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Abstract: Low-diameter blood vessels are challenging to replace with more traditional synthetic
vascular grafts. Therefore, the obvious choice is to try to regenerate small veins and arteries through
tissue-engineering approaches. However, the layered structure of native vessels and blood compatibil-
ity issues make this a very challenging task. The aim of this study is to create double-layered tubular
scaffolds with enhanced anticoagulant properties for the tissue engineering of small blood vessels.
The scaffolds were made of a polycaprolactone-based porous outer layer and a polylactide-based
electrospun inner layer modified with heparin. The combination of thermally induced phase sepa-
ration and electrospinning resulted in asymmetric scaffolds with improved mechanical properties.
The release assay confirmed that heparin is released from the scaffolds. Additionally, anticoagulant
activity was shown through APTT (activated partial thromboplastin time) assay. Interestingly, the
endothelial cell culture test revealed that after 14 days of culture, HAECs (human aortic endothelial
cell lines) tended to organize in chain-like structures, typical for early stages of vascular formation.
In the longer culture, HAEC viability was higher for the heparin-modified scaffolds. The proposed
scaffold design and composition have great potential for application in tissue engineering of small
blood vessels.

Keywords: vascular scaffold; polylactide; polycaprolactone; heparin release; blood vessels
tissue engineering

1. Introduction

The human organism relies on the proper functioning of the complex network of blood
vessels: different types of veins, arteries, and capillaries. Their aim is to transport blood
between the heart and other organs, delivering oxygen and nutrients, as well as removing
metabolites. This crucial role may be adversely affected by many diseases and conditions
that have a direct negative impact on the structure and functions of the vessels. In general,
cardiovascular diseases are responsible for the majority of deaths in Europe and are also
the most common cause of premature mortality in males [1,2].

The extreme importance of appropriate blood supply means that malfunctioning blood
vessels need to be replaced. For over 60 years, synthetic vascular prostheses fabricated
from various woven and nonwoven polymeric materials have been used in place of larger
blood vessels. They are mainly made of poly(tetrafluoroethylene) (PTFE) known as Teflon®

or Gore-Tex®, and poly(ethylene terephthalate) (PET) known as Terylene® or Dacron® [3].
Their surface can be additionally modified with natural coatings, e.g., albumin, type I
collagen, or fibrin to improve their biocompatibility [4,5]. Increased endothelialization of the
lumen of a synthetic graft can be also achieved by polydopamine or gelatin modification [6].
Of course, anti-thrombogenic medications are administered to patients with such prostheses
to increase the safety and durability of the implant.
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Unfortunately, synthetic polymer grafts cannot be used for vessels smaller than 6 mm
in diameter, as they can cause rapid clot formation and intima hyperplasia. There is also an
increased risk of bacterial infection and chronic inflammatory response. From a mechanical
point of view, compliance mismatch between the graft and the vessels (0.5–1.5%/100 mmHg
and 5–15%/100 mmHg, respectively) is considered a major drawback, as it can lead to
implant rejection. Finally, their inability to grow and rebuild limits their application in the
case of pediatric patients. Bearing this in mind, a tissue-engineering approach aiming at
recreating a natural blood vessel instead of replacing it with a synthetic imitation seems
promising [7].

The original concept of Weinberg and Bell [8] which started the research on tissue-
engineered blood vessels was then followed by many other researchers working in the field
of vascular tissue engineering. Various approaches using a combination of scaffolds, cells,
and bioactive molecules were tested, as well as scaffold-free methods, such as cell-sheet-
based and cell-ring-based [9–14].

Scaffolds for tissue engineering of small blood vessels need to be biocompatible and
hemocompatible, biodegradable, characterized by mechanical properties close to that of
a vessel, and with an inner surface that favors endothelium formation. The inside part
of the scaffold will be in contact with blood, and therefore should be athrombogenic in
order to prevent clot formation. It is especially important for small-diameter scaffolds, due
to increased graft surface area to blood volume and slower blood flow. They both result
in larger activation of blood elements, and at the same time, their prolonged exposure to
contact with the lumen of the scaffold.

Anticoagulant activity of a vascular scaffold can be obtained through the incorpora-
tion of heparin or heparin-like modifications of polymeric matrices [14–16]. Heparin is
considered a “polypharmaceutical”; this natural polysaccharide, besides preventing clot
formation, is also able to promote anti-inflammatory behavior, regulate angiogenesis, and
presents anti-cancer and antiviral activity [15,17,18].

The aim of our work is to fabricate and preliminarily characterize bioinspired, layered
scaffolds with enhanced anticoagulant activity for tissue engineering of small blood vessels.
Tubular scaffolds were prepared using poly(L-lactide) and polycaprolactone by combining
electrospinning and thermally induced phase separation. Those two methods were coupled
to create a gradient and hierarchic microstructure of the scaffold with varying properties
of the inner and outer layer dedicated for different types of cells. Heparin, as a potent
anticoagulant agent, was introduced into the polymer matrix.

2. Materials and Methods
2.1. Tubular Scaffolds Fabrication

Cylindrical, double-layered scaffolds with an inner diameter of 5 mm were fabri-
cated by a combination of electrospinning (ES) and thermally induced phase separation
(TIPS), as schematically shown in Figure 1. The inner layer of the proposed scaffold
consisted of an electrospun poly(L-lactide) (PLA; IngeoTM 3051D, Nature Works LCC,
Minnetonka, MN, USA)-based nonwoven tube. A measurement of 5 wt% PLA solution
in chloroform:methanol 3:1 was electrospun (TIC 1092012, Bielsko-Biala, Poland) onto a
cylindrical (d = 5 mm) collector with following parameters: applied voltage 15 kV, collector
revolutions 330 rpm, the distance between the tip and the collector 20 cm, needle diameter
0.7 cm. Additionally, 5PLAES_0.5Hep nonwoven tubes modified with heparin (375095
Heparin, Sodium Salt, Porcine Intestinal Mucosa; Merck Millipore, Darmstadt, Germany,
100KU) were obtained by adding heparin dispersion in the mixed solvents to the PLA
spinning solution (final heparin concentration 0.5% w/w per dry polymer mass), mixing
on a magnetic stirrer for 24 h and then sonicating for 5 min. The obtained nonwoven
5PLAES and 5PLAES_0.5Hep tubes were then transferred to cylindrical polytetrafluoroethy-
lene/stainless steel molds where the porous outer layer was produced using the TIPS
method. Briefly, a polycaprolactone (PCL; Mw = 80,000, Merck KGaA, Darmstadt, Ger-
many; previously Sigma-Aldrich) solution (2.5 wt% in 99.5–99.9% acetic acid, analytical
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grade) was poured into the molds containing the electrospun tubes, placed in a −80 ◦C
refrigerator for 6 h and freeze-dried for 96 h. The samples were stored in a desiccator prior
to characterization. All of the solvents and phosphate-buffered saline (PBS) reagents were
obtained from Avantor Performance Materials Poland S.A, Gliwice, Poland.
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Figure 1. Scheme of the fabrication method of double-layered cylindrical scaffolds using electrospin-
ning and thermally induced phase separation.

2.2. Characterization Methods
2.2.1. Microstructure Analysis

The microstructure of the scaffolds was characterized with the scanning electron
microscope (SEM; Nova NanoSEM 200, FEI, Eindhoven, The Netherlands). Prior to the ob-
servation, the samples were attached to holders with conductive tape and coated with a thin
layer of carbon (under vacuum). SEM analysis was carried out with an accelerating voltage
of 10.0 or 18.0 kV in the Laboratory of Scanning Electron Microscopy and Microanalysis
(Department of Silicate Chemistry and Macromolecular Compounds, Faculty of Materi-
als Science and Ceramics, AGH University of Science and Technology, Krakow, Poland).
Quantitative analysis of the diameter of the fibers was performed using ImageJ [19]. One
hundred fibers were measured to prepare histograms.

2.2.2. Mechanical Properties

Mechanical properties were evaluated using the universal testing machine Zwick 1435
(ZwickRoell GmbH & Co. KG, Ulm, Germany). Rectangular samples with a dimension
of 3 × 35 mm were tested at a crosshead speed of 50 mm/min. Average values of the
tensile strength (Rm), Young modulus (E), and strain at maximum load (ε Fmax) were
calculated from at least six independent measurements. The results were presented as
mean ± standard deviation for six samples of each type. The results were found statistically
significant if p < 0.05 according to the t-test.

2.2.3. Direct Heparin Release Assay

Two types of heparin release assays were performed. In the direct test, 5PLAES_0.5Hep
and 5PLAES_0.5Hep/2.5PCLTIPS samples were incubated in a phosphate-buffered saline at
37 ◦C. At fixed time points, 0.6 mL of the solution was sampled and supplemented with
fresh PBS. An aliquot of the supernatant was then reacted with 8 × 10−5 M azure A chloride
solution (certified by the Biological Stain Commission, Dye content 70 %, Merck KGaA,
Darmstadt, Germany; previously Sigma-Aldrich) and the heparin release was determined
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spectrophotometrically (Cecil Instruments BioQuest CE 2502, Cambridge, UK) at 510 nm
and 630 nm, using colorimetric method. The assay was performed in triplicate.

2.2.4. Indirect Heparin Release Assay

The indirect heparin release test was conducted by determining activated partial thrombo-
plastin time (APTT). The assay was performed for 5PLAES_0.5Hep, 5PLAES_0.5Hep/5PCLTIPS,
and corresponding samples without heparin as a control. The tested samples were incu-
bated with a known amount of human citrate plasma at 37 ◦C. APTT was assessed after 1,
3, 4, and 5 h of incubation.

2.2.5. Cytotoxicity Assay

The human aortic endothelial cell line (HAEC, Gibco®, ThermoFisher Scientific,
Waltham, MA, USA) was used for direct cytotoxicity studies. The cell culture was carried
out in endothelial cell growth basal medium-2 (EBMTM-2, Lonza) supplemented with fetal
bovine serum (FBS), vascular endothelial growth factor (VEGF), insulin-like growth factor
1 (IGF-1), recombinant human epidermal (rhEGF), and fibroblast (rhFGF) growth factors,
ascorbic acid, hydrocortisone, and gentamicin sulphate, under standard conditions, i.e.,
37 ◦C, 5.0% CO2. Round, 11 mm-diameter samples were sterilized under UV lamp (30 min
per side). The sterile samples were transferred into a 48-well plate, then 7 × 103 cell/mL
HAEC suspension was added to each well. Cell morphology was evaluated with an optical
fluorescence microscope (Olympus CX41, Tokyo, Japan). The cells were stained with 20 µL
of acridine orange prior to observation. HAEC viability was assessed using the colorimetric
method with CellTiter 96® test (Promega, Madison, WI, USA). Briefly, 40 µL of the reagent
was added to each well and incubated at 37 ◦C, 5.0% CO2 for 90 min. Next, 100 µL of
the medium with the reagent was transferred to a 96-well plate and the absorbance was
measured spectrophotometrically (POLARstar OMEGA, BMG Labtech, Ortenberg, Ger-
many) at 490 nm. The samples were tested in triplicate, tissue-culture polystyrene (TCPS)
was used as a control. The results were presented as mean ± standard error of the mean.
Statistical analysis was carried out by one-way-ANOVA with post hoc LSD Fisher test
(significance level 0.05).

3. Results and Discussion
3.1. Microstructure and Mechanical Properties

Nonwoven tubes based on PLA or heparin-modified PLA were produced using the
electrospinning technique. As shown in Figure 2, resulting fibers were beadless and
randomly oriented in both cases, but their morphology differed. The addition of the
anticoagulant agent (Hep) to the spinning solution resulted in an increase in the mean fiber
diameter (more than twice) and an increase in fiber heterogeneity (fiber diameter in the
range of ~400–2000 nm) in the case of PLAES_Hep tubes. Characteristics of the nonwovens
obtained through the electrospinning process were affected by the process parameters,
including the spinning solution properties [20]. It can be suspected that heparin altered the
viscosity and surface-free energy of the spinning solution. Similar results were observed
by A.S. Richard and R.S. Verma [21]. Their results showed an increased PLA-based fiber
diameter after the introduction of curcumin. However, it should be noted that the reverse
effect was also observed, since the type and properties of the additive affect the final
result. A. Magiera et al. showed a decrease in fiber diameter as a result of the addition of
carbon nanotubes (CNT) to the PLA solution. The diameter of the PLA/CNT fibers was
significantly lower due to the fact that CNT increased the electrical conductivity of the
polymer solution and favored jet splitting in the electrical field [22].

The designed small-diameter layered scaffolds should be eventually replaced by
the cells. Therefore, contrary to permanent grafts, they need to mimic the mechanical
performance of blood vessels only for a limited time, in direct link with the rate of new
tissue formation. Of course, in the beginning, their mechanical properties should be
sufficient. It is then important to evaluate the mechanical characteristics of the proposed
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scaffolds. In their recent review, D.B. Camasao and D. Mantovani [23] stated that although
the applicability of conventional mechanical tests of the blood vessels’ substitute materials
for a full mechanical characterization in relation to the intended application is limited,
they still provide important information from the material-science perspective. It is then
obligatory to perform a thorough mechanical characterization of the scaffolds in various
conditions, including pressure-based tests that enable evaluation of burst pressure and
compliance values. Here, the initial mechanical property assessment was performed
through the tensile test.
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Analysis of the mechanical properties (Figure 3) confirmed that the PLA nonwovens
showed high strain values and a low Young modulus. The high strain of the nonwovens
was related to the straightening-up of the fibers during the uniaxial tensile test. The layered
scaffolds (porous outer and nonwoven inner) had higher tensile strength and Young
modulus, together with lower strain values, as compared to both nonwovens (PLAES and
PLAES_0.5Hep) alone. This was probably due to the partial impregnation of highly elastic,
PLA-based electrospun fibers with the PCL solution and the formation of an intermediate
layer (Figure 4). It can be also noticed that the scaffolds with heparin had lower tensile
strength than those based on pure PLA. As already discussed, PLA_Hep nonwovens were
also characterized by higher mean fiber diameter values. Previous studies showed that
larger fibers may have more defects and decreased molecular-level orientation within the
fibers in comparison to their thinner equivalents. Usually, with the increased diameter of
electrospun fibers, mechanical properties decrease [24].

H. Mi et al. [25] tested the mechanical behavior of single, double, and triple-layered
scaffolds based on thermoplastic polyurethane (TPU) and poly(propylene carbonate) (PPC)
fabricated by combining similar methods of electrospinning and thermally induced phase
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separation. The results were compared to the values for the porcine coronary artery. The
test conditions differed, but they also confirmed that layered structures are a better match
to native vessels in terms of mechanical behavior.
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3.2. Heparin-Modified Scaffolds

In order to biologically activate the inner surface of the scaffold and demonstrate
the possibility of manufacturing systems for carriers of bioactive substances, heparin was
introduced into the spinning solution. As mentioned previously, Hep is known for its
anticoagulant properties and ability to hinder smooth muscle-cell proliferation.

The study was conducted for two types of scaffolds: 5PLAES_0.5Hep nonwoven
and 5PLAES_0.5Hep/2.5PCLTIPS layered scaffold. Differences in the amount of released
heparin were observed (Figure 5). A higher release rate was found for the polylactide-based
nonwoven. The release mechanism was a diffusion in the water environment (PBS, 37 ◦C).
In the case of the porous, layered scaffold, the addition of the PCL layer, hampered the
diffusion possibility by reducing the contact of the surface of PLA-Hep fibers with the
medium. For both systems, the release was continued for the duration of the analyzed time
(14 days).
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The gradual release of heparin over time has been proven to have a positive effect
on long-term antithrombotic activity. S. Bae et al. observed the tested release of heparin
from PLGA/PEO yarns. It was possible to adjust the release rate through electrostatic
interactions, and the best was 65% at 20 days of incubation [26]. In our studies, we obtained
the layered scaffolds with long-term heparin release thanks to the introduction of heparin
directly into the electrospun fibers and by their combination with a porous PCL layer.

Anticoagulant properties of the designed materials, particularly those modified with
heparin, were assessed by identifying the activated partial thromboplastin time. APTT is a
typical parameter of blood coagulation that gives information about, for example, activity
of blood-plasma-related coagulation factors and the transformation of fibrinogen to fibrin.

APTT in the range of 25.3–33.8 sec was accepted as normal. The test results showed
that the reference material (unmodified PLAES nonwoven) has APTT similar or slightly
above the accepted norm (Figure 6). In the case of heparin-containing nonwoven, the
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release of heparin was confirmed indirectly. After only 1 h, the APTT for PLAES_0.5Hep
nonwoven was higher than the reference range. After another hour, until the end of the test,
APTT reached the values exceeding the measurement capability of the equipment (>300 s).
This confirmed strong anticoagulant properties of the nonwoven modified with Hep. As
discussed earlier, the addition of a porous PCL layer hindered heparin release; the APTT
values for 5PLAES_0.5Hep/2.5PCLTIPS were lower, but still within the accepted range.
Thus, it can be concluded that despite the lack of significant anticoagulant properties, the
layered scaffolds did not induce coagulation. This is considered to be an advantage in view
of their possible application as scaffolds for the tissue engineering of small blood vessels.
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3.3. In Vitro Assessment of Biological Properties

Previously, we showed that polymeric films made of polylactide and polycaprolactone
are able to enhance the angiogenic potential of human umbilical-cord-derived mesenchymal
stem cells [27]. Here, three-dimensional scaffolds were produced using the same polymers.

In order to preliminarily assess the biological performance of the designed scaffolds
under in vitro conditions, cytotoxicity assay was performed in direct contact with the
human aortic endothelial cells (HAEC). The cells’ viability was the highest in the case of
a reference surface, i.e., TCPS, and on the heparin-modified nonwoven (5PLAES_0.5Hep)
(Figure 7). Values for PLA-only nonwoven and layered 5PLAES_0.5Hep/2.5PCLTIPS scaf-
fold were only slightly lower. However, in the case of the layered scaffold without heparin,
the number of live cells after 7 days of culture was nearly three times lower than for the
control. In the longer period (the culture was maintained for 21 days), the lowest viability
was seen for PLAES. The viability of the cells cultured on the surface of the remaining
scaffolds was similar or around 25% lower than in the case of TCPS. No cytotoxicity was
observed. It is also noteworthy that the viability of the cells cultured on layered scaffolds
increased with the culture time.

Additionally, the cells were visualized under a fluoroscopic microscope (Figure 8).
It should be noted that imaging of cells cultured on 3D nonwoven scaffolds is especially
difficult. The cells tend to migrate in between the fibers, hindering imaging of individual
cells. Moreover, the nonwoven may become ridged, creating folds and hiding the cells.
Therefore, distinct morphologies of singular cells were not as clear as in the case of the
TCPS surface. However, it was visible that after 14 days of culture, the cells tended to
organize in chain-like structures. That is particularly interesting, since similar behaviour
occurs at the early stages of vascular formation.
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Figure 8. Morphology of human aortic endothelial cells (HAEC) after 14 days of culture on the surface
of (A) TCPS, (B) 5PLAES/2.5PCLTIPS, and (C,D) 5PLAES_0.5Hep/2.5PCLTIPS (staining: acridine
orange; scale bar is 200 µm).

4. Conclusions

In this study, double-layered scaffolds made of PCL-based porous outer layer and PLA-
electrospun inner layer modified with heparin were proposed for the tissue engineering
of small blood vessels (below 6 mm in diameter). The combination of thermally induced
phase separation and electrospinning resulted in asymmetric scaffolds with improved
mechanical properties. Both direct and indirect tests confirmed that heparin is released
from the scaffolds. Additionally, anticoagulant activity was shown through APTT assay.
Interestingly, the endothelial cell culture test revealed that after 14 days of culture, HAEC
tended to organize in chain-like structures, typical for early stages of vascular formation.
In the longer culture, HAEC viability was higher for the heparin-modified scaffolds. The
proposed scaffold design and composition have the potential for application in the tissue
engineering of small blood vessels.
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