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Forbot, N.; Jędrzejewski, T.; Roszek,
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Abstract: Hydroxyapatite (HA) layers are appropriate biomaterials for use in the modification of
the surface of implants produced inter alia from a Ti6Al4V alloy. The issue that must be solved
is to provide implants with appropriate biointegration properties, enabling the permanent link
between them and bone tissues, which is not so easy with the HA layer. Our proposition is the use
of the intermediate layer ((IL) = TiO2, and titanate layers) to successfully link the HA coating to a
metal substrate (Ti6Al4V). The morphology, structure, and chemical composition of Ti6Al4V/IL/HA
systems were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and
energy-dispersive X-ray spectrometry (EDS). We evaluated the apatite-forming ability on the surface
of the layer in simulated body fluid. We investigated the effects of the obtained systems on the
viability and growth of human MG-63 osteoblast-like cells, mouse L929 fibroblasts, and adipose-
derived human mesenchymal stem cells (ADSCs) in vitro, as well as on their osteogenic properties.
Based on the obtained results, we can conclude that both investigated systems reflect the physiological
environment of bone tissue and create a biocompatible surface supporting cell growth. However, the
nanoporous TiO2 intermediate layer with osteogenesis-supportive activity seems most promising for
the practical application of Ti6Al4V/TiO2/HA as a system of bone tissue regeneration.

Keywords: hydroxyapatite; titanate nanolayers; titanium dioxide; cathodic electrodeposition; bioin-
tegration; antimicrobial activity; adipose-derived mesenchymal stem cells

1. Introduction

Tissue engineering aims to replace, restore, improve or maintain the function of tissues
and organs using implants containing the patient’s cells embedded in a special biomaterial
that acts as a cell scaffold [1–4]. The composition, architecture, and possibility of resorp-
tion are factors that determine the biomatrix’s biocompatibility. Biomaterials are used for
several different types of implants, such as surgical, orthopedic, dental, craniofacial, and
arthroplasty applications. The implant function in the human body is a key feature for the
requirements to be achieved by the materials used in their construction [4–11]. However,
they must also possess the appropriate mechanical strength and porosity to allow cell
adhesion [5,12–14]. The material’s biocompatibility is a significant property that should be
considered during their choice for implant construction, which will prevent its rejection
by the body after implantation. A major risk is the loosening or fracture of the implant
(shielding effect), which can cause painful inflammation and infection of the surrounding
tissues [15–17]. In addition, it is important to ensure that its production process is repro-
ducible for different batches of devices and that the material does not undergo changes
in shape or properties during its sterilization process [15–21]. For this reason, various
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innovative technologies (e.g., plasma treatment, low-intensity pulsed ultrasound, magnetic
field stimulation, anodization, chemical treatment) [22–29], modifications (e.g., incorpo-
ration/deposition of various metal ions) [28,30–34] for the fabrication of biomaterials are
being applied to prevent unwanted complications.

The most used material for orthopedic and dental implants is the titanium alloy
Ti6Al4V. This is due to its superior corrosion resistance, high fracture resistance, low
density, and biocompatibility. Unfortunately, the main problem is its inability to inte-
grate with bone [23,35–39]. Moreover, titanium and titanium alloy show unsatisfactory
mechanical properties. The Ti6Al4V alloy (~210 GPa) has a significantly higher elastic
modulus compared to human cortical bone tissue (Young’s modulus 10–30 GPa, hardness
0.3–0.7 GPa) and a higher hardness [40–42]. Therefore, numerous modifications of its
surface are being carried out to make it bioactive. An analysis of previous reports revealed
that the fabrication of nanoporous, nanotube, nanosponge-like, and nanofibrous TiO2 and
titanate coatings on the surface of the Ti6Al4V alloy significantly improves its biointegra-
tion properties [29,43–50]. The production of nanocoatings with different morphologies
on the surface of the titanium alloy definitely improves its mechanical properties, but it
still has not been developed as a biomaterial with very similar mechanical parameters to
bone [38,51]. The attractive biomaterial for scaffolding in tissue engineering is hydroxyap-
atite (Ca10(PO4)6(OH)2, HA). Its composition and structure are very similar to the inorganic
component of the bone matrix. The main limitation in the use of hydroxyapatite layers
is their poor adhesion to metal substrates [52–55]. Over the past several years, a series of
studies have been conducted in an effort to improve the evaluation of implant materials
with a hydroxyapatite layer [37,52–59].

It is important to evaluate fabricated systems for their ability to promote bone repair
and regeneration. The production of a porous scaffold facilitates increased cell migration
and the diffusion of signaling molecules as well as nutrients [60–63]. The biomaterial
should exhibit the potential to mimic the native extracellular matrix (ECM) and support
many tissues’ morphogenesis. In regenerative medicine and tissue engineering, there is a
growing focus on using mesenchymal stem cells (MSCs) due to their ability to self-renew,
proliferate and differentiate toward bone-forming cells [60,61,63–65]. Advances in stem cell
knowledge have opened new possibilities for obtaining unlimited sources of cells. MSCs are
generally isolated from bone marrow. However, they can also be isolated from, e.g., adipose
tissue, umbilical cord, muscles, bone, synovium, blood, cartilage or tendon [63,64,66–68].
Adipose-derived human mesenchymal stem cells (ADSCs) are increasingly being used in
cell therapy development, especially due to their angiogenic potential. Their undoubted
advantages compared to stem cells isolated from bone marrow are their easy availability
in the body and their non-invasive methods of collection [69–71]. The formation of a
biocompatible scaffold, alone or in combination with stem cells, is a promising tool to
improve the regeneration and repair of bone tissue [29,43,44,66,72].

In research carried out so far, we have focused on developing a manufacturing method
for composite systems consisting of a Ti6Al4V alloy/intermediate layer ((IL); TiO2 or ti-
tanate)/hydroxyapatite layer (HA). The obtained results revealed that the use of oxide
intermediate layers linked the Ti6Al4V alloy substrate and the hydroxyapatite surface
layer, and significantly improved the mechanical properties of the system. The mechanical
parameters (i.e., hardness, Young’s modulus) obtained for the hydroxyapatite layer were
similar to cortical bone. Furthermore, the adhesion strength between the titanium alloy
substrate and the hydroxyapatite layer was significantly increased by the use of intermedi-
ate coatings [30]. Nevertheless, the produced materials with a hydroxyapatite layer should
also show high biocompatibility and biointegration properties.

For this reason, in the presented work, we focused on comparing the biological
activity of the produced systems with the hydroxyapatite layer, which showed the best
mechanical properties. We conducted in vitro studies of the biomaterials mentioned above
as Ti6Al4V/IL/HA systems, investigating their effects on the survival and proliferation of
cultures of human MG-63 osteoblast-like cells, mouse L929 fibroblast and adipose-derived
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human mesenchymal stem cells (ADSCs) seeded on their surface. We also estimated
the potential antimicrobial activity of the produced systems. These studies allowed for
the development of a system with a hydroxyapatite layer, in which a balance between
mechanical and biological properties was achieved.

2. Materials and Methods
2.1. Synthesis of TiO2/HA and Titanate/HA Double-Layer Coating

Ti6Al4V/IL/HA composite materials were selected for biological studies, which
exhibit physicochemical as well as mechanical properties desirable for biomedical applica-
tions. The following intermediate layers (ILs) were selected for biological tests as follows:
nanoporous TiO2 (T5), nanofibrous TiO2 (TNF6C), and titanate (T-S), whose syntheses have
been described in detail in our previous reports [29,43,44].

The overall scheme for producing the Ti6Al4V/IL/HA composites is presented in
Figure 1. The intermediate layers on the surface of the Ti6Al4V substrates were synthesized
in the first stage. In all our experiments, 0.20 mm-thick Ti6Al4V alloy foil was used (marked
as T, grade 5, 99.7% purity; Strem Chemicals, Inc., Bischheim, France). The electrochemical
method of anodic oxidation in 0.3% hydrofluoric acid solution (t = 20 min, U = 5 V) was
used to produce TiO2 nanoporous coatings (T5). As a result of etching in a ca. 5.8 M
hydrochloric acid solution and chemical oxidation in 30% hydrogen peroxides solution
(t = 6 h, T = 85 ◦C under a reflux condenser), TiO2 nanofiber coatings (TNF6C) were
obtained. Alkali-sodium treatment of the titanium alloy in 7 M sodium hydroxide solution
(t = 48 h, T = 65 ◦C) led to titanate coatings (T-S).
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Figure 1. Scheme to produce systems with a hydroxyapatite layer.

The hydroxyapatite coating was deposited onto the Ti6Al4V/IL system in the next stage.
The synthesis, structural and morphological characterization, as well as the physicochemical
and mechanical properties of the TiO2/HA and titanate/HA double layers have been pre-
viously reported [30]. T5, T-S, and TNF6C materials were cut into pieces 6 mm × 100 mm
and 10 × 60 mm and 0.2 mm thick. A hydroxyapatite (HA) coating was deposited onto these
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biomaterials using cathodic electrochemical deposition (t = 60 min, T = 65 ◦C, I = 2.5 mA for
T5 and T-S samples and I = 3.5 mA for TNF6C samples; pH of the electrolytes = 4.5). The
electrolyte consisted of components dissolved in distilled water: Ca(NO3)2 · 4 H2O (0.042 M),
NH4H2PO4 (0.025 M) and EDTA-2Na (1.5 × 10−3). Then, the samples were immersed in
0.1 M NaOH solution (t = 2 h, T = 65 ◦C) and finally sintered (t = 2 h, T = 250 ◦C).

All specimens prepared for bioassay were sterilized (t = 20 min, T = 123 ◦C, p = 120 kPa)
with an IS YESON YS-18L autoclave (Yeson, Ningbo, China).

2.2. SEM and Element Analysis

Scanning electron microscopy (SEM) studies were carried out using two microscopes:
(1) high-resolution with field emission electron source (HR-SEM, Quanta 3D FEG, FEI
Company, Brno, Czech Republic); (2) tungsten cathode microscope (SEM, EVO 15, Carl
Zeiss Microscopy, Oberkochen, Germany) coupled to energy-dispersive X-ray spectrome-
ter (EDS, SmartEDS, Carl Zeiss Microscopy, Oberkochen, Germany), which was used to
analyze the elements contained in all the synthesized double layers. Measurements on
both microscopes were made in the variable pressure mode (VP, with a pressure of 50 Pa
in the chamber). X-ray diffraction analyses were carried out in the PANalytical X’Pert Pro
model diffractometer (Malvern PANalytical B.V., Almelo, The Netherlands) with Cu-K alfa
radiation and grazing incidence angle mode (GIXRD; the incidence angle was equal to
1 degree).

2.3. Apatite-Forming Ability

In accordance with ISO/FDIS 23317:2007(E) and Kokubo’s formulation, we evaluated
the apatite-forming ability on the surface of the layers in simulated body fluid (SBF) [73,74].
By immersing the samples in SBF solution, we wanted to (a) assess the stability of the HA
layers linked through an intermediate layer (IL) to the Ti6Al4V substrate, as well as to
(b) verify whether the produced HA layer promotes further apatite growth in a solution
of similar composition to the human body fluids. These studies were carried out for the
T5/HA, T-S/HA and TNF6C/HA systems. Immersion in SBF solution was carried out
according to the procedure we described earlier at a constant temperature of 36.5 ◦C for 7,
14, 21, and 28 days, and each sample was kept in a vertical position inside polypropylene
tubes [43]. The percentage weight gain observed after removing and drying the samples
from the SBF solution was calculated.

2.4. Cell Culture

L929 mouse fibroblast cells were obtained from the American Type Culture Collection
(Manassas, VA, USA) and cultivated in RPMI 1640 medium supplemented with 10% fetal
bovine serum (FBS) and antibiotics (penicillin and streptomycin). Human osteoblast-like
MG-63 cells were purchased from the European Collection of Cell Cultures (Salisbury,
UK) and cultured in EMEM medium supplemented with L-glutamine sodium pyruvate,
non-essential amino acid, 10% FBS, and antibiotics. Adipose-derived human mesenchymal
stem cells (ADSCs) were purchased from PromoCell (Heidelberg, Germany) and cultivated
in Mesenchymal Stem Cell Growth Medium® containing 10% Supplement Mix® and
antibiotics. All cell lines were cultured at 37 ◦C under a humidified atmosphere of 5%
CO2. After reaching approximately 70% cell density, the cells were trypsinized using
trypsin/EDTA solution at a concentration of 0.25% for L929 and MG-63 cells or 0.04% for
ADSCs, respectively. The reagents used for the L929 and MG-63 cell cultures were obtained
from Merck KGaA (Darmstadt, Germany), whereas those for ADSCs were purchased
from PromoCell.

2.5. Cell Proliferation Assay

The MTT (3-(4,5-dimethylthiazolyl)-2,5-diphenyl-tetrazolium bromide; Merck KGaA,
Darmstadt, Germany) assays were used to evaluate cell proliferation. Firstly, 1 × 104 L929
fibroblasts, 1 × 104 MG-63 cells and 3 × 104 ADSCs were seeded in a 10 µL drop onto the
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sterile scaffolds placed in a 24-well plate and were left for 4 h to adhere. Then, 500 µL of
suitable culture medium was added and the cells were cultured at 37 ◦C for 1, 5 and 7 days.
Then, the samples were rinsed with phosphate-buffered saline (PBS; Merck KGaA) and
100 µL of MTT solution at a concentration of 0.5 mg/mL was added to each well. After
3 h of incubation at 37 ◦C, the cells were washed again with PBS and 300 µL of dimethyl
sulfoxide (DMSO; 100% v/v) were added to each well. The formed formazan crystals
were dissolved by shaking plates for 10 min. The optical density was measured at 570 nm
(with reference wavelength of 630 nm) using Synergy HT Multi-detection reader (BioTek
Instruments, Winooski, VT, USA). The blank samples without cells were treated identically
to the experimental scaffolds.

2.6. Analysis of Cells Using Scanning Electron Microscopy

The analysis of L929, MG-63, ADSC cell morphologies and the levels of proliferation
over time on the selected scaffolds (T5/HA and TNF6C/HA) was conducted using scanning
electron microscopy (EVO 15). The cells were seeded on the specimens at the same density
as in the MTT assays and were cultured for 1 and 5 days. Then, the scaffolds were rinsed
with PBS, fixed in 2.5% v/v glutaraldehyde and dehydrated in a graded series of ethanol
concentrations (50%, 75%, 90%, and 100%) for 20 min at each ethanol concentration. Finally,
the specimens were dried overnight before the SEM analysis was performed.

2.7. Alizarin Red S Staining

Before staining, cells were fixed for 15 min in 10% formalin solution, then residual
formaldehyde was removed by washing the wells twice with bi-distilled water. Extracel-
lular calcium deposits were stained through 20 min incubation with 500 µL Alizarin Red
solution. Unbound dye residues were rinsed 4 times for 5 min with bi-distilled water. For
quantitative analysis, stained calcium deposits were mechanically removed from titanium
substrates with a scraper and then bound dye was dissolved in 500 µL 10% acetic acid
by shaking for 30 min in 37 ◦C. The result was measured spectrophotometrically at a
wavelength of 405 nm. To avoid a false positive result due to deposition of the dye on the
titanium plates coated with hydroxyapatite, control stains were performed on the plates
without seeded cells and these values were subtracted from the test samples.

2.8. Alkaline Phosphatase (ALP) Activity

The first step in determining the enzyme activity was to perform cell lysates. First,
350 µL of lysis buffer were added to each well, incubated for 10 min at 37 ◦C, and cells
were mechanically disintegrated with a scraper. The obtained lysates were centrifuged
(3 min, 3000× g) and 300 µL were transferred to the wells to determine the catalytic activity
of the enzyme.

The substrate used for the enzymatic reaction was 1 mM p-nitrophenylphosphate
(pNPP). Activity was measured by adding 0.3 mL of substrate solution to 0.3 mL of cell
lysate. The blank sample—0.3 mL of lysis buffer and 0.3 mL of substrate—was also prepared.
All samples were incubated for 1 h at 37 ◦C and then the reaction was stopped by adding
0.2 mL of 1% NaOH solution. The absorbance of the samples was measured at 405 nm by
using Synergy HT Multi-detection reader. The produced p-nitrophenol concentration was
calculated using the calibration curve, and ALP activity was normalized to cell number in
appropriate samples.

2.9. Antimicrobial Activity

Biocidal activity of the selected scaffolds with hydroxyapatite layers were estimated
against Gram-positive (Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC
6538), Gram-negative (Escherichia coli ATCC 25922, Escherichia coli ATCC 8739) bacteria
and Candida albicans ATCC 10231. The scaffolds were placed in the 12-well plates with
1 mL of microbial inoculum (1.0 − 3.3 × 106 C.F.U mL−1) in 1 x phosphate-buffered saline
(PBS) without ions (EurX) and incubated for 24 h at 37 ◦C. Buffer was sterilized by filtration
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through 0.22 µm filters prior to use. Microbial density was prepared using a densitometer
(Biosan, Latvia), diluted accordingly with PBS to the final concentration and estimated by
colony counts after the spreading of 100 µL on Triptic Soy Agar (TSA; Becton Dickinson,
USA for bacteria) or Sabouraus Dextrose Agar (SDA; Becton-Dickinson for C. albicans). The
positive control was the inoculum without scaffolds. After incubation, the inoculum was
collected from the wells, ten-fold diluted and spread (100 µL) on the appropriate medium
in Petri dishes. Plates were incubated for 24h at 37 ◦C. Colony-forming units were counted
on the inoculated plates and compared with the appropriate control plates to estimate the
reduction of bacterial or fungal growth.

The antimicrobial activity was determined based on the reduction (R) factor calculated
according to the formula R = Ut – At, where Ut is the common logarithm of the number
of bacteria in the untreated microbial suspension and At is the common logarithm of the
number of bacteria in the treated microbial suspension. R ≥ 2 determines the biocidal
activity of the tested sample.

2.10. Statistical Analysis

All data are presented as mean ± SEM and were evaluated using a one-way analysis
of variance (ANOVA) followed by Tukey’s post-hoc multiple comparisons test. Significance
level was set at p < 0.05. GraphPad Prism 7.0 software (GraphPad Software Inc., La Jolla,
CA, USA) was used to perform statistical analyses.

3. Results
3.1. Surface Morphology of TiO2/HA and Titanate/HA Double-Layer Coating

Considering the results of our earlier investigations, for the bioassays we selected
the samples that differed in the morphology of the intermediates (TiO2 nanoporous (T5),
titanate (T-S), and TiO2 nanofibrous (TNF6C)), but that showed excellent physicochemical
and mechanical parameters. The SEM images of the chosen intermediate layers, i.e., T5,
T-S, and TNF6C, are presented in Figure 2a. Figure 2b shows SEM images of the surface
morphology of the samples with the hydroxyapatite layer: T5/HA, TNF6C/HA, and
T-S/HA. A floral morphology with numerous hydroxyapatite nanoplatelets was observed
for all the double layers.
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EDS spectra of T5/HA, T-S/HA and TNF6C/HA systems are shown in Figure 3a–c.
The energy-dispersive X-ray analysis confirmed the presence of Ca and P in the produced
systems with a hydroxyapatite layer.
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3.2. Electrochemical Cathodic Deposition of HA

The electrochemical process of cathodic electrodeposition uses two electrodes im-
mersed in an aqueous solution containing calcium and phosphate ions (in our case:
Ca(NO3)2 · 4 H2O and NH4H2PO4). The electrodes are connected to an electrical generator.
The nucleation of the hydroxyapatite layer on the surface-modified Ti6Al4V alloy (cathode)
can be described by a combination of several reactions (Equations (1)–(18)) [75–80].

Water, a solution solvent, is involved in the main redox reactions. The anodic oxidation
reaction is:

2H2O→ O2 ↑ + 4H+ + 4e− (1)

At the same time, with the use of the electric field, water at the cathode surface is
reduced to hydrogen gas and hydroxide ions (Equation (2)). Proton reduction can also
occur at the cathode in acidic medium (Equation (3)). The local pH within the diffusion
layer is mainly increased by the following two reactions in Equations (2) and (3).

2H2O + 2e− → H2 ↑ + 2OH− (2)

2H+ + 2e− → H2↑ (3)

Nevertheless, there are also other cathodic reactions (Equations (4)–(11)) that affect the
local increase in the pH value (due to hydroxide generation) of the solution at the cathode–
electrolyte interface. Due to the small amounts of O2, NO3

− and H2PO4
− compared to the

amount of water, reactions 4–11 are not major.

O2 + 2H2O + 4e− → 4OH− (4)

O2 + 2H2O + 2e− → 2OH− + H2O2 (5)

NO3
− + 2H+ 2e− → NO2

− + H2O (6)

NO3
− + 10H+ + 8e− → NH4

+ + 3H2O (7)

NO3
− + H2O + 2e− → NO2

− + 2OH− (8)

NO3
− + 7H2O + 8e− → NH4

+ + 10OH− (9)

NO3
− + 6H2O + 8e− → NH3 + 9OH− (10)

H2PO4
− + H2O + 2e− → H2PO3

− + 2OH− (11)

Simultaneously, as the pH changes (between 7.2 and 12.3) in the cathode area, the con-
centration of hydrogen phosphate ions increases (dissociation of the dihydrogen phosphate
ions (Equation (12)). When the pH is equal to or greater than 12.3, phosphate ions predomi-
nate (Equation (13)). Local ionic supersaturation occurs, resulting in the precipitation of a
calcium phosphate layer.

H2PO4
− → HPO4

2− + H+ (12)

HPO4
2− → PO4

3− + H+ (13)

Hydroxide groups on the Ti6Al4V surface promote the chemical bonding with cal-
cium and phosphate ions to form the HA layer on the metal surface. Calcium ions may
react with hydrogen phosphate ions and phosphate ions to various degrees: e.g., dical-
cium phosphate dihydrate (DCPD) (Equation (14)), β-tricalcium phosphate (β-TCP) when
T > 800 ◦C (Equation (15)), octacalcium phosphate (OCP) (Equation (16)), or hydroxyapatite
(HA) (Equation (17)).

Ca2 ++ HPO4
2− + 2H2O→ CaHPO4·2H2O (14)

3Ca2+ + 2PO4
3− → Ca3(PO4)2 (15)

8Ca2+ + 2HPO4
2− + 4PO4

3− + 5H2O→ Ca8(HPO4)2(PO4)4·5H2O (16)
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10Ca2+ + 6PO4
3− + 2OH− → Ca10(PO4)6(OH)2 (17)

The application of alkaline treatment (NaOH) can cause the conversion of other forms
of calcium phosphate to HA and an increase in crystallinity (e.g., Equation (18)) [75–80].

10CaHPO4 + 2OH−→ Ca10(PO4)6(OH)2 + 4PO4
3− + 10H+ (18)

The higher adhesion of hydroxyapatite (HA) to the TiO2 nanocoatings (IL) than to the
titanium alloy may be due to the high surface area and physical locking between the HA
layer and the intermediate layer [81,82].

3.3. Apatite-Forming Ability

During immersion in the SBF solution, the T5/HA, T-S/HA, and TNF6C/HA systems
promoted apatite deposition within a few days. Figure 4 shows the SEM images of the
surface morphology changes of specimens after different periods of immersion in SBF
(1–4 weeks). Once the samples were removed from the SBF solution and dried, they were
weighed and the percentage weight gain was calculated (Figure 5). On the surface of
the T5 and TNF6C control specimens, no apatite formation was observed, while apatite
formation was reported on the alkali-sodium-modified T-S surfaces, as described in our
earlier publication [43]. It was noted that the hydroxyapatite layer produced by the cathodic
electrode process, which was deposited on the surface of the intermediates coatings (T5,
T-S, and TNF6C) after immersion in the SBF solution, grew at a very fast rate. The thickness
of the apatite layer increased with a longer immersion time of the T5/HA, T-S/HA, and
TNF6C/HA double layer in SBF solution.
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Figure 5. Weight gain for the samples with hydroxyapatite layer after immersing in SBF for 1–4 weeks.

Figure 6 shows the X-ray diffraction patterns (XRD) of the T5/HA, T-S/HA, and
TNF6C/HA samples after immersion in SBF for four weeks. The analysis of these data
confirmed that the HA-deposited samples exhibited apatite-forming ability in SBF solu-
tion. The positions of the HA peaks marked on the spectra are in accordance with the
specifications in JCPDS no. 285 09-0432.
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weeks. (hkl) for CaTiO3 are marked in violet. S is assigned to the sodium titanate. Ti is assigned to
the Ti6Al4V substrate (TiO2 anatase phase (A)).

The evaluation of the Ca/P molar ratio of the samples was carried out by EDS analysis
(Table 1). During the first week of immersion of the samples in the SBF solution, we
noted slight changes in the Ca/P molar ratio compared to the ratio before immersion for
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the samples T5/HA, T-S/HA, and TNF6C/HA. During the second and third weeks of
immersion in SBF solution, the Ca/P ratio was close (for T5/HA, and TNF6C/HA samples)
or higher (T-S/HA) than stoichiometric. After four weeks of sample immersion in SBF
solution, the Ca/P molar ratios of 1.83 for T-S/HA and TNF6C/HA and 1.87 for T5/HA
were detected.

Table 1. Ca/P ratios obtained from EDS measurements for the samples with hydroxyapatite layer
before and after immersing in SBF for 1–4 weeks.

Ca/P (Mole Ratio) of HA Layer

Sample Time: Time: Time: Time: Time:
0 1 week 2 weeks 3 weeks 4 weeks

T5/HA 1.58 1.54 1.63 1.68 1.87
T-S/HA 1.69 1.56 1.61 1.80 1.83

TNF6C/HA 1.76 1.66 1.57 1.56 1.83

3.4. The Viability of Cells Cultured on the Scaffolds

The effect of the hydroxyapatite layer (HA) present on the surface of three different
nanocoatings (T5/HA, T-S/HA and TNF6C/HA) on L929, MG-63 and ADSC cell viability
was assessed after one, five and seven days using the MTT assay. The results were compared
with the cell viability estimated for the cells cultured on the specimens without an HA layer
(Figure 7). It was observed that with an increase in culture time, a higher or comparable
number of both L929 and MG-63 cells grew on the scaffolds with or without HA. This
increase in viable cell number was especially observed between one and five days of
culture (Figure 7A and Figure 7B, respectively). In the case of ADSCs, the increased cell
proliferation rate over time was also noticed for almost all the samples, except for the
TNF6C/HA scaffolds, where the number of viable cells after five and seven days was lower
compared with one-day incubation. Similarly, on T-S/HA samples the measured values
of absorbance did not change over time (Figure 7C). Generally, the nanocoatings with the
HA layer induced a higher or comparable level of L929 fibroblast viability in comparison
with the samples without HA. A similar effect was also noticed for the MG-63 osteoblasts
cultured on the T5 and T5/HA scaffolds. In contrast, the covering of the T-S and TNF6C
nanocoatings with HA provoked a decrease in MG-63 cell viability compared with the
samples without HA, especially after five and seven days. This effect was also noticed for
ADSCs cultivated on the surface of the T5/HA and TNF6C/HA scaffolds.

J. Funct. Biomater. 2022, 13, 271 13 of 24 
 

 

days of culture (Figure 7A and Figure 7B, respectively). In the case of ADSCs, the in-
creased cell proliferation rate over time was also noticed for almost all the samples, except 
for the TNF6C/HA scaffolds, where the number of viable cells after five and seven days 
was lower compared with one-day incubation. Similarly, on T-S/HA samples the meas-
ured values of absorbance did not change over time (Figure 7C). Generally, the nanocoat-
ings with the HA layer induced a higher or comparable level of L929 fibroblast viability 
in comparison with the samples without HA. A similar effect was also noticed for the MG-
63 osteoblasts cultured on the T5 and T5/HA scaffolds. In contrast, the covering of the T-
S and TNF6C nanocoatings with HA provoked a decrease in MG-63 cell viability com-
pared with the samples without HA, especially after five and seven days. This effect was 
also noticed for ADSCs cultivated on the surface of the T5/HA and TNF6C/HA scaffolds. 

 
Figure 7. The viability of L929 fibroblasts (A), MG-63 osteoblasts (B) and adipose-derived stem cells 
(C) cultured on the scaffolds (nanoporous TiO2 (T5), titanate (T-S) and nanofibrous TiO2 (TNF6C)) 
coated or not with a hydroxyapatite layer (HA) evaluated using MTT assays after one, five and 

Figure 7. Cont.



J. Funct. Biomater. 2022, 13, 271 12 of 22

J. Funct. Biomater. 2022, 13, 271 13 of 24 
 

 

days of culture (Figure 7A and Figure 7B, respectively). In the case of ADSCs, the in-
creased cell proliferation rate over time was also noticed for almost all the samples, except 
for the TNF6C/HA scaffolds, where the number of viable cells after five and seven days 
was lower compared with one-day incubation. Similarly, on T-S/HA samples the meas-
ured values of absorbance did not change over time (Figure 7C). Generally, the nanocoat-
ings with the HA layer induced a higher or comparable level of L929 fibroblast viability 
in comparison with the samples without HA. A similar effect was also noticed for the MG-
63 osteoblasts cultured on the T5 and T5/HA scaffolds. In contrast, the covering of the T-
S and TNF6C nanocoatings with HA provoked a decrease in MG-63 cell viability com-
pared with the samples without HA, especially after five and seven days. This effect was 
also noticed for ADSCs cultivated on the surface of the T5/HA and TNF6C/HA scaffolds. 

 
Figure 7. The viability of L929 fibroblasts (A), MG-63 osteoblasts (B) and adipose-derived stem cells 
(C) cultured on the scaffolds (nanoporous TiO2 (T5), titanate (T-S) and nanofibrous TiO2 (TNF6C)) 
coated or not with a hydroxyapatite layer (HA) evaluated using MTT assays after one, five and 

Figure 7. The viability of L929 fibroblasts (A), MG-63 osteoblasts (B) and adipose-derived stem cells
(C) cultured on the scaffolds (nanoporous TiO2 (T5), titanate (T-S) and nanofibrous TiO2 (TNF6C))
coated or not with a hydroxyapatite layer (HA) evaluated using MTT assays after one, five and seven
days. The presented data are from four independent experiments. Asterisks and hash marks show
statistical differences between the scaffolds coated with HA and the samples without HA at the
appropriate time. Asterisks show differences when cell viability measured for the samples with HA
was greater compared with the specimens without HA (*** p < 0.001, ** p < 0.01, * p < 0.05). Hash
marks denote differences when absorbance values noticed for the scaffolds with HA was lower than
the samples not covered with HA (### p < 0.001, ## p < 0.01, # p < 0.05).

3.5. Cell Proliferation Rate Observed by Scanning Electron Microscopy

Scanning electron microscopy (SEM) imaging was harnessed to evaluate the cell
morphology and the level of cell proliferation after one and five days. Comparative
SEM micrographs of L929 fibroblasts (Figure 8), MG-63 osteoblasts (Figure 9) and ADSCs
(Figure 10) were presented for the specimens coated with HA that induced the best and
the worst cell viability, taking into consideration all three tested cell lines. These data
supported the MTT results and indicated the increase in the cell proliferation level over
time observed for L929 cells (Figure 8A,B) and MG-63 cells (Figure 9A,B) growing on the
T5/HA specimens. In the case of ADSC cells, many of the cells attached to the surface of the
T5/HA samples were already noticed after one day of incubation (Figure 10A). Moreover,
the ADSCs grown on these specimens that were integrated with the support produced a
huge amount of extracellular matrix that coated almost the entire surface of the samples
after five days (Figure 10B).
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Figure 8. SEM images of L929 fibroblasts growing on the scaffolds coated with hydroxyapatite layer
(HA) (nanoporous (T5/HA) and nanofibrous TiO2 (TNF6C/HA) for one and five days. The type of
specimens and culture time are indicated in the figures.
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Figure 10. SEM micrographs that present adipose-derived mesenchymal stem cells (ADSCs) growing
on the surface of the nanoporous and nanofibrous TiO2 specimens coated with hydroxyapatite layer
(T5/HA and TNF6C/HA, respectively). The type of specimens and culture time are indicated in
the figures.

It must be mentioned that the analysis of SEM micrographs was difficult because
of the surface morphology, mainly in the case of the TNF6C/HA scaffolds. Neverthe-
less, a number of L929 and MG-63 cells grown on these specimens increased over time
(Figure 8C,D and Figure 9C,D, respectively). On the contrary, this effect was not noticed for
ADSCs (Figure 10C,D).

3.6. Osteogenic Potential of Cells Cultured on Different Specimens

The relatively low cell proliferation rate on the nanofibrous scaffold with a hydroxyap-
atite coating (TNF6C/HA) could be explained by the osteogenic-differentiation-supportive
properties of this specimen. Therefore, we compared the two parameters of effective
osteogenesis/calcium deposit formation (Figure 11) and alkaline phosphatase activity
(Figure 12).
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Figure 11. Determination of calcium deposit formation in the extracellular matrix of MG-63 os-
teoblasts (A) and human adipose-derived mesenchymal stem cells (B) evaluated after one, five and
seven days using Alizarin Red S staining. Asterisks denote differences between Alizarin staining
determined for the samples with HA and without HA (*** p < 0.001, ** p < 0.01; * p < 0.05).
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Figure 12. Determination of ALP activity in MG-63 osteoblasts (A) and adipose-derived mesenchymal
stem cells (B) evaluated after one, five and seven days of culture on selected scaffolds. Asterisks
and hash marks show statistical differences between the scaffolds with HA and without HA at the
appropriate culture time. Asterisks present differences when ALP activity measured for the samples
with HA was higher compared with the specimens without HA (* p < 0.05). Hash marks indicate
differences when ALP activity noticed for the scaffolds with HA was lower than the samples without
HA (### p < 0.001).
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The extracellular calcium seemed to be deposited in similar quantities in the case of
both MG-63 osteoblasts and ADSCs in a time-dependent manner. Additionally, not surpris-
ingly, all the HA-coated specimens were considerably beneficial for the
mineralization process.

Some differences in the osteogenic potential of cultured cells can be concluded from
the alkaline phosphatase activity determination (Figure 12).

The influence of the hydroxyapatite layer (HA) on endogenous ALP activity in MG-63
cells led to increased activity only in the case of the T-S/HA surface. Nevertheless, the
difference between the T-S specimens with and without HA was considerable after 24 h in
culture and then decreased. In contrast, human adipose-derived mesenchymal stem cells
(ADSCs) exhibited increased ALP activity when grown on the surface of the nanoporous
T5/HA layer. These differences indicate that both the chemical nature and nanostructural
properties can influence the osteogenic differentiation process.

3.7. Antimicrobial Activity

Biocidal activity against the tested strains was not observed for analyzed specimens
with HA layers when compared to the untreated microbial inocula (Table 2).

Table 2. Antimicrobial activity of selected specimens.

Material
Microorganisms

E. coli ATCC
8739

E. coli
ATCC 25922

S. aureus
ATCC 6538

S. aureus
ATCC 25923

C. albicans
ATCC 10231

Reduction index (R)

T5/HA 0.34 * 0.38 * 0.04 1.73 0.08
T-S/HA 0.14 * 0.25 * 1.28 1.90 0.25
TNF6C/HA 0.43 * 0.37 * 0.06 0.18 * 0.05

Biocidal activity of specimen is observed when R ≥ 2 (>99%). R = Ut – At, where Ut is the common logarithm of
the number of bacteria in the untreated microbial suspension and At is the common logarithm of the number of
bacteria in the treated microbial suspension. * no significant increase in microbial growth (<10%).

4. Discussion

The main direction in which our research tends is the production of a highly biocompati-
ble system with mechanical properties like cortical bone, which can be applied to the design
and fabrication of implants. In the course of previous work, we proved that the morphology
and structure of interlayers (ILs) have a significant impact on the morphology and mechanical
properties of the deposited hydroxyapatite (HA) layers [30]. In this paper, we show that
differences in biological activity also depend on the type of Ti6Al4V/IL/HA systems.

The physicochemical properties of the biomaterial surface significantly impact the abil-
ity to spontaneously form apatite through the substrate in simulated body fluid (SBF) [43,83].
Our study successfully deposited apatite on the surface of all the Ti6Al4V/IL/HA systems
after SBF incubation for 1–4 weeks. The XRD spectra clearly showed the presence of the
peaks indicative of hydroxyapatite (HA) constituents. The SEM analysis showed that
the HA-layered samples (T5/HA, T-S/HA, TNF6C/HA) were completely covered by the
newly formed apatite layers after the first week of immersion in SBF solution. There were a
few cracks on the surface of the formed apatite layers, which were most probably due to
the release of internal stresses during the drying process [84].

All the chemical and structural properties of the studied materials were reflected in
their ability to create a biocompatible surface supporting cell growth. The T5/HA, which
is nanoporous, with the highest content of Ca and P in the HA layer, seemed to be most
promising in bone tissue regeneration. It is non-toxic and supports cell adhesion and
proliferation. This surface allowed for the highest proliferation rates of L929 fibroblasts,
MG-63 osteoblasts and mesenchymal stem cells when compared with all the HA-modified
samples. The T5/HA also induced the effective deposition of calcium in both osteoblast-
like MG-63 cells and adipose-derived mesenchymal stem cells. This process suggests the
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initiation of osteogenic differentiation in ADSCs and continued osteogenic properties in
MG-63. The issue of ALP activity is slightly different; the enzyme activity decreased in
MG-63 but increased in ADSCs grown on the T5/HA substrate. These differences reflect
the cell properties: MG-63 cells are differentiated cells expressing different markers of
osteoblasts [85], while ADSCs are undifferentiated, multipotent cells that require specific
extracellular signals to start the differentiation process [86]. As ALP activity is considered
the early marker of osteogenic commitment [87], it can be concluded that its increase
in ADSCs allows for efficient osteogenesis together with satisfactory cell survival and
proliferative potential.

TNF6C/HA with its nanofibrous structure was also biocompatible for L929 and MG-63
cells but decreased the ADSC proliferation. On the other hand, it allowed for the formation
of calcium deposits like the other tested specimens, decreased the ALP activity in MG-63
cells, and did not influence the enzymatic activity in ADSCs cells. One can conclude that
this surface supports the growth of adjacent cells and stops the proliferation of ADSCs
but maintains the osteogenic differentiation efficiency at a similar level to the other HA-
modified surfaces. These properties were reported to improve the osseointegration of
implanted materials and promote regeneration processes [88].

Developments in the design of bioactive materials, which can provide physical and
chemical signals for different cells and regulate their fate, require extensive studies on the
relationship between the properties of materials and the fate of cells [89]. Improving both
the osseointegration ability and mechanical properties of titanium implants continues to be a
challenge in implantology. As a result, there is significant interest in developing technologies
that modify the titanium surface. Nevertheless, the implant surface is also susceptible to
infection. Infections can be the cause of implant removal or prolonged patient recovery. The
important point is that systems with an antimicrobial coating do not impede tissue integration
into the implant [90–93]. In our study, the produced systems with a hydroxyapatite layer
(T5/HA, T-S/HA, TNF6C/HA) did not show antimicrobial properties. This result is in line
with previously published ones [94–97] which showed that hydroxyapatite alone or as a
layer on titanium specimens did not reveal antimicrobial activity. It in particular showed
high biointegration properties [98–103]. However, the modifications of Ti/HA layers with
antibacterial compounds, e.g., chitosan silver nanoparticles, manganese, strontium or yttrium,
may significantly improve such properties [31,94,95,104–108]. Nevertheless, antibacterial
coatings are still not well understood in vivo. It should be noted that the antibacterial ability
of coatings will gradually weaken over time, and the release of metal ions from their surface
may affect the osseointegration efficiency of titanium implants and have a significant impact
on their cytotoxicity. So far, the problem of emerging infections is solved with appropriately
selected antibiotics [92,93,109].

5. Conclusions

Among the previously tested systems, the Ti6Al4V/T5/HA shows the most sig-
nificant potential for application in the construction of a new generation of implants.
The fabricated system (Ti6Al4V/T5/HA) with a nanoporous interlayer, connecting the
titanium alloy substrate to the hydroxyapatite layer, shows excellent mechanical prop-
erties (adhesion force = 103.11 ± 10.07 mN, hardness = 0.30 ± 0.10 GPa and Young’s
Modulus = 35.58 ± 7.41 GPa) [30] and promising bioactivity. It mimics the physiological
environment of bone tissue, enhances biointegration, and supports the osteogenic potential
of MG-63 cells and ADSCs. Thus, it deserves further investigations focused on acquiring
good antimicrobial properties in such a way that the desired balance between the implant’s
immune capacity, biointegration, and mechanical properties is still maintained.



J. Funct. Biomater. 2022, 13, 271 18 of 22

Author Contributions: Conceptualization, M.E., P.P. and A.R.; methodology, M.E., K.R., T.J. and
P.G.; formal analysis, M.E., P.P., A.R, K.R., T.J. and P.G.; investigation, M.E., N.F., T.J., P.G. and G.T.;
resources, M.E.; data curation, M.E.; writing—original draft preparation, M.E., K.R. and T.J.; writing—
review and editing, M.E., P.P., A.R, K.R., T.J. and P.G.; supervision, P.P.; project administration,
M.E.; funding acquisition, M.E. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Research Nicolaus Copernicus University in Toruń—Excellence
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