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Abstract: Numerous studies have been reported on single- and multicolored highly fluorescent
carbon nanoparticles (FCNPs) originating from various sources and their potential applications in
bioimaging. Herein, multicolored biocompatible carbon nanoparticles (CNPs) unsheathed from
date palm fronds were studied. The extracted CNPs were characterized via several microscopic
and spectroscopic techniques. The results revealed that the CNPs were crystalline graphitic and
hydrophilic in nature with sizes ranging from 4 to 20 nm. The unsheathed CNPs showed exemplary
photoluminescent (PL) properties. They also emitted bright blue colors when exposed to ultraviolet
(UV) light. Furthermore, in vitro cellular uptake and cell viability in the presence of CNPs were also
investigated. The cell viability of human colon cancer (HCT-116) and breast adenocarcinoma (MCF-7)
cell lines with aqueous CNPs at different concentrations was assessed by a cell metabolic activity
assay (MTT) for 24 and 48 h incubations. The results were combined to generate dose-response curves
for the CNPs and evaluate the severity of their toxicity. The CNPs showed adequate fluorescence
with high cell viability for in vitro cell imaging. Under the laser-scanning confocal microscope, the
CNPs with HCT-116 and MCF-7 cell lines showed multicolor fluorescence emissions, including blue,
green, and red colors when excited at 405, 458, and 561 nm, respectively. These results prove that
unsheathed CNPs from date palm fronds can be used in diverse biomedical applications because of
their low cytotoxicity, adequate fluorescence, eco-friendly nature, and cheap production.

Keywords: date palm; carbon nanoparticles (CNPs); fluorescence; cell viability; bioimaging

1. Introduction

Fluorescent carbon nanoparticles (FCNPs) have unique optical and chemical prop-
erties compared to previously used organic fluorescence probes. Carbon nanoparticles
(CNPs) are emerging green nanoparticles with superior consonance emission capabilities
compared to fluorescence semiconductors [1]. There are numerous methods for preparing
FCNPs, including electrochemical and physical techniques, chemical vapor deposition,
high-radiation-band preparation, thermal deposition, laser ablation, the oxidation of C-
materials, and the chemical breakdown of fiber and carbohydrates [2–5].

Synthesized CNPs based on polymers, metals, silica, and semiconductors are known
to possess better multiplexity abilities, making them excellent tools for biomedical appli-
cations, such as intracellular monitoring. However, their morphology and concentration
remain their major drawbacks, leading to higher cytotoxicity effects. In this regard, it is
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necessary to investigate the balancing of organic CNP morphology and their doped chem-
ical concentration to reduce their cytotoxicity through selectivity and sensitivity [6]. In
addition, further studies are required to compare organic CNPs and traditionally available
graphite and carbon nanotubes and fullerenes [7–9]. Retrospective studies [10,11] have
reported that the highly improved soot-based synthesis of CNPs is straightforward, with a
low quantum yield favorable in most biomedical applications.

The synthesis of CNPs from natural sources using green biosynthesis methods could be
better for biomedical applications. The synthesis of CNPs based on trees as a carbon source
as an alternative to chemical carbon sources could be environmentally and economically
beneficial. Thus, in this work, we synthesized CNPs from date palm fronds. Millions of date
palm trees are available worldwide. Date palm fronds are organic and represent a renewable
resource, but these trees are burnt as waste for various reasons; therefore, utilizing them as a
propitious bio-source for various biomedical applications would be beneficial. Furthermore,
the biomass of date palm fronds was found to be rich in lignin content compared with
the biomass of other fruits, making them an ideal biomass for carbon extraction. The
biomasses extracted from date palm fronds are biocompatible with potential applications
in bioimaging and theragnostics [12,13]. The biomass of date fruit is also nutrient-rich,
containing high amounts of fibers and bioactive phytochemicals, exhibiting anticancer,
anti-inflammatory, and antioxidant properties [10,14]. These properties, as well as cell
viability, were investigated and validated by applying date extract to human colorectal cells
(HCT-116) [10] and breast adenocarcinoma cell lines (MCF-7) [10,12]. CNPs extracted from
date palm fronds could be a new green, facile, eco-friendly, and less expensive nanomaterial
for bioimaging (carcinoma cells) and theragnostic applications.

In this report, novel CNPs with sizes of less than 10 nm were extracted from date palm
fronds. The cell viability of the cell lines HCT-116 and MCF-7 in the presence of CNPs was
also studied for potential applications in bioimaging. To the best of our knowledge, no
study has reported the cell viability and dose-response curve under the application of high
concentrations of CNPs to assess their biocompatibility. We also reported the bioimaging
potential of crystalline graphitic CNPs in HCT-116 and MCF-7 cell lines through their
fluorescence properties. Further investigations should explore the potential applications
of these CNPs for cancer diagnosis, such as in multiphoton endomicroscopy [15], and
treatment [15–17].

2. Materials and Methods
2.1. Materials

Date palm fronds (Phoenix dactylifera) were collected from date farms in Madinah,
Saudi Arabia. Thiazolyl blue tetrazolium bromide (MTT) dye, trypsin-EDTA (0.25%), fetal
bovine serum (FBS) growth media, phosphate-buffered saline (PBS) solution (pH 7.4),
penicillin–streptomycin (Pen/Strep) antibiotic solution, dimethyl sulfoxide (DMSO) media
solvent, and high-glucose Dulbecco’s Modified Eagle Medium (DMEM) containing phenol
red and L-glutamine were obtained from Invitrogen (Waltham, MA, USA). SPL tissue
culture flasks of sizes 75 and 25 cm3 with filter caps were purchased from SPL Fife-Sciences,
Pocheaon, South Korea. CytoOne 96-well plates (Microtiter plates) with covering lids for
cell culture were purchased from Scientific Incorporation, Ocala, FL, USA.

2.2. Synthesis of FCNPs

As illustrated in Figure 1, CNPs were synthesized according to published works [18,19]
by carbonizing the date palm fronds at 400 ◦C for approximately 3 h, followed by high-
energy ball milling for 15 h with a rotating speed of 200 rpm; the metallic jar contained four
metallic balls of equal weight. The obtained carbon soot weighed around 25 g. Next, carbon
powder was poured into DI water and mixed with a magnetic stirrer for 24 h at 70 ◦C;
then, larger carbon particles were allowed to settle down, and the solution was filtered.
Finally, the CNP solution was centrifuged at 4000 rpm for 1 h to obtain aqueous hydrophilic
CNPs. The concentration of the solution was 16.6 mg/mL, with a measured pH of 7.23.
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Different concentrations of aqueous CNPs were extensively prepared by diluting them
with only DI water as a solvent to analyze the cell viability in response to concentrated
CNPs. The synthesis of CNPs was performed at the Center of Nanotechnology, King Abdul
Aziz University, Jeddah, Kingdom of Saudi Arabia.
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2.3. Characterization of CNPs

The characterizations of CNPs were performed at the Center of Nanotechnology, Jed-
dah, Saudi Arabia. The topographies of CNPs were determined using a scanning electron
microscope (SEM) model JSM-7600F (JEOL, Tokyo, Japan) and a high-resolution transmis-
sion electron microscope (HR-TEM) model JEM 2100F (JEOL, Japan). The XRD was carried
out using an Ultima IV model (Rigaku, Japan) at room temperature in continuous mode. It
emitted graphite-monochromatized Cu-Kα radiation with a wavelength of λ = 1.54 Å. The
applied current was 40 mA, and the applied voltage was 40 kV. The scanning axis for XRD
patterns at 2θ had an angular range of 10 to 80◦, and the first step was 0.05◦. FTIR was used
to trace the functional group present in the CNPs by applying the attenuated total reflec-
tion (ATR) sampling technique using a Nicolet iS10 model (Thermo-Scientific, Waltham,
MA, USA). To record the photoluminescence emissions of the CNPs we used a spectral
fluorophotometer model RF-5301 (Shimadzu, Japan). Absorption spectra of the CNPs were
recorded with an ultraviolet–visible spectroscope model Lamda 750 (PerkinElmer, Waltham,
MA, USA). The zeta potential of the CNPs was measured to determine the charges on the
CNPs and their colloidal nature with cells using a Malvern particle size analyzer model
v2.3 (Malvern Instrument Ltd., Worcestershire, UK).

We estimated the carbonization by investigating the chemical elements using energy
dispersive X-ray (EDX) spectroscopy, as shown in Figure S1 and Table S1, to compare
between the amount of carbon before and after processing the fronds. The functional
groups before and after processing the fronds can be found in Figure S2 and are listed in
Table S2. The results of the quantum yield test are summarized in Table S3 (more details
are included in the Supplementary Materials.

2.4. Cytocompatibility Assessment of CNPs and In Vitro Imaging
2.4.1. Cell Culture

The malignant cells, namely the HCT-116 and MCF-7 cell lines, were obtained from the
Regenerative Medicine Unit, King Fahad Medical Research Center, Jeddah, Saudi Arabia,
where the biological experiments of this study were conducted. Originally, the Regenerative
Medicine Unit purchased the cell lines from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Cell culture flasks of 75 cm3 with lids were used for culturing cell
lines. To maintain the cell growth, 10% (v/v) FBS in DMEM, as well as 1% Pen-Strep
solution, was added. The culture flask was incubated under a humidified atmosphere at
37 ◦C, maintaining 5% CO2. The culture media were replaced when cells attained a high
confluence of 90%. Finally, cell harvesting was performed using trypsin solution.
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2.4.2. Cell Viability Assay (MTT Assay)

Following cell harvesting, the cells were seeded using microtiter plates containing
~5000 cells/well. These plates were supplemented with cell growth media and incubated
for 24 h under the incubation conditions mentioned above, along with 95% air for adherence.
Furthermore, CNPs were prepared at different concentrations (0.5, 1, 2.5, 5, 7.5, 10, 12.5,
and 15 mg/mL), with a CNP concentration of 0 as the control. An MTT assay kit was
used to estimate cell viability at time intervals of 24 and 48 h. The principal reaction
of the MTT assay is based on the catalyzed conversion of soluble MTT tetrazolium into
insoluble crystals of formazan, which are purple in color and produced by the succinate
dehydrogenase within mitochondria. The MTT assay was conducted according to the
manufacturer’s guidelines.

The MTT solution was prepared by dissolving 5 mg/mL of PBS in MTT powder; each
well was supplemented with 10 µL of the prepared MTT solution, followed by a further
4 h of incubation at 37 ◦C with 5% CO2, maintaining a humid atmosphere. Later, 25 µL of
media was removed from each well to dissolve formazan in 50 µL of DMSO [20], mixed
with a pipette. Under the same incubation conditions, the cells were incubated for 10 min.
Finally, using the microplate reader spectrometer in Synergy2 (Gen5 software, Bio-Tek,
Winooski, VT, USA), the absorbance at 540 nm was recorded. The number of living cells
corresponded to the absorbance value. Cell viability was calculated using the control wells
and excluding blank wells. The percentage of control values was used to calculate the
cell viability % as the absorbance value [21]. The cell viability % was calculated using the
following equation [22]:

CV% =
ACQD − Ablk

Acntrl − Ablk
×100 (1)

where CV% is cell viability percentage; A is the mean absorbance value of incubated cells;
and CQD, blk, and cntrl are the applied concentrations of CQD, blank wells, and control
wells, respectively.

2.4.3. Dose-Response Curve

Data obtained from the cell viability test were applied to plot the dose-response curve
for cell lines HCT116 and MCF7 using the logarithmic function; the curve was plotted
using cell viability % values versus the different concentrations of aqueous CNPs applied.
The estimation of the CNP concentration doses applied to the cell lines was presented in
the dose-response curve. The curves for EC20, EC50, EC80, and EC90 showed that these
concentrations of CNPs caused the cell viability count to be 20, 50, 80, and 90%, respectively.
A non-linear four-parameter logistic (4PL) sigmoid curve (Hill equation) was used to fit the
dose-response curve. The curve was fit using the equation provided below [23].

y = A1+
A2 − A1

1 + 10(logEC50−x)p
(2)

where A1 and A2 are horizontal lines, with A1 representing the minimum and A2 the
maximum cell viability. Through estimations based on the curve, the optimal concentration
of aqueous CNPs was prepared to apply to imaging cells.

2.4.4. Laser-Scanning Confocal Imaging

The in vitro imaging of cell lines HCT-116 and MCF-7 was carried out using a laser-
scanning confocal microscope. The cell lines were cultured in a 25 cm2 cell flask containing
media. The detaching process was performed by applying 0.25% trypsin EDTA when a
high cell confluency was reached. Then, cells were suspended in DMEM-based media
before collection onto the slide. Ten microliters of cells was dropped onto the slides and left
for 2 h. Finally, the slides containing the cells were placed into a petri dish and incubated
under the abovementioned conditions before imaging with and without aqueous CNPs.
Images of cells were captured using a high-resolution scanning confocal laser microscope,
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model LSM 780, from Carl Zeiss, Aalen, Germany; the laser system was controlled digitally
using ZEN 2010 software.

2.5. Statistical Analysis

Standard deviations (SDs) were taken as the average value of the input data. The
significance of the statistical analysis was evaluated using the Student’s t-test, resulting in
a value of p > 0.05. All statistical analyses were performed through Origin version 2022b
(Northampton, MA, USA).

3. Results and Discussion
3.1. Physiochemical Characterization

The CNPs showed homogeneous distribution; they appeared to agglomerate as balls,
as shown in the SEM image in Figure 2a. Within the red circle, the CNPs seem to detach
from one another rather than agglomerate; at the same time, the small CNPs gathered to
form agglomeration balls, wherein the small CNPs appeared as lobes accumulated on the
surface of the balls. The HR-TEM image presented in Figure 2b displays CNPs 10 nm in size
with a crystalline nature and a d-spacing of 3.51 Å (002), which indicates a CNP crystalline
graphitic sp2 phase [23,24]. Figure 2c shows the histogram plot for the size distribution of
CNPs estimated using FIJI ImageJ software; the CNP sizes ranged from 4 to 20 nm. The
HR-TEM in Figure S3 was used to estimate the average particle size, and 107 particles were
counted. The X-ray diffraction (XRD) characteristic pattern was acquired to confirm the
CNP crystallinity, as shown in Figure 2d. A sharp diffracted peak appeared at 28.75◦, with
a d-spacing of 3.11 Å (002) [24,25], which was attributed to the CNPs’ graphitic crystalline
nature and bulk graphite with oxygen as the only functional group attached. The d-spacing
of 3.44 Å (002) was in good agreement with the results recorded using HR-TEM; a small
peak at 59◦ was observed with a d-spacing value of 1.56 Å (103), which was attributed
to graphitic diffraction [26]. Figure 2e shows the CNP functional groups, confirming the
excess oxygen, with the transmittance spectra recorded via Fourier transform infrared
spectroscopy (FTIR) displaying bands at 1335, 1398, 1523, and 1700 cm−1, which could be
assigned to the stretching vibrations of C-O, C-O-C, C=C, and C=O [15,26–29], respectively.
A strong band at 2350 cm−1 could be assigned to the O=C=O stretching vibrations; this
band was reported as background carbon dioxide CO2 [30–32] or the possible entrapment
of CO2 in porous CNPs [33]. The extensive bands from 2763 to 3163 cm−1 could be assigned
to the stretching vibration of C-H, while the sharp band at 3400 cm−1 was attributed to
vibrations of C-OH [33,34]. The zeta potential of the CNPs in Figure 2f showed that the
surface of the CNPs was negatively charged, with a value of −24.10 mV; this revealed the
repulsive colloidal nature of the CNPs in relation to each other [35], which was in good
agreement with Figure 2a.

As was found in the results of the physiochemical properties of the CNPs presented
in Figure 2a–f, the presence of carboxyl and hydroxyl functional groups could make
CNPs highly hydrophilic in nature and play a major role in enhancing their fluorescence.
Kavitha et al. [12] reported that the synthesis of mesoporous CNPs from date palms by
carbonizing and piston grinding resulted in CNPs with an amorphous nature and the
absence of fringes. On the other hand, Athinarayan et al. [13] reported crystalline CNPs
synthesized from date palm using a hydrothermal process, which were found to have an
inter-lattice spacing of 3.36 Å and a diffraction peak at 21.2◦ with a d-spacing of 3.34 Å,
in contrast to the results of our study. Another study reported by Athinarayan et al. [36]
indicated the presence of crystalline graphitic CNPs with an inter-lattice distance of 0.238
nm and a diffraction peak at 22.50◦ with a d-spacing of 0.356 nm, attributed to (100) carbon.
Moreover, the CNPs synthesized in the above reports were found to have traces of nitrogen
and a lower amount of oxygen present as functional groups. The CNPs obtained in this
report were highly graphitic and crystalline, with diffraction peaks at 25.77◦ and 28.70◦

(002) and the presence of excess oxygen as the only surface functional group. Excess oxygen
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plays a vital role in creating defects within CNPs and increasing PL properties [37]. The
absorption spectra reported in this study agreed with those in other reports [38–40].
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Figure 2. Morphology, structure, and physiochemical characterization of CNPs. (a) The CNPs were
imaged using SEM at 100 nm magnification; small particles are highlighted within a red circle.
(b) TEM image and HR-TEM at 10 nm displaying crystalline phase of CNPs and interlayer spacing of
3.51 Å. (c) Histogram plot of the measured sizes of CNPs. (d) XRD pattern. (e) FTIR. (f) Zeta potential
distribution of CNPs, indicating surface charges and colloidal stability.

3.2. Optical Characterization

Figure 3a shows the CNP absorption spectra with a sharp peak at 287 nm and a small
shoulder at 364 nm. These absorption peaks were attributed to the electron transition levels
of π -π* and n-π, revealing C=C and C=O functional groups, respectively [37,38]. The
UV–visible absorption spectra of the CNPs were in good agreement with those of other
reports [35,36]; Figure 3b demonstrates the excitation spectrum at the emission wavelength
of 378. Figure 3c depicts the PL emission spectra of the CNPs at different excitation
wavelengths, where the wavelength of 378 nm presented the maximum emission intensity
at 464 nm. The emission intensity decreased with an increasing excitation wavelength, and
the peaks shifted. The aqueous CNPs excited at 365 nm using UV light model: UVP-LLC,
UVGL -58(Upland, Ca, USA) emitted a bright blue color, seen in the inset of Figure 3c,
which demonstrated fluorescence emission for the prepared CNPs.

The CNP dye at a 16 mg/mL concentration diluted in deionized water (DI water) to
different concentrations (0.5, 1, 2.5, 5, 7.5, 10, 12.5, and 15 mg/mL) is presented in Figure 3d.
These CNPs were excited at 378 nm, and the highest emission intensity was observed at
16 mg/mL (the highest concentration) with an emission wavelength of 464 nm; otherwise,
there was a decrease in intensity with increasing dilution.
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3.3. Cell Viability and Dose-Response Curves

The cell viability of the aqueous CNPs was assessed for different concentrations (0.5,
1, 2.5, 5, 7.5, 10, 12.5, and 15 mg/mL) of CNPs. In this study, CNPs were applied to two
famous carcinoma cell lines, namely HCT-116 and MCF-7. The CNPs were dispersed with
MCF-7 and HCT-116 cell lines in a 96-well microtiter cell plate. Each cell line was cultured
in three wells to obtain triplicate results, with each concentration applied. The average
absorbance value of the three wells was used to determine the cell viability, which was
calculated using Equation (1). Figure 4a,b show the frequency distribution of cell line
viability at different applied concentrations of CNPs. At 0.5 mg/mL for 24 h of incubation,
the maximum viability of the HCT-116 and MCF-7 cells was 115.86 and 96.47%, respectively.
The viability of more than 100% might have been due to the proliferation of the HCT-116
cells, thereby resisting the applied dose of CNPs [41–43]. On the contrary, a viability greater
than 100% was not observed at 48 h of incubation. The highest concentration of CNPs
(15 mg/mL) resulted in a viability of 44 and 45.94% for HCT-116 and MCF-7 cell lines,
respectively, which dropped to ~55% after 24 h of incubation. At 48 h of incubation, the
highest cell viability was found to be 101.38 and 95.97% at a 0.5 mg/mL CNP concentration
for HCT-116 and MCF-7 cells, respectively; these results were close to the results at 24 h.
On the other hand, the viability at the highest CNP concentration of 15 mg/mL dropped to
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13.58 and 29.51% for the HCT-116 and MCF-7 cell lines, respectively. The possible reason
for the higher cell viability after the longer incubation period of 48 h is the proliferation
of the cells, which became more resistant to the CNPs at 48 h of incubation; this meant
that the resistance of the cells increased and the toxicity decreased [41]. The MTT assay
demonstrated that higher concentrations of CNPs caused decreasing cell viability for
both incubation times. Furthermore, the malignant colon cells showed more resistance
to CNPs than the malignant breast cells. These results were in agreement with those
reported elsewhere [43,44]. The 0.5-mg/mL concentration dose of CNPs used in the MTT
assay was still much higher than what is required for cell imaging. The cell viability
exceeded 100% at this concentration, making it an ideal CNP concentration for bioimaging
applications. For cell imaging, further analysis was performed to determine the appropriate
CNP concentration of the dye. The cell viability ratio was compared with the control cells
in the presence of zero CNPs, presented as an average value with SD.

Dose-response curves were generated using the experimentally obtained values of
cell viability % at 24 and 48 h of incubation versus the logarithmic concentrations of CNPs
for both cell lines. The curves were fitted using the fitting equation. EC50 represents 50%
cell viability in response to the applied concentration, so the sigmoid curve at EC50 was
denoted as the Hill slope. The dose-response curves for the HCT-116 and MCf-7 cell lines
demonstrated a decreasing order of cell viability with corresponding concentrations, as
observed from the EC90, EC80 EC50, and EC20 values. The values for EC90, EC80, EC50,
EC20, and R2 are summarized in Table 1. The fitted curve displayed R2 values equal to
and greater than 0.9709. An MCF-7 cell line response curve for 24 h of incubation was not
obtained due to the negligible cell viability changes, leading to a linear response between
the applied concentrations [10]. The EC20, EC50, EC80, and EC90 cell viability values for
the HCT-116 cell line were lower than those of MCF-7 for 48 h of incubation. MCF-7 cells
indicated high cell viability in the presence of CNPs. The EC20 values of HCT-116 and
MCF-7 were 9.61 ± 1.43 mg/mL and 10.29 ± 0.37 mg/mL, respectively. The EC50 values
were 5.90 ± 0.55 mg/mL and 9.17 ± 0.34 mg/mL for HCT-116 and MCF-7, respectively.
The EC80 and EC90 values were recorded as 3.63 ± 0.44 mg/mL and 8.18 ± 0.61 mg/mL
and 2.73 ± 0.45 mg/mL and 7.64 ± 0.76 mg/mL, respectively. The EC20, EC50, EC80, and
EC90 values for HCT-116 incubated for 24 h were 9.61 ± 1.43, 5.90 ± 0.55, 3.63 ± 0.44, and
2.73 ± 0.45, respectively.

Unsheathed aqueous CNPs from date palm fronds were evaluated for biocompatibility
via an MTT colorimetric assay. Both carcinoma cell lines (HCT-116 and MCF-7) were
incubated for 24 and 48 h with high CNP doses. The cell viability of the two cell lines
was very high, with a survival rate greater than 95% at a 0.5 mg/mL concentration for
both incubation times, as depicted in Figure 4. Furthermore, high cell viability was also
observed for higher doses. The HCT-116 cell line survival rate remained above 100%
at 24 h of incubation under a dose of 1 mg/mL, whereas the MCF-7 viability reduced
to 70% and gradually started to decrease under high concentrations. Interestingly, both
cell lines showed high cell viability (over 90%) at 48 h of incubation under concentration
doses up to 2.5 mg/mL. Noticeably, the MCF-7 cell line showed excellent cell viability
(more than 90%) at concentrations of up to 7.5 mg/mL. It can be concluded that at 48 h of
incubation, both cell lines achieved excellent cell viability under high CNP concentrations.
These results confirm that the CNPs extracted in this study had very low cytotoxicity and
exemplary biocompatibility.

The CNPs reported in this study contained oxygen as the only surface functional
group. These CNPs were implemented for bioimaging using a laser-scanning microscope at
wavelengths of 405, 458, and 561 nm and emitted mainly blue, green, and red colors, respec-
tively, as depicted in Figures 5 and 6. As seen in the FTIR results, the carboxyl and hydroxyl
surface functional groups passivated on the CNPs may have played the predominant role
in producing the efficient PL. The mechanism behind this may have been the trapping
of excitons under excitation at certain wavelengths, followed by the repositioning of the
trapped surface excitons and the recombination with radiative recombination centers [36].
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It can be concluded from the above characterization results that the groups such as C=O
can withdraw high numbers of electrons from the surface of the CNPs could lead to NIR
emissions, causing a narrow band gap, irrespective of their carbonization content and
the size of the CNPs. CNPs with high numbers of hydroxyl groups and low numbers of
carboxyl groups have a weaker mechanism of electron withdrawal from the surface [17].
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Figure 4. In vitro cytotoxicity and dose-response curve from CNPs. Histograms were plotted for
MTT assay results to analyze cell viability upon the application of CNP concentrations of 0.5, 1, 2.5,
5, 7.5, 10, 12.5, and 15 mg/mL. Estimated cell viability % for cell lines (a) HCT116 and (b) MCF7,
which were incubated for 28 and 48 h; � indicates statistical significance at p < 0.05 as compared to
the control value. The dose-response curves were generated for HCT-116 at (c) 24 h and (d) 48 h and
for MCF-7 at (e) 24 h and (f) 48 h with the fitting equation; the curve was plotted as cell viability %
(MTT assay) after incubation times of 24 and 48 h versus logarithmic concentrations of CNPs.
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Table 1. Summary of the values of EC20, EC50, EC80, EC90, and R2 obtained from dose-response
curves of HCT-116 and MCF-7 cell lines under CNP concentrations of 0.5, 1, 2.5, 5, 7.5, 10, 12.5, and
15 mg/mL.

Parameters
HCT MCF

24 h 48 h 24 h 48 h

EC20 (mg/mL) 9.57 ± 16.11 9.61 ± 1.43 - 10.29 ± 0.37
EC50 (mg/mL) 3.01 ± 1.61 5.90 ± 0.55 - 9.17 ± 0.34
EC80 (mg/mL) 0.94 ± 1.07 3.63 ± 0.44 - 8.18 ± 0.61
EC90 (mg/mL) 0.48 ± 0.90 2.73 ± 0.45 - 7.64 ± 0.76

R2 0.970 0.993 - 0.993
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Figure 5. Confocal microscopic images of MCF-7 cell lines with introduced CNPs. Fluorescent
confocal images of MCF-7 cells stained with CNPs at 0.5 mg/mL concentration. The images were
captured at two different magnifications (50 and 5 µm). Images in the first column (a,d,g,j,m,p) are
phase-contrast images; images in the second column (b,e,h,k,n,q) are fluorescence images; and
images in the third column (c,f,i,l,o,r) are merged images of phase contrast and fluorescence.
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Figure 6. Confocal microscopic images of HCT-116 cell lines with introduced CNPs. Fluorescent
confocal images of HCT-116 cells stained with CNPs at 0.5 mg/mL concentration. The images were
captured at two different magnifications (50 and 5 µm). Images in the first column (a,d,g,j,m,p) are
phase-contrast images; images in the second column (b,e,h,k,n,q) are fluorescence images; and
images in the third column (c,f,i,l,o,r) are merged images of phase contrast and fluorescence.

3.4. Cell Imaging by Laser-Scanning Confocal Microscope

The in vitro cellular uptake and the interaction of CNPs with individual HCT-116 and
MCF-7 cells were imaged. A few drops of CNPs at a safer concentration dose of 0.5 mg/mL
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were applied to the cells. A laser-scanning microscope is used for cell imaging in DAPI
mode. The samples were exposed at different excitation wavelengths, including 405, 458,
and 561 nm. Figures 5 and 6 show images of the cells while emitting multiple colors (blue,
green, and red). These multicolor emissions were due to the independent-excitation PL
emission property of CNPs [44–46]. Both cell lines took about 2 h for cellular uptake, as
reported in previously published work [45]. The confocal images of both cell lines were
taken at low and high magnifications, respectively. The magnified confocal images showed
high fluorescence emission for CNPs taken up by endocytosis [35,46] and cell organelles.
However, the localization of the individual cell organelles was not investigated. The MCF-7
cell image at a higher magnification revealed a fluorescent nucleus, which was apparently
the largest part of the cell.

The images of both cell lines revealed that the CNPs have potential for bioimaging,
since they had a zeta potential value of −24.10 (cationic) and a pH of 7.2, demonstrating
their ability to penetrate into the cell membrane [47–50]. However, further investigations
on the uptake of CNPs by individual cell organelles and nuclei are still required. The
green emissions more effectively displayed the morphology of the cells compared with
the other colors, and the cell organelles, such as the cell membrane, were visible due to
fluorescence when excited under a confocal microscope. The extracted biocompatible CNPs
with low cytotoxicity remained undistinguished in morphological appearance. Finally, in
view of this investigation, the CNPs, without any functionalization, proved to have a high
potential for biomedical applications such as bioimaging, biolabeling, biosensors, and drug
delivery [35,50].

4. Conclusions

The CNPs investigated in this study are environment friendly and originate from date
palm trees, with the potential to replace expensive toxic, metallic, and chemical fluorescent
dyes for bioimaging. In this study, crystalline graphitic CNPs extracted from date palm
fronds demonstrated exemplary PL properties at a pH of 7.23 for bioimaging. Investi-
gations of the CNPs’ fluorescence lifetime, quantum yield at different wavelengths, and
fluorescence mechanism need to be conducted in future studies. The immense bioimaging
potential and biocompatibility of the CNPs were assessed by an MTT assay with two cell
lines, HCT-116 and MCF-7. The adopted concentrations were high compared with those
used in most published works due to CNPs’ organic nature. A lower toxicity was recorded
under the effect of the CNP concentration of 0.5 mg/mL. The cell viability recorded at
24 h of incubation was 115.86 and 96.47% for HCT-116 and MCF-7 cell lines, respectively,
while that at 48 h of incubation was 101.38 and 95.97%, respectively. Both cell lines showed
higher cell viability at 48 h of incubation. Both the cell lines were stained with CNPs and
then imaged via a fluorescence laser-scanning confocal microscope, which proved that the
cell organelles were labeled. However, further studies on efficient strategies for the surface
functionalization of CNPs are required for biolabeling, in vivo bioimaging, and various
other biomedical applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jfb13040218/s1, Figure S1: EDX spectra for (a) raw date palm and
(b) CNPs, showing the ire chemical elements; Figure S2: FTIR spectra of (a) extracted CNPs (b) Raw
date palm fronds; Figure S3: HR-TEM image of CNPs used to estimate the average size of the particles;
Table S1: Atomic percentages of chemical elements recorded by EDX for Raw date palm and extracted
CNPs; Table S2: FTIR table assignment bands of Raw date palm fronds and their extracted CNPs;
Table S3: Summarized parameters of CNPs for calculating the quantum yield compared to quinine
sulfate. Ref. [51] in Supplementary Material.
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Optical Properties of Carbon Nanoparticles Unsheathed from Date Palm Fronds. RSC Adv. 2022, 12, 27411–27420. [CrossRef]

20. Lei, C.; Cao, Y.; Hosseinpour, S.; Gao, F.; Liu, J.; Fu, J.; Staples, R.; Ivanovski, S.; Xu, C. Hierarchical Dual-Porous Hydroxyapatite
Doped Dendritic Mesoporous Silica Nanoparticles Based Scaffolds Promote Osteogenesis in Vitro and in Vivo. Nano Res. 2021, 14,
770–777. [CrossRef]

21. Scherließ, R. The MTT Assay as Tool to Evaluate and Compare Excipient Toxicity in Vitro on Respiratory Epithelial Cells. Int. J.
Pharm. 2011, 411, 98–105. [CrossRef] [PubMed]

22. Saeed, A.; Razvi, M.A.; Madkhli, A.Y.; Abdullahi, S.; Aljoud, F.; Zughaibi, T.A.; Aboushoushah, S.F.; Alshahrie, A.; Memic, A.;
Al-Hazmi, F.E.; et al. Investigation of the Tris(8-Hydroxyquinoline) Aluminum as a Promising Fluorescent Optical Material for in
Vitro Bioimaging. Opt. Mater. 2022, 127, 112260. [CrossRef]

23. Wang, D.H.; Li, W.; Liu, X.F.; Zhang, J.M.; Wang, S.M. Chinese Medicine Formula “Jian-Pi-Zhi-Dong Decoction” Attenuates
Tourette Syndrome via Downregulating the Expression of Dopamine Transporter in Mice. Evid.-Based Complement. Altern. Med.
2013, 2013, 385685. [CrossRef] [PubMed]

24. Sangam, S.; Gupta, A.; Shakeel, A.; Bhattacharya, R.; Sharma, A.K.; Suhag, D.; Chakrabarti, S.; Garg, S.K.; Chattopadhyay, S.;
Basu, B.; et al. Sustainable Synthesis of Single Crystalline Sulphur-Doped Graphene Quantum Dots for Bioimaging and Beyond.
Green Chem. 2018, 20, 4245–4259. [CrossRef]

25. Li, Y.; Zhong, X.; Rider, A.E.; Furman, S.A.; Ostrikov, K. Fast, Energy-Efficient Synthesis of Luminescent Carbon Quantum Dots.
Green Chemistry 2014, 16, 2566–2570. [CrossRef]

26. Larichev, Y.V.; Yeletsky, P.M.; Yakovlev, V.A. Study of Silica Templates in the Rice Husk and the Carbon-Silica Nanocomposites
Produced from Rice Husk. J. Phys. Chem. Solids 2015, 87, 58–63. [CrossRef]

27. Döring, A.; Ushakova, E.; Rogach, A.L. Chiral Carbon Dots: Synthesis, Optical Properties, and Emerging Applications. Light Sci.
Appl. 2022, 11, 75. [CrossRef]

28. Zhu, C.; Zhai, J.; Dong, S. Bifunctional Fluorescent Carbon Nanodots: Green Synthesis via Soy Milk and Application as Metal-Free
Electrocatalysts for Oxygen Reduction. Chem. Commun. 2012, 48, 9367–9369. [CrossRef]

29. Alam, A.M.; Park, B.Y.; Ghouri, Z.K.; Park, M.; Kim, H.Y. Synthesis of Carbon Quantum Dots from Cabbage with Down- and
up-Conversion Photoluminescence Properties: Excellent Imaging Agent for Biomedical Applications. Green Chem. 2015, 17,
3791–3797. [CrossRef]

30. Wang, B.; Song, A.; Feng, L.; Ruan, H.; Li, H.; Dong, S.; Hao, J. Tunable Amphiphilicity and Multifunctional Applications of
Ionic-Liquid-Modified Carbon Quantum Dots. ACS Appl. Mater. Interfaces 2015, 7, 6919–6925. [CrossRef]

31. Qian, Z.; Ma, J.; Shan, X.; Feng, H.; Shao, L.; Chen, J. Highly Luminescent N-Doped Carbon Quantum Dots as an Effective
Multifunctional Fluorescence Sensing Platform. Chemistry 2014, 20, 2254–2263. [CrossRef] [PubMed]

32. Gerakines, P.A.; Schutte, W.A.; Greenberg, J.M.; van Dishoeck, E.F. The Infrared Band Strengths of H2O, CO and CO2 in
Laboratory Simulations of Astrophysical Ice Mixtures. Astron. Astrophys. 1995, 296, 810–818. [CrossRef]

33. Li, Y.; Wang, K.; Zhou, W.; Li, Y.; Vila, R.; Huang, W.; Wang, H.; Chen, G.; Wu, G.H.; Tsao, Y.; et al. Cryo-EM Structures of Atomic
Surfaces and Host-Guest Chemistry in Metal-Organic Frameworks. Matter 2019, 1, 428–438. [CrossRef] [PubMed]

34. Gómez-Hernández, R.; Panecatl-Bernal, Y.; Méndez-Rojas, M.Á. High Yield and Simple One-Step Production of Carbon Black
Nanoparticles from Waste Tires. Heliyon 2019, 5, e02139. [CrossRef] [PubMed]

35. Qu, D.; Wang, X.; Bao, Y.; Sun, Z. Recent Advance of Carbon Dots in Bio-Related Applications. J. Phys. Mater. 2020, 3, 22003.
[CrossRef]

36. Athinarayanan, J.; Periasamy, V.S.; Alatiah, K.A.; Alshatwi, A.A. Synthesis and Cytocompatibility Analysis of Carbon Nanodots
Derived from Palmyra Palm Leaf for Multicolor Imaging Applications. Sustain. Chem. Pharm. 2020, 18, 100334. [CrossRef]

37. Das, A.; Kundelev, E.V.; Vedernikova, A.A.; Cherevkov, S.A.; Danilov, D.V.; Koroleva, A.V.; Zhizhin, E.V.; Tsypkin, A.N.;
Litvin, A.P.; Baranov, A.V.; et al. Revealing the Nature of Optical Activity in Carbon Dots Produced from Different Chiral
Precursor Molecules. Light Sci. Appl. 2022, 11, 92. [CrossRef]

38. Wu, Z.L.; Liu, Z.X.; Yuan, Y.H. Carbon Dots: Materials{,} Synthesis{,} Properties and Approaches to Long-Wavelength and
Multicolor Emission. J. Mater. Chem. B 2017, 5, 3794–3809. [CrossRef]

39. Siddique, A.B.; Pramanick, A.K.; Chatterjee, S.; Ray, M. Amorphous Carbon Dots and Their Remarkable Ability to Detect
2,4,6-Trinitrophenol. Sci. Rep. 2018, 8, 9770. [CrossRef]

40. Ganesan, K.; Ghosh, S.; Gopala Krishna, N.; Ilango, S.; Kamruddin, M.; Tyagi, A.K. A Comparative Study on Defect Estimation
Using XPS and Raman Spectroscopy in Few Layer Nanographitic Structures. Phys. Chem. Chem. Phys. 2016, 18, 22160–22167.
[CrossRef]

http://doi.org/10.1038/s41377-022-00798-5
http://doi.org/10.1038/s41377-018-0090-1
http://doi.org/10.1039/D2RA04189H
http://doi.org/10.1007/s12274-020-3112-2
http://doi.org/10.1016/j.ijpharm.2011.03.053
http://www.ncbi.nlm.nih.gov/pubmed/21453764
http://doi.org/10.1016/j.optmat.2022.112260
http://doi.org/10.1155/2013/385685
http://www.ncbi.nlm.nih.gov/pubmed/23431337
http://doi.org/10.1039/C8GC01638K
http://doi.org/10.1039/C3GC42562B
http://doi.org/10.1016/j.jpcs.2015.07.025
http://doi.org/10.1038/s41377-022-00764-1
http://doi.org/10.1039/c2cc33844k
http://doi.org/10.1039/C5GC00686D
http://doi.org/10.1021/acsami.5b00758
http://doi.org/10.1002/chem.201304374
http://www.ncbi.nlm.nih.gov/pubmed/24449509
http://doi.org/10.48550/arXiv.astro-ph/9409076
http://doi.org/10.1016/j.matt.2019.06.001
http://www.ncbi.nlm.nih.gov/pubmed/34104881
http://doi.org/10.1016/j.heliyon.2019.e02139
http://www.ncbi.nlm.nih.gov/pubmed/31372569
http://doi.org/10.1088/2515-7639/ab7cb9
http://doi.org/10.1016/j.scp.2020.100334
http://doi.org/10.1038/s41377-022-00778-9
http://doi.org/10.1039/C7TB00363C
http://doi.org/10.1038/s41598-018-28021-9
http://doi.org/10.1039/C6CP02033J


J. Funct. Biomater. 2022, 13, 218 15 of 15

41. Tang, X.; Wang, L.; Ye, H.; Zhao, H.; Zhao, L. Biological Matrix-Derived Carbon Quantum Dots: Highly Selective Detection of
Tetracyclines. J. Photochem. Photobiol. A Chem. 2022, 424, 113653. [CrossRef]

42. Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics.
Chem. Rev. 2014, 114, 5161–5214. [CrossRef] [PubMed]

43. Yu, X.F.; Xiao, B.; Cheng, J.; Liu, Z.B.; Yang, X.; Li, Q. Theoretical Design of Near-Infrared Fluorescent Sensor for F Anion Detection
Based on 10-Hydroxybenzo[h]Quinoline Backbone. ACS Omega 2019, 4, 10516–10523. [CrossRef] [PubMed]

44. Arya, N.; Arora, A.; Vasu, K.S.; Sood, A.K.; Katti, D.S. Combination of Single Walled Carbon Nanotubes/Graphene Oxide
with Paclitaxel: A Reactive Oxygen Species Mediated Synergism for Treatment of Lung Cancer. Nanoscale 2013, 5, 2818–2829.
[CrossRef]

45. Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of Nanoparticle Cellular Uptake, Intracellular Trafficking, and Kinetics in
Nanomedicine. Adv. Drug Deliv. Rev. 2019, 143, 68–96. [CrossRef]

46. Meng, W.; Bai, X.; Wang, B.; Liu, Z.; Lu, S.; Yang, B. Biomass-Derived Carbon Dots and Their Applications. Energy Environ. Mater.
2019, 2, 172–192. [CrossRef]

47. Fan, R.J.; Sun, Q.; Zhang, L.; Zhang, Y.; Lu, A.H. Photoluminescent Carbon Dots Directly Derived from Polyethylene Glycol and
Their Application for Cellular Imaging. Carbon 2014, 71, 87–93. [CrossRef]

48. Chang, S.; Chen, B.B.; Lv, J.; Fodjo, E.K.; Qian, R.C.; Li, D.W. Label-Free Chlorine and Nitrogen-Doped Fluorescent Carbon Dots
for Target Imaging of Lysosomes in Living Cells. Microchim. Acta 2020, 187, 435. [CrossRef]

49. Qin, J.; Gao, X.; Chen, Q.; Liu, H.; Liu, S.; Hou, J.; Sun, T. PH Sensing and Bioimaging Using Green Synthesized Carbon Dots from
Black Fungus. RSC Adv. 2021, 11, 31791–31794. [CrossRef]

50. Kumar, P.; Dua, S.; Kaur, R.; Kumar, M.; Bhatt, G. A Review on Advancements in Carbon Quantum Dots and Their Application in
Photovoltaics. RSC Adv. 2022, 12, 4714–4759. [CrossRef]

51. Al-Abbad, A.; Al-Jamal, M.; Al-Elaiw, Z.; Al-Shreed, F.; Belaifa, H. A Study on the Economic Feasibility of Date Palm Cultivation
in the Al-Hassa Oasis of Saudi Arabia. J. Dev. Agric. Econ. 2011, 3, 463–468.

http://doi.org/10.1016/j.jphotochem.2021.113653
http://doi.org/10.1021/cr400425h
http://www.ncbi.nlm.nih.gov/pubmed/24605868
http://doi.org/10.1021/acsomega.9b00693
http://www.ncbi.nlm.nih.gov/pubmed/31460149
http://doi.org/10.1039/c3nr33190c
http://doi.org/10.1016/j.addr.2019.04.008
http://doi.org/10.1002/eem2.12038
http://doi.org/10.1016/j.carbon.2014.01.016
http://doi.org/10.1007/s00604-020-04412-6
http://doi.org/10.1039/D1RA05199G
http://doi.org/10.1039/D1RA08452F

	Introduction 
	Materials and Methods 
	Materials 
	Synthesis of FCNPs 
	Characterization of CNPs 
	Cytocompatibility Assessment of CNPs and In Vitro Imaging 
	Cell Culture 
	Cell Viability Assay (MTT Assay) 
	Dose-Response Curve 
	Laser-Scanning Confocal Imaging 

	Statistical Analysis 

	Results and Discussion 
	Physiochemical Characterization 
	Optical Characterization 
	Cell Viability and Dose-Response Curves 
	Cell Imaging by Laser-Scanning Confocal Microscope 

	Conclusions 
	References

