPs were more efficient in attenuating the tumor growth in the treated mice
compared to the untreated animals.



J. Funct. Biomater. 2022, 13, 274 20 of 47

Recently, CeO2 NPs have also been widely used as effective drug-delivery platforms
for various active drugs. This drug-delivery property of CeO2 NPs is based on their
inherent cytotoxicity towards tumor cells, exhibiting a synergistic anticancer effect. In 2014,
Muhammad et al. [287] designed a redox-responsive CeO2 NPs capped MSN-camptothecin
delivery platform for the active transport of an anticancer drug into the human pancreatic
cancer cells and reported that such a drug-delivery platform was capable of inducing a dose-
and time-dependent cytotoxic effect on the tumor pancreatic cells, mainly due to its active
intracellular uptake and dissolution of the NPs lid in the highly acidic microenvironment,
which led to the release of the encapsulated drug. Moreover, Li et al. [44] developed
a CeO2 NPs-based drug-delivery platform by conjugating a photosensitizer, chlorin e6
and folic acid on polyethylenimine-PEGylation CeO2 NPs for a targeted photodynamic
treatment against drug-resistant human breast cancer cells and xenograft murine models.
Under near-infrared irradiation (NIR), the newly developed drug-delivery system was
capable of generating ROS, leading to a reduction in the P-glycoprotein expression, and an
increase in the lysosomal membrane permeabilization, which in turn results in cytotoxic
effects towards breast cancer cells even at lower doses. Furthermore, the in vivo results
revealed that in the presence of the irradiation procedure, the mice treated with the CeO2
NPs system showed a visible reduction in tumor growth up to almost 98%. In another
study, a CeO2 NPs-DOX drug-delivery system exhibited a higher degree of apoptosis and
inhibition of the cell proliferative rates compared to free DOX in human ovarian cancer
cells [288]. Doxorubicin was used as a loading agent in another study by Zhang et al. [290]
where a multifunctional and pH/GSH (glutathione) dual-responsive drug-delivery system
using porous CeO2 NPs was developed in order to target human liver cancer cells. The
authors reported a synergistic anticancer effect against the tumoral liver cells, probably
due to the low intracellular pH and high GSH levels inside the lysosomes present in the
cancer cells. Sulthana et al. [289] designed polyacrylic acid (PAA)-coated CeO2 NPs loaded
with a combination of drugs (Hsp90 inhibitor, ganatespib and DOX) for the treatment of
non-small-cell lung cancer. They observed that this delivery platform led to a reduction in
cell viability to almost 80% in comparison to the single drug-delivery system. In addition,
Kalashnikova et al. [291] explored the anticancer effects of dextran-coated CeO2 NPs loaded
with curcumin in human childhood neuroblastoma and reported that the newly developed
DDS was capable of inducing a significant toxic effect on the neuroblastoma cells without
affecting the healthy cells.

3.2.4. Applications of Fe2O3 NPs in Cancer Therapy

Due to their non-toxic, biodegradable and cheap nature, Fe2O3 NPs have been ex-
tensively studied as potential candidates for different cancer therapies [292,293]. Fe2O3
NPs are magnetic biomaterials that can be directed and concentrated by external magnetic
fields, e.g., NIR or oscillating magnetic fields (MF), and removed easily once the treatment
is brought to completion [294]. Data found in the literature indicate that Fe2O3 NPs are
capable of killing tumor cells without affecting normal healthy tissue due to the increased
in vivo sensitivity of tumors to heat damage. This allows the use of a specific cancer
therapy called hyperthermia, where magnetic NPs can target tumors in a heat-specific
manner through the alternation of fields, hysteresis and frictional heating [295]. Anticancer
hyperthermia therapy implies the use of heat temperatures above 40 ◦C. For example,
Hilger et al. [296] injected supermagnetic NPs into immunodeficient mice models with
implanted breast adenocarcinoma cells and observed an increase in temperature within the
tumor region of up to 73 ◦C, but only after applying a 400 kHz magnetic field. Therefore,
by employing the use of Fe2O3 for cancer therapy, the risk of damaging healthy tissue is
significantly reduced, while the selectivity for cancer cells is greatly improved [10]. More-
over, magnetic Fe2O3 NPs allow for differential functionalization or surface loading, which
can be especially useful for magnetically assisted drug-delivery treatments. Therefore, this
type of NPs can be coupled with antitumor agents, either by covalent binding or through
co-encapsulation in various polymeric matrices. To date, several active molecules, such as
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DOX and PTX have been loaded and tested as potential anticancer agents [297,298]. For
example, Plichta et al. [299] reported a reduction in human glioblastoma cells’ viability
when treated with magnetic γ-Fe2O3 NPs conjugated with DOX at low concentrations,
while in A549 lung cancer cells, PEG-functionalized γ-Fe2O3 NPs conjugated with DOX
were capable of inducing an increase in the viability rate, possible due to the insufficient
release of DOX from the system. However, when an alternating magnetic field (AMF) was
employed, the NPs exhibited excellent thermal effects that favored the release of DOX
from the delivery platform and implicitly the death of the lung cancer cells [300]. Likewise,
Lungu et al. [301] reported the anticancer effect of DOX-conjugated carboxymethylcellulose
sodium (CMCNa) coated-γ-Fe2O3 NPs, through the inhibition of tumor cell proliferation,
cell membrane disruption and induction of human breast cancer cells’ death. In addition,
Plichta et al. [302] observed a 10–20% decrease in the survival rate of human cervix carci-
noma cells (HeLa cell line) and human osteosarcoma cells (MG-63 cell line) under the action
of DOX-conjugated polymer-coated γ-Fe2O3 NPs compared to free DOX treatment. Quan
et al. [303] developed human serum albumin (HSA)-coated Fe2O3 NPs (HINP) conjugated
with DOX and observed that in a 4T1 murine breast cancer xenograft model, DOX-HINP
induced a reduction in tumor growth comparable to Doxil (a liposome-based DOX formula
used as a treatment for various types of cancer) and superior to free Dox. This increased
antitumor effect of magnetic NPs coupled with DOX is probably due to the activation of the
hydroxyl radicals, which in turn damages mitochondria, lipids, proteins, DNA and other
structures found in the cancer cells, leading in the end to their apoptosis and necrosis [10].

3.2.5. Antitumor Effects of MgO NPs

Another class of biomaterials with a strong antitumor effect consists of MgO-based
NPs. Mubarakali et al. [304] investigated their effect on human breast cancer MCF-7 cells
and the results indicated an inhibition of the cell proliferation rates accompanied by specific
cytomorphological characteristics of apoptosis. Moreover, Karthik et al. [305] evaluated the
cytotoxic activity of MgO NPs against the A549 cancer cell line and it was observed that, by
increasing the NPs’ concentration, the percentage of dead cells gradually grew up to almost
50%. Similarly, in another study, MgO NPs showed a strong toxic effect against A549 lung
carcinoma cells through the increase in ROS, which in turn damaged the mitochondrial
membrane potential and activated the apoptotic pathways [188]. In addition, due to the
chemical stability of the MgO NPs (as obtained or with further modifications) under harsh
conditions, their high tolerability in the human body and biodegradability [306–311], these
biomaterials can be used with success in drug-delivery applications.

3.2.6. Antitumor Effects of CuO NPs

Data found in the literature also reported on the anticancer effect of CuO NPs [7].
For example, these NPs showed a cytotoxic effect on human lung cancer cells and breast
cancer cells, through the induction of apoptosis via enhanced production of ROS [312]. In
another study, CuO NPs were used to treat mouse subcutaneous melanoma and metastatic
lung tumors, based on B16-F10 mouse melanoma cells, through intratumoral and systemic
injections, respectively [313]. The observations suggested that this type of NPs was capable
of downsizing the growth of melanoma, inhibiting the metastasis of B16-F10 cells and
increasing the survival chances of the mice models. Furthermore, the in vitro results on
HeLa cells indicated that CuO NPs affected the mitochondria, which resulted in the release
of cytochrome C and the activation of caspase-3 and -9, therefore inducing cell death.
Moreover, CuO NPs were reported to possess a cytotoxic effect on human liver carcinoma
cells in a dose-dependent manner, via ROS overproduction and, subsequently, induced
oxidative stress [314].
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3.2.7. Antitumor Potential of TiO2 NP

TiO2 NPs are a prevalent material used in various biomedical applications, includ-
ing cancer treatment [10]. Photocatalyzed TiO2 NPs have been reported as a potential
strategy for cancer cell eradication. In one in vivo study, TiO2 NPs exposed to light ir-
radiation suppressed tumor growth in glioma-bearing mice and increased the survival
rate of the mice models [315]. Furthermore, nitrogen-doped anatase NPs demonstrated a
higher visible light absorbance in comparison to the neat TiO2 NPs, inducing an almost
93% cell death of melanoma cells under UV light [316]. Similar results were observed
in another study with colloidal ruthenium complex-loaded TiO2 NPs against melanoma
cancer cells [317] and the results indicated that, under UV light, the number of dead cells
increased in comparison with visible light illumination. However, the in situ penetra-
tion of UV light is low and dangerous to the human organism, therefore, a strategy to
overcome this limitation is represented by the surface-functionalization of the TiO2 NPs.
Recently, the efficacy of NIR on crystallized shells comprised of TiO2 NPs coated in order
to form core/shell nanocomposites has been reported against HeLa cells and in a tumor
model using female Balb/c nude mice [318]. Moreover, the study of Lucky et al. [319]
reported the use of core-shell up-conversion nanoparticles with a thin and continuous
layer of TiO2 against oral squamous cell carcinoma and their ability to reduce the in vivo
generation of tumors. Venkatasubbu et al. [320] developed PTX-loaded HA/TiO2 NPs and
evaluated their antitumor activity in diethylnitrosamine (DEN)-induced hepatocarcinoma
in animal models and observed an enhanced anticancer activity for the modified PTX-
loaded HA/TiO2 NPs compared to pure PTX. Similarly, in another study, the treatment
of ovarian cancer cells with hyaluronic acid-TiO2 NPs loaded with cisplatin resulted in an
improvement of intracellular drug accumulation when compared to free cisplatin [321].
Moreover, through the adjustment of the nanocarriers’ size and shape, a possible increase
in drug accumulation in the microenvironment could be achieved, and various in vivo
studies have demonstrated that elongated nanocarriers can be retained more efficiently at
the tumor sites after intravenous injection and can deliver larger quantities of therapeutic
drugs [322–324]. In this context, non-spherically shaped TiO2 nanoparticles with an elon-
gated geometry could represent a possible drug-delivery strategy with higher efficiency.
For example, Kafshgari et al. [325] fabricated well-separated, uniformly shaped and easily
detachable anodic TiO2 nanotubes (NTs) and nanocylinders (NCs) through a time-varying
electrochemical anodization protocol to investigate their potential application in cancer
therapy. Accordingly, the newly fabricated nanotubes and nanocylinders were conjugated
with DOX and their cellular uptake and cytotoxicity in HeLa cells were evaluated. The
reported data indicated that the single and uniformly shaped pH-responsive anodic TiO2
NTs and TiO2 NCs possessed low cytotoxicity. When conjugated with the antitumor agent,
they were easily incorporated into the cells and subsequently released their drug cargo
into acidic intracellular compartments. In another study, Fe2O3 NPs-loaded TiO2 NTs were
designed with the purpose of magnetic targeted guidance and site-specific drug delivery
and the results suggested that the nanocarriers could be controlled and guided toward
the cancer cells through a static gradient magnetic field [326]. In addition, the site-specific
delivery of incorporated drugs was demonstrated through the nanocarriers’ conjugation
with camptothecin, when a 90% killing efficiency of HeLa cells was achieved and with
oligonucleotides for cell transfections demonstrating a 100% cellular uptake [326].

3.2.8. Antitumor Effects of Other Metal Oxide Nanoparticles

The antitumor activity of NiO NPs has been lightly recorded in the specialized litera-
ture. Abbasi et al. [327] evaluated the anticancer effects of NiO NPs against the Hep G2
cancer cell line and observed that the pathogenic cells treated with increasing concentra-
tions of nanoparticles exhibited a decrease in their survival rate that was dose-dependent.
Thus, the highest concentration of NiO NPs induced a reduction in the survival rate by up
to 84%, results that indicated a strong anticancer potential for this type of NPs. Similarly,
Lingaraju et al. [130] synthetized via a green route NiO NPs and investigated their antitu-
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mor potential against A549 and Hep G2 cell lines. The results showed a dose-dependent
cytotoxic effect against the cells treated with different concentrations of NiO NPs, probably
due to the internal accumulation of nanoparticles and high stress, which in the end led
to cellular death via apoptosis. Moreover, Zhang et al. [328] used green-synthesized NiO
NPs to evaluate their anticancer activity on various tumor cell lines and the reported data
indicated that the newly obtained NPs could decrease the viability of esophageal cancer
cells up to 50% compared to other cancer cell lines such as colon cancer cells.

As with NiO NPs, the number or relevant works regarding the antitumor activity
of ZrO NPs is very limited, despite their biomedical potential. One study investigated
the cytotoxic effect of newly synthesized ZrO NPs against the MCF-7 cell line and the
reported data suggested that, compared to the control group, the survival rate of the
MCF-7 cancer cells was reduced in a dose-dependent manner [131]. Tabassum et al. [329]
evaluated the cytotoxicity of ZrO NPs against the MDA-MB-231 cell line and observed a
diminishing trend in the cells’ survival rate that was directly linked to the increase in the
nanoparticles’ concentrations. In another study, a dose-dependent reduction in the survival
rates of MDA-MB-231 and Hep G2 cancer cells was observed after exposure for 72 h to
iron-manganese-doped sulfated ZrO NPs [330]. Another cell line with a high sensitivity to
ZrO NPs is the A549 cell line, where in a study by Balaji et al. [331] after 24 h of treatment,
a reduced level of viable cells could be observed.

As stated above, CdO NPs possess the ability to control cancer cells via the destruction
of their cellular membrane, but this antitumor potential is rarely studied and reported in
the specialized literature, with only a few articles investigating the cytotoxic effect against
cancer cells. One such study, by Skheel et al. [32] evaluated the cytotoxic effects of green-
synthetized CdO NPs against human colon cancer cells (HT29) and the obtained data
demonstrated their significant antitumor effect against the studied cancer cells. Moreover,
Gowri et al. [33] showed that, even at a minimal concentration, ZrO NPs are able to induce
an inhibitory effect against human cervical cancer cells, thus implying their promising
potential as anticancer agents.

3.3. Antibacterial Activity

The ever-increasing resistance of different pathogens towards antibiotics coupled with
the need for biomedical devices, such as implants, wound dressings, catheters and stents,
with a wide range of antibacterial activity, forced researchers to identify and develop new
strategies in the battle against various bacterial agents. In the last 20 years, nanotechnology
has offered a solution in the form of a variety of nanoparticles that have been proven by
in vitro and in vivo studies to possess antibacterial effects (Table 3). Of these, metal oxide
nanoparticles such as Ag2O, TiO2, CuO, ZnO and MgO have been identified to exhibit
antibacterial activity against several bacterial species [332].

Literature data indicate that MONPs can interfere with different cellular processes of
pathogens, either through the generation of ROS, which causes oxidative stress, or either
through their dissolution and release of toxic free metal ions [333] (Figure 6). In addition,
the antibacterial effectiveness of MONPs is dictated by their characteristics, such as size
and surface properties, determined by their synthesis parameters [334,335].

For example, it was demonstrated that smaller nanoparticles exhibited a stronger bac-
tericidal effect compared to both bigger NPs and their bulk counterpart [333,336,356,357],
while NPs with positively charged surfaces possessed a stronger binding force for the
negatively charged surfaces of various bacterial agents, therefore leading to an enhanced
antibacterial activity [334].
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Table 3. Metal oxide NPs with antibacterial activity: mechanism of action and characteristics.

MONPs Mechanism of Action Factors that Influence
MONPs Effectiveness

Antibacterial Activity and
Characteristics Ref.

Ag2O

dissolution and ion release from the
NPs surface→ pits and gaps in the
bacteria membrane→ disruption of
the metabolic processes due to ion

interaction with disulfide or
sulfhydryl enzymes→ DNA damage

NPs shape and size action on drug-resistant bacteria;
high stability [336–340]

CeO
dissolution and ion release→ ROS

generation→ DNA damage→
cellular death

NPs concentration and
surface properties

efficient against both
Gram-positive/Gram-negative

bacteria
[341,342]

CuO dissolution and ion release→ vital
enzyme damaging NPs size and shape

efficient against
Gram-positive/Gram-negative

bacteria; high stability
[343–345]

MgO
loss of cell membrane integrity→

extracellular leakage of intracellular
contents→ cellular death

NPs concentration, pH
and size

efficient against both
Gram-positive/Gram-negative
bacteria; high stability; low cost

[346–348]

TiO2

ROS overproduction→ oxidative
stress→ lipid peroxidation→

membrane fluidity

NPs size, shape and
crystal structure high stability [349–352]

ZnO
dissolution and ion release + ROS

generation→membrane dysfunction
→ NPs internalization into the cell

NPs concentration
and size

efficient against both
Gram-positive/Gram-negative

bacteria; high stability;
effectiveness against spores

[353–355]

3.3.1. Antibacterial Activity of ZnO NPs

The antibacterial activity of ZnO NPs stems from their high solubility and Zn+ ion
release, which, once in contact with the bacterial cells, will end up being absorbed. At
this intracellular level, the free Zn+ ions will interact with the thiol group of respiratory
enzymes and inhibit their action, leading to an overproduction of ROS and free radicals,
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which in turn will cause oxidative stress. This will result in membrane, mitochondria and
DNA damage and ultimately bacterial cell death [358]. Data from the specialized literature
indicate the bactericidal effect of ZnO NPs against both Gram-positive and Gram-negative
bacteria, but also against spores, which in general possess resistance against high pressures
and temperatures [354]. Moreover, it was reported that the antibacterial activity of ZnO
NPs is tightly related to their size and concentration. For example, (i) Padmavaty et al. [359]
showed that the bactericidal activity of ZnO NPs increased with the decrease in particle size,
while (ii) Zhang et al. [249] demonstrated that the bacterial response to ZnO NPs is both
dose- and time-dependent, with positive results being observed in low-dose ranges and
smaller exposure periods; similarly, (iii) Hosseinkhani et al. [360] reported a decrease in the
number of bacteria with the decrease in the NPs size, while (iv) Emami-Karvani et al. [361]
investigated the effect of ZnO NPs against both Gram-positive (Escherichia coli) and Gram-
negative (S. aureus) bacteria and the results indicated that the antibacterial activity of ZnO
NPs is both size- and concentration-dependent. Furthermore, several studies investigated
the synergistic action of ZnO NPs with antibiotics as an alternative treatment for various
bacterial diseases. In this context, Ghasemi and Jalal [362] evaluated the effect of ZnO NPs
on the effectiveness of two antibiotics, namely ciprofloxacin and ceftazidime, against an
opportunistic pathogen, Acinetobacter baumannii, which causes a wide range of diseases
(e.g., meningitis and pneumonia) and reported that, in the presence of sub-inhibitory
concentrations of ZnO NPs, the antibacterial activity of both antibiotics was enhanced.
In addition, ZnO NPs have been demonstrated to possess antibacterial activity against
Vibro cholerae [363], Camphylobacter jejuni [364], Mycobacterium tuberculosis [365], etc., namely
to pathogenic agents responsible for a wide range of illnesses such as severe watery
diarrhoea, dysentery and tuberculosis.

3.3.2. Antibacterial Activity of TiO2 NPs

The antibacterial properties of TiO2 NPs are associated with their specific characteris-
tics such as crystal structure, size and shape [350], with the proposed mechanism of action
being correlated to their ability to generate ROS and cause DNA damage [351,366]. Thus, in
a study conducted by Roy et al. [351], it was reported that TiO2 NPs were able to improve
the antibacterial activity of a wide range of antibiotics, such as cephalosporins, tetracycline,
glycopeptides and macrolides, against methicillin-resistant S. aureus (MRSA). In addition, it
was demonstrated that the photocatalytic properties of TiO2 NPs facilitate the eradication
of bacteria. For example, Carré et al. [352] suggested that the antibacterial photocatalytic
activity of these NPs is accompanied by lipid peroxidation that causes membrane fluidity
enhancement and lowers the cell’s integrity. However, despite the enhancement offered by
ultra-violet (UV) light exposure, the use of TiO2 NPs under UV light is limited due to the
genetic damage observed in human cells and tissues [349].

3.3.3. Antibacterial Potential of CuO NPs

Due to their unique physicochemical and biological characteristics, antibacterial activi-
ties and low cost of preparation, CuO NPs have attracted the attention of researchers all
over the world [Wu et al., 2002; Usman et al., 2013]. Mahapatra et al., 2008, investigated the
antibacterial activity of CuO NPs against various bacteria including Salmonella paratyphi,
Shigella strains, Klebsiella pneumonaie (K. pneumonaie) and P. aeruginosa and reported that
these nanoparticles were able to reduce the number of bacteria through membrane crossing
and enzyme damage, which in turn led to cell death. In another study, Azam et al., 2012,
evaluated the effect of CuO NPs against two Gram-positive bacteria and two Gram-negative
bacteria and the results showed that the antibacterial effect against both groups of bacteria
was size- and concentration-dependent. Moreover, Ahamed et al. [345] showed that the
CuO NPs exhibited significant antibacterial activity against a wide range of bacterial strains
such as Enterococcus faecalis, K. pneumonaie, E. coli, P. aeruginoasa, Shigella flexneri, S. aureus,
Proteus vulgaris, S. typhimurium, etc.
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3.3.4. Antibacterial Activity of MgO NPs

Data from the literature highlight a strong antibacterial activity of MgO NPs, which
can be correlated to their ability to generate superoxide on their surface and increase the
pH of the microenvironment by particle hydration with water [348]. In addition, Jin and
He [346] demonstrated that this type of MONPs is capable of damaging the membrane,
resulting in a leakage of the intracellular contents and, in the end, cell death. MgO NPs
exhibit antibacterial effects against both Gram-positive and Gram-negative bacteria [347].
For example, Sawai et al. [367] reported that MgO NPs possess antibacterial effectiveness
against S. aureus and E. coli, while another study proved the particles’ efficiency against E.
coli and Salmoella stanely, but in a concentration-dependent manner [346]. Vidic et al. [347]
investigated the antibacterial potential of a combined nanostructure of ZnO-MgO and
their results indicated a high antibacterial activity against the Gram-positive bacterium,
B. subtilis, while the pure MgO NPs revealed a moderate activity against both B. subitlis
and E. coli bacteria.

3.3.5. Antibacterial Potential of Ag2O NPs

Ag2O NPs have also been discovered to possess great antibacterial effectiveness
against both regular and drug-resistant bacteria, turning them into potential novel alterna-
tives to most in-use antibiotics [349]. In a study by Sondi and Salopek-Sondi et al. [368],
it was suggested that the antibacterial mechanism of action for Ag2O NPs is due to their
ability to induce cell death through oxidative stress caused by arresting the cell cycle in the
G2/M phase as a direct consequence of DNA damage.

3.3.6. Antibacterial Activity of CeO2 NPs

In terms of CeO2 NPs, there is widespread research on their antibacterial action [369–371]
with studies showing their effectiveness against nitrogen-fixing bacteria and Gram-negative
bacteria. In contrast to other MONPs, it was discovered that CeO2 NPs cannot penetrate the
bacteria membrane [341]; therefore, the hypothesized mechanism of action is based on the
generation of oxidative stress in lipids and proteins found in the plasma membrane and on
the disruption of the electron-flow and bacterial respiration [155]. Ravishankar et al. [342]
reported that CeO2 NPs exhibited a concentration-dependent antibacterial activity against
P. aeruginosa and a lack of activity against Gram-positive bacteria.

3.3.7. Antibacterial Activity of Other Metal Oxide Nanoparticles

Even though the exact mechanism of the NiO NPs antibacterial activity is not yet
fully understood, data reported in the literature indicate their antibacterial effect against
various Gram-positive and Gram-negative bacteria such as B. subtilis, S. aureus, E. coli
and P. aeruginosa [30]. For example, in one study, the newly developed NiO NPs were
shown to have strong antibacterial activity against S. aureus and B. subtilis, while the least-
susceptible strains were found to be P. aeruginosa and K. peneumonaie [327]. Moreover,
Lingaraju et al. [130] demonstrated the nanoparticles’ strong antibacterial activity against
E. coli and only a moderate effect on the S. aureus and K. aerogenes strains.

As with other MONPs, ZrO2 NPs exhibit an antibacterial effect on both Gram-positive
and Gram-negative bacteria. Gowri et al. [372] evaluated the antibacterial potential of the
ZrO2 NPs against E. coli and S. aureus and observed that the inhibition zones in the case
of cotton fabrics treated with ZrO2 NPs were greatly improved. Furthermore, Kumaresan
et al. [373] revealed the nanoparticles’ ability to inhibit the growth of bacteria strains such
as E. coli, Salmonella typhi and B. subtilis. In another study, Penicillium was used to synthesize
ZrO2 NPs and it was observed that, even at minimum concentrations, the nanoparticles
had strong antibacterial activity against P. aeruginosa and E. coli [374].

The antibacterial activity of CdO NPs was tested against three Gram-positive (S. aureus,
S. pneumoniae and B. subtilis) and three Gram-negative bacteria (Proteus vulgaris, P. aeruginosa
and S. typhi) at three different concentrations. The results indicated that the maximum zone
of inhibition was obtained against P. vulgaris suggesting that this bacterial strain is more
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susceptible to CdO NPs, and this can be explained through structural differences in the cell
membranes. Moreover, S. aureus showed the least zone of inhibition, thus indicating the
reduced antibacterial activity of these NPs on this bacterial strain [33]. In addition, Shkeel
et al. [375] prepared CdO NPs with the use of aqueous plant extracts from the Curcuma
rhizome and investigated their antibacterial effect against a variety of human pathogens
such as P. aeruginosa, K. pneumoniae, S. aureus, E. coli, Candida albicans and Trichophyton
rubrum and reported a superior activity in the area of antimicrobial strain inhibition.

Considering the strong antibacterial activity of MONPs, their use in combination ther-
apy could represent a feasible strategy to overcome the current rise in bacterial resistance
and biomedical device-mediated infection. However, further studies are still required in
order to minimize the toxicity of nanoparticles before they can be employed as potential
alternatives for antibiotics and disinfectants for biomedical applications.

4. Toxicological Effects of Metal Oxide Nanoparticles

Due to their unique and novel characteristics, MONPs have become the main focus of
a wide range of in vitro and in vivo studies, consequently turning them into potential but
powerful scientific tools, with diverse applicability in the biological field [241]. However,
despite their multiple therapeutic effects, the potential toxicity of MONPs has been a
rising concern, as numerous in vitro and in vivo studies report controversial results [376].
Different toxicity mechanisms, such as oxidative stress/lipid peroxidation/cell wall damage
as a result of an overproduction of ROS [377,378], metal ion release [379–381] and an
impaired interaction between the nanoparticles and the targeted cells [382–384], have been
suggested (Figure 7). However, no singular, indisputable and precise identification of the
toxicity mechanism involving MONPs has been made.
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Furthermore, it is a well-known fact that the toxicological risk of any given substance
is determined both by its inherent toxicity and exposure time. Therefore, if the exposure
time is kept to a minimal threshold, the toxicity risk might be reduced even though the
MONPs possess a powerful cytotoxic effect [385]. Owing to the ever-growing importance
of MONPs in the fields of biology and medicine, an incremental need for risk assessment
of the toxic effect of MONPs should be further studied and characterized. The following
section will outline the most recent in vitro and in vivo toxicity studies of various MONPs
synthetized via different techniques.

4.1. In Vitro Studies

Despite being recognized as one of the most widely used non-toxic mineral nanostruc-
tures, TiO2 NPs exhibit various specific properties that could possess a potentially unknown
cytotoxic effect toward the human organism. Several in vitro studies reported the toxic
effects of TiO2 NPs in various cell types such as COS-1, NIH-3T3, TK6, WIL2-NS, NIH-3T3,
etc. [386–389]. Magdolenova et al. [389] reported that the cytotoxic effects displayed by the
TiO2 NPs are mainly attributed to the type of dispersion procedure used during toxico-
logical investigations, while Kang et al. [387] and Akhal’tseva et al. [390] observed DNA
damage and micronuclei generation in human lymphocytes and the human lymphoblast
TK6 cell line after TiO2 NPs treatment. However, since different testing protocols influence
a variety of nanoparticle interactions, it may have a divergent impact on the toxicity results
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and the data reported in the literature are inconsistent and often conflicting with numerous
in vitro studies disconfirming the cytotoxic potential of TiO2 NPs [391]. In common with
TiO2 NPs, ZnO NPs also present a widespread range of applicability in biomedicine, with
numerous studies reporting on their multiple therapeutic benefits [11]. However, in the
last few years, the use of ZnO NPs has become debatable, mainly after it was discovered
that they induce an over-accumulation of ROS and subsequently cause cytotoxic effects on
certain specific organs and cell lines [11]. Data reported in literature assign the biotoxicity
of these nanoparticles on their high solubility, a property responsible for the increase in
the free intracellular Zn2+ ion concentration released into the microenvironment [11]. As
a direct consequence, in an in vitro system, the cellular Zn homeostasis disruption has
been associated with oxidative stress, mitochondrial dysfunction and, ultimately, higher
toxicity [392] (Figure 6). Nonetheless, important aspects that should be taken into con-
sideration when assessing ZnO NPs toxicity are the concentration, the time of exposure
to the particles and whether or not their toxicity could be reversible [258]. For example,
Sahu et al. [393] reported that exposure to 50 nm ZnO NPs at concentrations of between
5 and 100 µg/mL decreased cell viability through the generation of oxidative stress, in a
concentration-dependent manner, ultimately resulting in DNA damage and cell apopto-
sis. Moreover, Huang et al. [394] showed that 20 nm ZnO NPs exerted a concentration-
and time-dependent cytotoxic effect on BEAS-2B human lung epithelial cells; while Wu
et al. [395] and Ng et al. [396] demonstrated that the nanoparticles’ cytotoxic effect on the
primary human bronchial epithelial cell line BEAS-2B was induced by 24–70 nm ZnO NPs
and 22.5 nm ZnO NPs, respectively.

In addition to specific cell lines derived from the airways, a vast number of in vitro
studies focused on the toxic effects of ZnO NPs on various immune cells, such as macrophages
and monocytes. In the RAW 264.7 macrophage-like cell line, 20 nm ZnO NPs led to the
induction of intracellular Ca2+ flux, a process followed closely by reduced mitochondrial
membrane potential and, finally, to the loss of membrane integrity [397]. However, similarly
sized ZnO NPs did not activate the inflammasome in the THP-1 human monocytic cell
line, therefore, no cytotoxic effects could be observed. Moreover, it was reported that
monocytes are more sensitive to 4–20 nm sized ZnO NPs and that with NPs size reduction,
the cytotoxicity and ROS generation were significantly increased [398]. As stated above, the
manifold effects of CeO2 NPs have motivated researchers all over the world to pursue these
MONPs as therapeutic agents for a number of diseases, including cancer, with various
in vitro and in vivo studies demonstrating their cytotoxic effects on a wide range of tumor
cells [281]. However, data published in the specialized literature indicate that CeO2 NPs
can also display minimal in vitro toxicity to non-cancerous cells, most likely due to the
impact of various unknown cellular and micro-environmental stimuli on the manifestation
of anti- and pro-oxidant behavior [281]. For example, several in vitro reports showed
that the uptake of CeO2 NPs could induce oxidative stress, DNA damage, aberrant cell
signaling, substrate dephosphorylation and modifications at the transcriptional and post-
translational levels [277,399,400]. However, due to the distinct properties of the synthetized
ceria NPs and the poor correlation between their cytotoxic effects with particle size/surface
characteristics and cell type, the majority of the reported data regarding their toxicity are
often contradictory [376]. As with other MONPs, the intracellular and in vivo toxicity of
Fe2O3 nanoparticles arise from the over-production of ROS, which can damage cells by
peroxidizing lipids, disrupting DNA, modulating gene transcription, changing proteins and
ultimately lowering the physiological function of cells, followed by their death (Figure 6).
The cytotoxic effect of Fe2O3 NPs has been investigated in vitro on a wide range of cell lines
such as human lung epithelial cells, human epidermal keratinocytes, BRL3A rat liver cells,
Cos-7 monkey fibroblasts, etc. [401], but reported end results were contradictory mainly
due to the wide variety of cell lines employed. For example, amine-modified Fe2O3 NPs at a
concentration of 224 µg/mL were shown to induce an up to 25% reduction in the astrocytes
derived from a mouse brain, while human dermal fibroblasts and fibrosarcoma cells did not
present the same drastic changes in their survival rate [402]. Moreover, the toxicity of Fe2O3
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NPs has been demonstrated to be strongly dose-dependent, with concentrations higher than
300 µg/mL usually inducing cytotoxic effects after a prolonged exposure time [403,404];
Dwivedi et al. [358] reported that cell death is a dose-dependent phenomenon and it was
associated with increasing concentrations of NPs, which led to the generation of ROS-
mediated oxidative stress. In vitro studies are a step toward clinical practices, especially
due to the reproducibility of material behavior and cellular response. However, one of their
considerable challenges lies in the inability to replicate cellular conditions in ’live’ systems,
which may curtail the data of in vitro test to effectively ascertain in vivo response, which
will be looked into in the following section.

4.2. In Vivo Studies

Regardless of the in vitro toxicity evaluation of MONPs, in vivo studies are scarcely
reported. This section presents the most relevant in vivo animal investigations concern-
ing the toxic effects of these metal oxide nanoparticles. The in vivo toxicity of ceria NPs
was evaluated in a series of studies that demonstrated that animal exposure to certain
concentrations of CeO2 NPs led to lung inflammation, lung injury, alveolar macrophage
functional alteration, induction of phospholipidosis and release of pro-inflammatory and
fibrotic mediators [405]. Moreover, reported data suggest that ceria NPs can induce my-
ocardial fibroblast proliferation and collagen accumulation in rat models [406]. In addition,
CeO2 NPs could lead to systemic toxicity, since cerium is not a mineral found normally
in the human body, therefore lacking an intrinsic clearance mechanism for its subsequent
elimination [376]. As with CeO2 NPs, in vivo toxicity studies of TiO2 NPs showed stronger
inflammatory activity in comparison to their micro-sized counterparts, leading to lung
inflammation and, consequently, cancer in rats after nanoparticle inhalation and intratra-
cheal instillation [388,407,408]. Moreover, Trouiller et al. [409] and Sycheva et al. [410]
reported that TiO2 NPs administered either through drinking water or gavage could induce
micronuclei and DNA damage in the peripheral blood cells and bone marrow of adult
male mice, while Lindberg et al. [411] observed that, after five days inhalation of TiO2 NPs,
no DNA damage occurred in the peripheral blood lymphocytes of mice. As stated above,
the system distribution of ZnO NPs can lead to toxic manifestations in various organs
of the body, based on their concentration, the administered dose and its route, and the
exposure time. Taking this into consideration, a wide range of in vivo studies demonstrated
that ZnO NPs could affect organs such as the liver, kidneys, spleen, stomach, pancreas,
lungs and heart, but also the neurological and lymphatic systems. For example, ZnO
NPs inhalation caused a size-dependent severe inflammatory response and fibrosis in the
alveolar and tracheobronchial tissues, due to the dissolution of nanoparticles by the acidic
lung fluid, which in turn increased their concentration and, implicitly, their pulmonary
cytotoxicity [412]. Moreover, Han et al. [413] reported that the administration of ZnO NPs
via intraperitoneal injection resulted in neurotoxic effects, such as an attenuated learning
ability and memory. Similarly, Elshama et al. [414] identified significant histopathological
and ultrastructural alterations in the brains and spinal cords of rats as a direct consequence
of increased ROS after prolonged exposure to high doses of intraperitoneally administered
ZnO nanoparticles. Furthermore, in a study by Li et al. [415], it was demonstrated that
both intraperitoneal and oral administration of ZnO NPs had, as a direct consequence, the
systemic distribution and toxic accumulation of nanoparticles in different organs such as
the liver, lungs, kidneys and spleen. In addition, it was shown that in male rat models,
the nanoparticles were able to alter the body’s metabolism by elevating the levels of liver
enzymes. Similar results were reported by Soheili et al. [416], who, apart from the elevated
levels of liver enzymes, observed higher levels of glucose, thus suggesting that ZnO NPs
are also harmful to some extent to pancreatic cells. In another study, Esmaeilloua et al. [417]
demonstrated that the cytotoxic effects of ZnO NPs on organs such as the lungs, liver and
kidneys could be also dependent on their physicochemical characteristics, such as size
and specific surface area. Similarly, Kim et al. [418] reported that the oral administration
of a wide range of doses of 100 nm sized ZnO NPs with various surface charges and for



J. Funct. Biomater. 2022, 13, 274 30 of 47

a prolonged period of time were capable of inducing an assortment of histopathological
alterations such as squamous and glandular cell hyperplasia in the stomach, acinar pancre-
atic cells apoptosis, retinal atrophy and suppurative inflammation in the prostate. Despite
the scarcely available data on the effects of the ZnO NPs on the reproductive system and
fetal development, Hong et al. [419] showed that the repeated oral administration of ZnO
NPs for short periods of time in pregnant rat models led to maternal and developmental
toxicity. When it comes to the in vivo interaction between Fe2O3 NPs and biological sys-
tems, the process becomes quite complicated and dynamic [420–422]. When these NPs are
administered and enter an organism through various routes, their absorption can occur
through interactions with different biological components, e.g., proteins and cells, only to
be afterward distributed into different organs where they either remain or end up being
metabolized [423]. Taking this into consideration, it was expected that organs that are en-
riched with reticuloendothelial systems, such as the lungs, liver and spleen, would take up
the majority of iron oxide nanoparticles administered via different routes. In vivo studies
demonstrated that Fe2O3 NPs that entered the body both via inhalation and the intravenous
route, accumulated in the lungs, brain, spleen, testes and liver, while only intravenous
Fe2O3 NPs were found to accumulate in the brain, spleen and kidneys [424,425]. In addi-
tion, different types of animal models also displayed different toxicity profiles for Fe2O3
NPs, e.g., differences in liver function in terms of the levels of aspartate aminotransferase
and alanine aminotransferase, were observed in different types of animal models upon
intravenous administration of the same concentration of iron oxide NPs [426].

In summary, the toxicity of MONPs remains an overly controversial subject, and
further standardized studies are still required in order to understand the exact mechanism
through which nanoparticles exert their cytotoxic effects and the ways through which this
present liability could be overcome.

5. Conclusions and Future Perspectives

Due to their small size and unique characteristics, NPs possess different properties
compared to their bulk counterparts, thus exhibiting an ever-growing biomedical potential,
mainly due to their inherent ability to induce an over-production of ROS and implicitly
cell death. These unique properties turn MONPs into suitable anticancer, antibacterial
and pro-regenerative tools, either as standalone agents or as drug-delivery platforms for
various bioactive molecules. However, despite the multiple advantages that MONPs bring
into clinical practice, the major drawback that poses a great challenge for researchers all
over the world is their inherent toxicity and the lack of a consensus regarding the guidelines
and regulatory frameworks for in vitro and in vivo testing of their toxicological effects.

With this in mind, systematic documentation of the complementary in vitro and
in vivo protocols used to evaluate specific NPs responses would be beneficial and more
than likely eliminate the limitations imposed by their toxicity, especially if it would present
both as a standardized method of synthesis and as testing protocols. From the point of view
of synthesis and functionalization, firstly, due to the variety of synthesis methods, there
is difficulty in evaluating the influence of the NPs size and morphology, and, secondly,
as a result of differences in the chemical and surface properties of the same metal oxide
NPs synthesized by different methods, there is a disparity in the performance and actual
functionalization of such NPs.

Each MONP synthesis method comes with its own advantages, and from the different
bottom-up approaches discussed in the present review, typically precipitation, sol-gel,
hydrothermal and various biosynthesis methods are extensively used in both laboratory
and industrial synthesis. Furthermore, biosynthesis or green synthesis possesses a huge
potential for the advancement of green research in the field of MONPs with biomedical
applications due to its effectiveness, low costs, sustainability and environmental and human
health safety benefits.

Once this challenge of systematic documentation is addressed and overcome, the
future of MONPs in the biomedical field will hold an even greater promise, not only for
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multifunctional therapeutic strategies but also for early disease diagnosis as theranostic
platforms for in-depth and non-invasive cellular and tissue imaging. Moreover, recent
advances in the design and development of MONPs allow them to deliver, with minimal
effects, active drugs for lethal diseases that demand site-specific treatment. This character-
istic was and will continue to be heavily exploited in cancer treatment, with researchers
seeking multi-functional therapies and remote control of NPs functions. Furthermore, this
will open the door for the introduction of personalized medicine, which will pave the way
for safer, more effective and tailored treatment options for patients with cancer. Therefore,
it is expected that the coming years should witness an increase in the number of clinical
trials and an improvement in the life of cancer patients.
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Nanoparticles for Photocatalysis under Different Irradiation Spectra. Nanomaterials 2022, 12, 1473. [CrossRef] [PubMed]

193. Fouda, A.; Awad, M.A.; Eid, A.M.; Saied, E.; Barghoth, M.G.; Hamza, M.F.; Awad, M.F.; Abdelbary, S.; Hassan, S.E.-D. An
Eco-Friendly Approach to the Control of Pathogenic Microbes and Anopheles stephensi Malarial Vector Using Magnesium Oxide
Nanoparticles (Mg-NPs) Fabricated by Penicillium chrysogenum. Int. J. Mol. Sci. 2021, 22, 5096. [CrossRef] [PubMed]

194. Greczynski, G.; Hultman, L. The same chemical state of carbon gives rise to two peaks in X-ray photoelectron spectroscopy. Sci.
Rep. 2021, 11, 11195. [CrossRef] [PubMed]

195. Greczynski, G.; Hultman, L. Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-
function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak. Appl. Surf.
Sci. 2018, 451, 99–103. [CrossRef]

196. Biesinger, M.C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis:
Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 153681. [CrossRef]

197. Greczynski, G.; Hultman, L. A step-by-step guide to perform X-ray photoelectron spectroscopy. J. Appl. Phys. 2022, 132, 011101.
[CrossRef]

198. Alamdari, S.; Ghamsari, M.S.; Lee, C.; Han, W.; Park, H.-H.; Tafreshi, M.J.; Afarideh, H.; Ara, M.H.M. Preparation and
Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Appl. Sci. 2020, 10, 3620. [CrossRef]

199. Bêche, E.; Charvin, P.; Perarnau, D.; Abanades, S.; Flamant, G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide
(CexTiyOz). Surf. Interface Anal. 2008, 40, 264–267. [CrossRef]

200. Krill, G.; Kappler, J.-P.; Meyer, A.; Abadli, L.; Ravet, M.F. Surface and bulk properties of cerium atoms in several cerium
intermetallic compounds: XPS and X-ray absorption measurements. J. Phys. F Met. Phys. 1981, 11, 1713–1725. [CrossRef]

201. Eslami, M.; Fedel, M.; Speranza, G.; Deflorian, F.; Zanella, C. Deposition and Characterization of Cerium-Based Conversion
Coating on HPDC Low Si Content Aluminum Alloy. J. Electrochem. Soc. 2017, 164, C581–C590. [CrossRef]

202. Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.
[CrossRef]

203. Zhang, Y.; Li, L.; Ma, W.; Zhang, Y.; Yu, M.; Guo, J.; Lu, H.; Wang, C. Two-in-One Strategy for Effective Enrichment of
Phosphopeptides Using Magnetic Mesoporous γ-Fe2O3 Nanocrystal Clusters. ACS Appl. Mater. Interfaces 2013, 5, 614–621.
[CrossRef] [PubMed]

204. Atuchin, V.V.; Kesler, V.G.; Pervukhina, N.V.; Zhang, Z. Ti 2p and O 1s core levels and chemical bonding in titanium-bearing
oxides. J. Electron. Spectrosc. Relat. Phenom. 2006, 152, 18–24. [CrossRef]

205. Wanger, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer
Corp.: Eden Prairie, MN, USA, 1992; ISBN 9780964812413.

206. Le Febvrier, A.; Jensen, J.; Eklund, P. Wet-cleaning of MgO(001): Modification of surface chemistry and effects on thin film growth
investigated by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. J. Vac. Sci. Technol. A Vac.
Surf. Films 2017, 35, 021407. [CrossRef]

207. Biju, V. Ni 2p X-ray photoelectron spectroscopy study of nanostructured nickel oxide. Mater. Res. Bull. 2007, 42, 791–796.
[CrossRef]

http://doi.org/10.1063/1.4989977
http://doi.org/10.3390/coatings12020215
http://doi.org/10.3390/nano11010095
http://doi.org/10.1016/j.ceramint.2018.04.063
http://doi.org/10.1016/j.ecoenv.2019.109410
http://doi.org/10.1016/j.molstruc.2017.05.118
http://doi.org/10.1016/j.jphotobiol.2018.11.014
http://www.ncbi.nlm.nih.gov/pubmed/30504053
http://doi.org/10.1371/journal.pone.0253390
http://www.ncbi.nlm.nih.gov/pubmed/34191839
http://doi.org/10.1515/revac-2022-0030
http://doi.org/10.3390/nano11081889
http://doi.org/10.3390/nano12091473
http://www.ncbi.nlm.nih.gov/pubmed/35564182
http://doi.org/10.3390/ijms22105096
http://www.ncbi.nlm.nih.gov/pubmed/34065835
http://doi.org/10.1038/s41598-021-90780-9
http://www.ncbi.nlm.nih.gov/pubmed/34045623
http://doi.org/10.1016/j.apsusc.2018.04.226
http://doi.org/10.1016/j.apsusc.2022.153681
http://doi.org/10.1063/5.0086359
http://doi.org/10.3390/app10103620
http://doi.org/10.1002/sia.2686
http://doi.org/10.1088/0305-4608/11/8/024
http://doi.org/10.1149/2.1511709jes
http://doi.org/10.1016/j.apsusc.2007.09.063
http://doi.org/10.1021/am3019806
http://www.ncbi.nlm.nih.gov/pubmed/23294124
http://doi.org/10.1016/j.elspec.2006.02.004
http://doi.org/10.1116/1.4975595
http://doi.org/10.1016/j.materresbull.2006.10.009


J. Funct. Biomater. 2022, 13, 274 39 of 47

208. Jeejamol, D.J.; Raj, A.M.E.; Jayakumari, K.; Ravidhas, C. Optimization of CdO nanoparticles by Zr4+ doping for better photocat-
alytic activity. J. Mater. Sci. Mater. Electron. 2018, 29, 97–116. [CrossRef]

209. Killian, M.S.; Seiler, S.; Wagener, V.; Hahn, R.; Ebensperger, C.; Meyer, B.; Schmuki, P. Interface Chemistry and Molecular
Bonding of Functional Ethoxysilane-Based Self-Assembled Monolayers on Magnesium Surfaces. ACS Appl. Mater. Interfaces 2015,
7, 9006–9014. [CrossRef] [PubMed]

210. Tang, Y.; Rajendran, P.; Veeraraghavan, V.P.; Hussain, S.; Balakrishna, J.P.; Chinnathambi, A.; Alharbi, S.A.; Alahmadi, T.A.;
Rengarajan, T.; Mohan, S.K. Osteogenic differentiation and mineralization potential of zinc oxide nanoparticles from Scutellaria
baicalensis on human osteoblast-like MG-63 cells. Mater. Sci. Eng. C 2021, 119, 111656. [CrossRef] [PubMed]

211. Augustine, R. Skin bioprinting: A novel approach for creating artificial skin from synthetic and natural building blocks. Prog.
Biomater. 2018, 7, 77–92. [CrossRef] [PubMed]

212. Augustine, R.; Dan, P.; Schlachet, I.; Rouxel, D.; Menu, P.; Sosnik, A. Chitosan ascorbate hydrogel improves water uptake capacity
and cell adhesion of electrospun poly(epsilon-caprolactone) membranes. Int. J. Pharm. 2019, 559, 420–426. [CrossRef]

213. Lansdown, A.B.G.; Mirastschijski, U.; Stubbs, N.; Scanlon, E.; Ågren, M.S. Zinc in wound healing: Theoretical, experimental, and
clinical aspects. Wound Repair Regen. 2007, 15, 2–16. [CrossRef]

214. Raguvaran, R.; Manuja, B.K.; Chopra, M.; Thakur, R.; Anand, T.; Kalia, A.; Manuja, A. Sodium alginate and gum acacia hydrogels
of ZnO nanoparticles show wound healing effect on fibroblast cells. Int. J. Biol. Macromol. 2017, 96, 185–191. [CrossRef]

215. Chen, J.; Patil, S.; Seal, S.; McGinnis, J.F. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides.
Nat. Nanotechnol. 2006, 1, 142–150. [CrossRef]

216. Davan, R.; Prasad, R.G.S.V.; Jakka, V.S.; Aparna, R.S.L.; Phani, A.R.; Jacob, B.; Salins, P.C.; Raju, D.B. Cerium Oxide Nanoparticles
Promotes Wound Healing Activity in In-Vivo Animal Model. J. Bionanosci. 2012, 6, 78–83. [CrossRef]

217. Naseri-Nosar, M.; Farzamfar, S.; Sahrapeyma, H.; Ghorbani, S.; Bastami, F.; Vaez, A.; Salehi, M. Cerium oxide nanoparticle-
containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation.
Mater. Sci. Eng. C 2017, 81, 366–372. [CrossRef]

218. Wu, H.; Li, F.; Wang, S.; Lu, J.; Li, J.; Du, Y.; Sun, X.; Chen, X.; Gao, J.; Ling, D. Ceria nanocrystals decorated mesoporous silica
nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials 2018, 151, 66–77.
[CrossRef] [PubMed]

219. Pai, B.G.; Kulkarni, A.V.; Jain, S. Study of smart antibacterial PCL-xFe3O4 thin films using mouse NIH-3T3 fibroblast cells in vitro.
J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 105, 795–804. [CrossRef] [PubMed]
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