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Abstract: We investigated the effect of helium atmospheric-pressure plasma (PL) and deep-ultraviolet
(UV) light treatments on the adhesive properties of fiber-reinforced poly(ether-ether-ketone) polymer
(PEEK). PEEK disks reinforced with carbon (CPEEK) or glass (GPEEK) fibers were polished, modified
with PL and UV for 60 s, and the surface energy was calculated by measuring the contact angles.
The disk surfaces were analyzed by X-ray photoemission spectroscopy. Shear bond strength testing
was performed using a universal testing machine, and the fracture surfaces were observed by electron
probe microanalyzer. Data were analyzed with one and two-way ANOVA and Tukey’s post-hoc test
(p < 0.05). The surface energies were increased by the modifications, which created OH functional
groups on the surfaces. The bond strengths of CPEEK were increased by PL, and those of GPEEK
were increased by PL and UV, owing to chemical bonding at the interface.

Keywords: fiber-reinforced poly(ether-ether-ketone); surface modification; shear bond strength;
surface analysis

1. Introduction

The biocompatible polymer poly(ether-ether-ketone) (PEEK) has been used in medical applications,
including trauma, orthopedic, and spinal implants [1], and in dental implants, dental CAD/CAM
blocks, and bone plates [2,3]. PEEK is safe and stable in the body and has excellent chemical and
mechanical properties compared with the conventional polymer poly(methyl methacrylate)(PMMA)
(Table 1) [4]. However, there are some aesthetic drawbacks that limit the use of PEEK as dental
prosthesis. Moreover, the elastic modulus of PEEK is slightly lower than that of bone, although the
modulus of fiber-reinforced PEEK is similar to that of bone [5]. PEEK and fiber-reinforced PEEK are
chemically inert and therefore possess poor adhesive properties. Hence, in order to facilitate their
widespread use as biomaterials, they require improvement of the adhesive properties.
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Table 1. Mechanical and physical properties. PMMA: poly(methyl methacrylate), PEEK:
poly(ether-ether-ketone), CPEEK: carbon fiber-reinforced PEEK, GPEEK: glass fiber-reinforced PEEK.
According to the information provided by the manufacturer.

Mechanical and Physical Properties PMMA PEEK CPEEK GPEEK

Specific gravity 1.18 1.31 1.41 1.51
Tensile strength (MPa) 55–76 110 131 97

Tensile modulus of elasticity (GPa) 2.4–3.4 4.3 7.6 6.9
Tensile elongation (at break) (%) 2 40 5 2

Flexural strength (MPa) 83–117 172 178 159
Flexural modulus of elasticity (Gpa) 2.4–3.4 4.1 8.6 6.9

Shear strength (MPa) - 55 103 97
Water absorption immersion 24 h (% by wt) 0.3 0.1 0.06 0.1

CPEEK: 30% Glass fiber filled PEEK, GPEEK: 30% Glass filled PEEK.

In previous studies [6–23], the adhesion of PEEK can be improved by different physical and
chemical surface modifications and treatments, including sandblasting [6–10], acid treatment [8–13],
laser beam emission [14–16], ultraviolet (UV) light irradiation [17], and plasma treatment [18–23].
These studies showed that the bond strengths of PEEK and fiber-reinforced PEEKs increase following
their surface modification. Zhou et al. reported that the shear bond strength values of sandblasted and
acid-etched PEEKs were 5.3 ± 0.6 and 8.7 ± 0.2 MPa, respectively [10]. Thus, the authors concluded
that sandblasting and chemical treatment produced highly porous surfaces. Mechanical coupling
could be achieved by their treatments. On the other hand, Laurens et al. described that pulsed excimer
laser enhanced the adhesive bonding properties of PEEK films [16]. Moreover, Zhang et al. showed
that plasma treatment of the PEEK films enhanced their bonding strength [19]. These modifications
allowed chemical bonding with PEEK.

In regard to the fiber-reinforced PEEK, however, the relationship between the chemical bonding
mechanism and the surface modifications is not fully understood. In this study, the surfaces of carbon
fiber-reinforced PEEK (CPEEK) and glass fiber-reinforced PEEK (GPEEK) with elastic modulus similar
to that of bone were modified by helium atmospheric-pressure plasma (PL) and UV light with a
wavelength of 172 nm. This study investigates the effect of modification on the surface adhesive
properties and adhesive strength of the fiber-reinforced PEEKs.

2. Materials and Methods

2.1. Specimen Preparation

CPEEK rod (Ketron CA30 PEEK, Quadrant Polypenco Japan, Ltd., Tokyo, Japan) and GPEEK rod
(Ketron GF30 PEEK, Quadrant Polypenco Japan, Ltd.) were cut into disks approximately 5 mm thick
with a cutting unit. Half of the disks were embedded in thermal curing resin to prepare adherend
specimens. The end surfaces of the embedded disks were polished with 1000-grit SiC waterproof
paper under running tap water. The disks were cleaned by ultrasonication for 10 min in distilled water,
and then dried at room temperature.

2.2. Surface Modification

PL (Piezobrush PZ2, Relyon Plasma, Regensburg, Germany) and a 172 nm UV light (Min-Excimer
SUS713, Ushio Denki, Tokyo, Japan) were used to modify the surface of the fiber-reinforced PEEKs.
The surfaces of the adherend and cylindrical PEEK specimens were irradiated with PL and UV light
emission for 60 s.

2.3. Measurement of Contact Angle and Evaluation of Surface Energy

Contact angle measurements were performed by the sessile drop method. Two testing liquids,
distilled water and formamide (98.5% purity, FUJIFILM Wako Pure Chemical Co., Tokyo, Japan) with
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well-known polar and dispersive components of surface energy were used. Drops of testing liquid
(5.0 µL) were deposited from a micro syringe onto the specimen surfaces at 20± 1 ◦C. Each contact angle
was acquired from images captured by a charge coupled device (CCD) camera when observable motion
had ceased. The polar and dispersive components of surface energies of the modified specimens were
calculated from the experimental value using method described by Jha et al. [22]. Three measurements
on each specimen were done separately.

2.4. Surface Analysis

The PEEK specimens were analyzed by X-ray photoemission spectroscopy (XPS; Quantum 2000,
ULVAC, Chigasaki, Japan). Incident monochromated X-rays from the Al target (100 W) were focused
on a 100-µm-diameter area. XPS spectra analysis was carried out with MultiPak software (ULVAC).
To analyze the special functional groups formed by the surface modifications qualitatively, selective
chemical derivatization techniques were performed as reported elsewhere [24,25]. To identify OH
functional groups, trifluoroacetic anhydride (TFAA; Tokyo Chemical Industry, Co., Ltd., Tokyo, Japan)
was poured into the outer vessel of a double-walled glass vessel, the modified specimen was put
into the inner vessel, and a glass cover was placed over the top of the vessel. The specimen was
exposed to TFAA vapor at room temperature for 24 h. To identify COOH functional groups, a 9:3:4 (v/v)
mixture of 2,2,2-trifluoroethanol (Tokyo Chemical Industry, Co., Ltd.), N,N′-di-tert-butylcarbodiimide
(Tokyo Chemical Industry, Co., Ltd.), and pyridine (FUJIFILM Wako Pure Chemical, Co., Tokyo, Japan)
was placed in the outer vessel of a double-walled glass vessel and the modified specimen was placed in
the inner vessel and exposed to the vapor at room temperature for 24 h. Initial XPS measurements were
carried out on the C1s peaks. Generally, polymers are non-conductive, however, the X-ray excitation
mechanism and the ejection of the photoelectrons from the specimen surface causes the buildup of
a positive charge on the surface, which shifts spectra by a few electron volts toward higher binding
energies. Therefore, a neutralizer attached to the XPS apparatus was used for charge compensation
while XPS spectra were measured. The high-resolution C1s peak spectrum of the chemically modified
specimens contained contributions from carbon atoms in various chemical environments. Peak fitting
by MultiPak software was used to identify the grafted components.

2.5. Bonding Procedure

A punching seal with a diameter of 6.0 mm was placed on the modified adherend specimen to
keep the adhesive area constant. The specimen was bonded with the cylindrical specimen by using
a methyl methacrylate (MMA) adhesive resin (Super-Bond C&B, Sun Medical Co., Ltd., Moriyama,
Japan) according to the manufacturer’s instructions (n = 10). After bonding, the specimens were left
for 1 h under atmospheric conditions and then stored in distilled water at 37 ± 1 ◦C for 24 h.

2.6. Compressive Shear Bond Strength Test

The specimen was placed on the compressive shear bond strength test apparatus and a universal
testing machine (Autograph-1000E, Shimadzu, Kyoto, Japan) was operated at a crosshead speed of
1.0 mm/min. The shear bond strength was calculated by dividing the stress on failure by the area.

2.7. Observation of Fractured Surfaces

The fractured surfaces of the specimens were coated with AgPd and secondary electron (SE)
images were acquired using an X-ray probe microanalyzer (EPMA-1610, Shimadzu).

2.8. Statistical Analysis

Statistical differences were analyzed with one- and two-way ANOVA and Tukey’s post hoc tests
(p < 0.05) using Microsoft Excel.
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3. Results

The contact angle measurement values on the modified specimens are listed in Table 2. It is
observed that surface modification of PL and UV results in significant decrease in contact angle
compared to the contact angle of the control.

Table 2. Contact angle measurement values on the specimens. CPEEK: carbon fiber-reinforced PEEK,
GPEEK: glass fiber-reinforced PEEK, Control: unmodified specimen, PL: helium atmospheric-pressure
plasma, UV: deep-ultraviolet light.

Liquid Modifications

Specimens

CPEEK GPEEK

Mean (SD) Mean (SD)

Distilled water
Control 88.6 (0.9) 74.4 (3.0)

PL 37.2 (2.6) 37.3 (4.2)
UV 23.8 (2.0) 51.4 (1.6)

Formamide
Control 55.3 (2.8) 55.1 (1.2)

PL 11.2 (0.8) 19.4 (0.6)
UV 8.6 (0.7) 21.8 (3.6)

Unit: ◦.

The surface energies are shown in Figure 1. Statistically significant differences between the surface
energy of PL-modified CPEEK and the control were found. The dispersive component decreased,
and the polar component was more than 4 times higher in the PL-modified specimens compared
with the control. However, there was no statistically significant difference between the control and
CPEEK modified by UV. The polar and dispersive components of the surface energy were similar in
the CPEEK specimens modified by UV. In contrast, the polar component of the surface energy of the
GPEEKs significantly increased, and the surface energies of the GPEEKs modified by PL and by UV
were significantly higher than that of the control.
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GPEEK: glass fiber-reinforced PEEK, Control: unmodified specimen, PL: helium atmospheric-pressure
plasma, UV: deep-ultraviolet light. Asterisks indicate p < 0.05 compared to the specimens. Bar denotes
standard deviation.
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The O/C atomic ratios obtained by XPS are listed in Table 3. The O/C ratios of the PL- and
UV-modified specimens were higher than that of the control because surface modifications increased
the surface oxygen content. The oxygen contents for the UV-modified specimens were higher than for
the PL-modified specimens.

Table 3. O/C atomic ratios of the modified specimens. CPEEK: carbon fiber-reinforced PEEK, GPEEK:
glass fiber-reinforced PEEK, Control: unmodified specimen, PL: helium atmospheric-pressure plasma,
UV: deep-ultraviolet light.

Specimen Control PL UV

CPEEK 0.20 0.44 0.61
GPEEK 0.26 0.38 0.61

Figure 2 shows the fitted C1s spectra of the modified specimens. Table 4 shows the XPS reference
table containing the C1s binding energies for aliphatic species. The spectra contained C-H and C-C
(~285.0 eV), C=O (287.3 eV), and π-π * (291.5–292.0 eV) bands. The characteristic π-π * shake-up
satellite arose from the resonance of the aromatic rings of PEEK. An additional peak corresponding to
O–C=O, COOH, and OH (~289.0 eV) was present in the spectra for the specimens modified by PL and
UV light.

Table 4. Functional groups and their XPS binding energies. CPEEK: carbon fiber-reinforced PEEK,
GPEEK: glass fiber-reinforced PEEK, Control: unmodified specimen, PL: helium atmospheric-pressure
plasma, UV: deep-ultraviolet light.

Binding Energy (eV) References

Control PL UV [19] [21] [23]

C-H/C-C 285.1 285.0 285.0 285 285.0 285.0
C-O-C 286.5 286.3 286.3 286.4 286.3 286.4
C=O 287.3 287.3 287.3 288 287.4 287.2

COOH or COH 289.0 289.0 289.2 289 288.7
π-π * 292.0 291.7 291.5 291.79 291.7 291.8

The peak area at around 289.0 eV was larger for the UV-modified specimens than the
PL-modified specimens.

Selective chemical derivatization was performed to identify the specific functional groups, and the
XPS spectra of the derivatized specimens are presented in Figure 3. OH groups on the modified
specimen surfaces were indicated by C1s peaks at 293.2 eV on the PL- and UV-modified specimens
derivatized with TFAA. No C1s peak attributed to CF3 at 293.2 eV was observed on the control.
The presence of COOH groups was indicated by the C1s peaks at 293.2 eV for PL- and UV-modified
CPEEK, although these C1s peaks were not observed for PL- and UV-modified GPEEK.

A box plot of the compressive shear bond strengths is shown in Figure 4. The bond strengths of
the PL-modified CPEEK and GPEEK specimens were significantly higher than those of the control
(unmodified specimen). However, UV-modified CPEEK showed no statistically significant difference
from the control. The bond strength of PL-modified CPEEK was significantly higher than that of
UV-modified CPEEK. In contrast, the bond strengths of PL- and UV-modified GPEEK were similar.

SE images of the polished specimens and the fracture surfaces are shown in Figure 5. The reinforcing
fibers in CPEEK and GPEEK were 3–4 and 11–13 µm in diameter, respectively. The SE images of the
fracture surface showed that the adhesive resin was not bonded to the fibers in both specimens. In view
of the form of original surface (as polished), in the CPEEK control, some pieces of adhesive resin were
observed in the space around the fibers, whereas there was no resin in these spaces in the GPEEK
control. Moreover, a flat surface was observed at the interface. In addition, in PL-modified CPEEK and
GPEEK, some pieces of broken adhesive resin were visible along the polishing streaks. In contrast,
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in UV-modified CPEEK, the fracture properties were similar to those of the CPEEK control, and some
pieces of adhesive resin were observed in the space around the fibers but not around the polishing
streaks. In UV-modified GPEEK, there were wave-like traces of the resin fracture on the interface.
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denote outliers. Small square in the box indicates the mean value.
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Figure 5. SE images of the fractured specimens: (a) CPEEK as polished, (b) CPEEK control, (c) CPEEK PL,
(d) CPEEK UV, (e) GPEEK as polished, (f) GPEEK control, (g) GPEEK PL, (h) GPEEK UV. CPEEK: carbon
fiber-reinforced PEEK, GPEEK: glass fiber-reinforced PEEK, Control: unmodified specimen, PL: helium
atmospheric-pressure plasma, UV: deep-ultraviolet light.

4. Discussion

To use the biocompatible polymer PEEK as a medical material, problems with its bonding properties
and bond strength must be solved. To overcome these problems, we modified fiber-reinforced PEEKs,
which have elastic moduli similar to that of bone modulus, by PL and 172 nm UV light to improve
their bond strength.

The surface energies of PL-modified CPEEK and GPEEK were significantly higher than those of
the controls, indicating that PL created hydrophilic surfaces. XPS spectra of the derivatized surface
structures of PL- and UV-modified CPEEK and GPEEK contained CF3 or C-F peaks, corresponding to
species formed by the reaction of the TFAA derivatization agents with isolated OH species introduced
by the modifications on these specimens. In contrast, COOH species were formed on the PL- or
UV-modified CPEEK specimens, although they were not formed on the PL- or UV-modified GPEEK
specimens because no C1s peak at 293.4 eV was observed. The results confirmed the presence of
OH and COOH functional groups. Zhang et al. [19] reported that C-O and COO functional groups
were formed on the surface of PEEK modified by plasma. Moreover, Iqbal et al. [20] found the same
functional groups on PEEK modified by PL by XPS analysis. Our findings agree well with these results.

The ions and electrons created from PL and UV light energy could create these functional
groups through the chain scission of C-O-C in ether groups and C=O-O in ketone groups in PEEK.
Gonzalez et al. [26] reported that the O atoms generated in PL oxidize and open the aromatic rings on
the polymer chains. The energy of 172 nm UV light is 694.9 kJ/mol, and the bond dissociation energy
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of the ester groups in PEEK is 347.4 kJ/mol [27]. Therefore, the ester bonds easily underwent scission,
oxygen in the air was dissociated into oxygen radicals, and ozone was formed. The surfaces of the
specimens were rich in OH and COOH functional groups owing to the attack of these chemical species,
consistent with the increase in O/C ratio.

Niu et al. [28] reported that UV light caused the chain scission of C–O–C in ether groups and C=O-O
in ketone groups, and -OH groups were formed in different positions. Moreover, Riveiro et al. [15]
reported that irradiation with a 355 nm UV laser was the most suitable for modifying the PEEK surface,
suggesting that UV light with a wavelength of around 355 nm may improve the surface modification
of CPEEK and GPEEK.

The shear bond strengths are shown as a box plot (Figure 4). The shear bond strengths of both
specimens modified by PL were significantly higher than those of the control. However, there was no
statistically significant difference in the shear bond strength between UV-modified CPEEK and the
control. Based on the XPS results, OH and COOH functional groups were formed on the CPEEK surface
by UV irradiation. The deconvolution and curve fitting of the C1s XPS spectra of the UV-modified
GPEEK and CPEEK specimens were identical. However, there was no statistically significant difference
between the surface energy of UV-modified CPEEK and the control. The fracture surface properties of
the UV-modified CPEEK and the control were similar, and polishing streaks were observed on the
interface of both specimens. These results indicate that few chemical bonds were formed on the surface
of UV-modified CPEEK. According to the O/C ratio after UV irradiation, the modified surface had
high oxygen content because the ozone and active oxygen formed by the UV light irradiation reacted
with the CPEEK surface. Therefore, the modified surface contained not only abundant OH functional
groups but also would have a new compound with OH functional groups. In fact, Niu et al. [28]
reported that the short wavelengths (300–380 nm) provided by UV light were completely absorbed
by the PEEK polymer, and low-molecular-weight products were formed. Because CPEEK contains
carbon fibers, the ozone and active oxygen formed by the UV light irradiation would readily react with
the carbon fibers to form carbon and CO2. These materials would easily form low-molecular-weight
products. The shear bond strength of the PL-modified CPEEK was higher than that of the UV-modified
CPEEK because PL did not produce low-molecular-weight products.

The reaction described above would also occur on the specimens modified by PL or UV light.
Therefore, PL and UV treatment are suitable for modifying GPEEK, and UV treatment is suitable for
modifying CPEEK.

According to the SE images, the glass fibers were thick. Because the adhesive resin does not
chemically bond to the reinforced fibers, the real bonding area of CPEEK was higher than that of
GPEEK, resulting in the lower bond strength of GPEEK. This was consistent with the bond strength
results. In contrast, mechanical fastening occurred on the CPEEK control. Some pieces of the resin were
stuck in the polishing streaks on the fracture surface of the CPEEK control, demonstrating the excellent
penetration of the MMA-based adhesive resin. Some pieces of the adhesive resin were attached to
the fracture surfaces of PL-modified CPEEK and GPEEK and UV-modified GPEEK. Thus, cohesive
failure may occur at each interface. Consequently, mechanical and chemical bonds occurred between
the adhesive resin and CPEEK and GPEEK, and a strong bond was formed at the interface.

5. Conclusions

The adhesive properties of PL- and UV-modified CPEEK and GPEEK were investigated.
These treatments introduced OH functional groups onto the surfaces of CPEEK and GPEEK. The bond
strengths of CPEEK were increased by PL, and those of GPEEK were increased by both PL and UV light.
Mechanical fastening occurred, and chemical bonds were formed, which was indicated by cohesive
failure at the modified interface.
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