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Abstract: Poly(d,l–lactide–co–glycolide) (PLGA) has been extensively explored for bone regeneration
applications; however, its clinical use is limited by low osteointegration. Therefore, approaches
that incorporate osteoconductive molecules are of great interest. Graphene oxide (GO) is gaining
popularity for biomedical applications due to its ability to bind biological molecules and present them
for enhanced bioactivity. This study reports the preparation of PLGA microparticles via Pickering
emulsification using GO as the sole surfactant, which resulted in hybrid microparticles in the size
range of 1.1 to 2.4 µm based on the ratio of GO to PLGA in the reaction. Furthermore, this study
demonstrated that the hybrid GO-PLGA microparticles were not cytotoxic to either primary human
fetal cartilage rudiment cells or the human osteoblast-like cell line, Saos-2. Additionally, the GO-PLGA
microparticles promoted the osteogenic differentiation of the human fetal cartilage rudiment cells
in the absence of exogenous growth factors to a greater extent than PLGA alone. These findings
demonstrate that GO-PLGA microparticles are cytocompatible, osteoinductive and have potential as
substrates for bone tissue engineering.
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1. Introduction

The repair of critical size bone defects as a result of trauma, tumor resection or congenital
abnormalities is an unmet clinical need for orthopedics and dentistry. While bone grafts are the clinical
gold standard, their limitations include a restricted supply and require a secondary surgical site. Thus,
there is interest in developing off-the-shelf biomaterial strategies for rapid bone repair. Biodegradable
synthetic polymers such as poly(lactide–co–glycolide) (PLGA) have been widely explored for bone
tissue engineering applications due to their tunable mechanical and degradation properties, unlimited
availability and approved clinical use by the US Food and Drug Administration [1–3]. While PLGA
has many attractive features for tissue engineering, it exhibits a poor osteoconductivity necessitating
its complexation with osteoconductive molecules to achieve bone repair in clinically useful time
frames [4].

Graphene oxide (GO) has gained attention for biomedical applications due to its cytocompatibility
and capacity to bind various biological molecules via its surface carbon and oxygen functional groups,
which also stabilize the GO sheets in aqueous media [5,6]. The range of functional groups in GO
enables it to be readily incorporated into a polymer matrix and often results in improved mechanical
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and biological properties compared to the neat polymer [7]. Indeed GO-PLGA microparticles alone or
incorporated into silk membranes have been reported to support osteoblast growth over 28 days with
the addition of exogenous growth factors [8–11].

PLGA particles can be prepared by a range of methods including emulsion-evaporation,
emulsion-diffusion, “salting out” and precipitation, which all rely on dissolving the polymer in
an organic solvent [12–15]. The emulsion-evaporation method involves emulsifying PLGA dissolved
in a water-immiscible solvent with water in the presence of a colloidal stabilizer such as poly(vinyl
alcohol) (PVA). The emulsification process is usually performed via high energy ultrasonication or
homogenization, yielding particles after the subsequent evaporation of the organic solvent. Emulsions
can also be stabilized by nanoparticles, a process known as a Pickering emulsion [16], via a reduction
in the interfacial energy of the emulsion upon the adsorption of nanoparticles to the emulsion
droplet [17,18]. However, this technique has not been widely reported for PLGA particles [19–22] and
has not been explored for bone tissue engineering applications. GO can act as a stabilizer in Pickering
emulsions due to its amphiphilic nature [23–25], provides a high degree of surface coverage as the GO
sheets lay parallel to the droplet interface [26] and can be the sole surfactant in mini-emulsion and
emulsion polymerization reactions [27–29]. Pickering emulsions possess advantages for biomedical
applications, including a high stability, low toxicity and narrow size distribution [30].

GO has been combined with PLGA via electrospinning [8,9], freeze drying [31] or emulsion
solvent evaporation [11]. This study reports for the first time the preparation of PLGA particles via a
Pickering emulsion using GO as the sole surfactant. The particles were not cytotoxic when used at
low doses and promoted the osteogenic differentiation of human fetal cartilage rudiment cells in the
absence of exogenous growth factors.

2. Results and Discussion

2.1. Characterization of GO-PLGA Microparticles

GO-PLGA particles were prepared via a Pickering emulsion using GO as the stabilizer and anisole
as the solvent and were compared to a control system where PLGA particles prepared with PVA as the
stabilizer. A thermal gravimetric analysis (TGA) of GO, PLGA and the GO-PLGA particles, prepared
with 50 wt% GO, demonstrated a prominent degradation between 300 ◦C and 400 ◦C, in accordance
with the decomposition of PLGA across this temperature range (Figure 1) [13]. The mass loss of
the GO-PLGA particles prepared with 50 wt% GO (GO(50)-PLGA-A) in this temperature range was
approximately 50% in agreement with the prepared composition of the dispersion, based on the initial
weight fractions of GO and PLGA-A (Figure 1A) or PLGA-B (Figure 1B). Similar results were obtained
for PLGA-A with a lower wt% of GO (data not shown).

Figure 1. The TGA analysis of the GO (black), (A) PLGA-A and GO(50)-PLGA-A and (B) PLGA-B and
GO(50)-PLGA-B particles presented as mass loss over the temperature range of 20–800 ◦C.

The analysis of the particle surface bonds by attenuated total reflectance-Fourier transform infrared
spectroscopy (ATR-FTIR) confirmed that GO was bound to the PLGA particle surface (Figure 2). GO
exhibited a broad stretching peak with a maximum at 3400 cm−1 attributed to its large number of
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hydroxyl groups, as well as absorptions at 1050 cm−1 (C–O stretch) and 870 cm−1 (C–O–C stretch)
attributed to its typical chemical groups [25]. PLGA-A exhibited a strong absorption at ~1750 cm−1

indicative of the ester linkage (C=O stretch) within the PLGA backbone. The GO(50)-PLGA-A particles
exhibited absorption bands characteristic of both PLGA and GO, further indicating the presence of
both species in the particle structure (Figure 2). Similar results were obtained with PLGA-B (data
not shown).

Figure 2. The FTIR spectra of the GO, PLGA-A and GO(50)-PLGA-A particles after freeze-drying,
indicating characteristic bands for GO and PLGA.

The GO:PLGA mass ratio was varied to examine the influence of GO loading on the physical
characteristics of the particles. The control PLGA-A and PLGA-B particles formed relatively
monodispersed particles of approximately 170 and 125 nm, respectively, determined by transmission
electron microscopy (TEM) (Figure 3A,E and Table 1). The largest GO-PLGA-A particles were obtained
with 50 wt% GO (GO(50)-PLGA-A) with a size of 1860 ± 350 nm, while GO(16)-PLGA-A were the
smallest with a size of 1100 ± 280 nm (Table 1 and Figure 3B,D). The GO(50)-PLGA-B particles were
found to have a size of 2350 ± 620 nm (Figure 3F), but were not significantly (p < 0.05) different
in size to the GO(50)-PLGA-A particles (Table 1). The dynamic light scattering (DLS) analysis also
indicated that the incorporation of GO into the particles increased their size (Table 1 and Figure 4);
however, there was a large discrepancy between the DLS and TEM measurements of the average
diameter (Table 1). This is most likely due to the highly irregular shape of the particles (Figure 3).
Additionally, the DLS volume distributions for all samples were broad and bimodal, with the smaller
particle diameters attributable to ‘free’ GO in the continuous phase that were not incorporated into the
emulsion (Figure 4). The effective hydrodynamic diameter of ‘free’ GO was approximately 120 nm,
which is similar in size to pristine GO dispersed in water. Similar bimodal particle size distributions
have been reported when GO has been used as a Pickering stabilizer [32]. As the mass fraction of GO in
the system decreased, the relative contribution of the ‘free’ GO to the overall particle size distribution
also decreased (Figure 4 and Table 1). The zeta potential of all GO-PLGA particles was comparable to
the zeta potential of the original GO dispersion (−47.6 mV), further indicative of the fact that GO was
adsorbed on the surface of the particles (Table 1).
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Figure 3. The TEM images of the PLGA and GO-PLGA microparticles prepared with either PLGA-A
(A–D) or PLGA-B (E,F) without GO (A,E) or with 16, 33 or 50 wt% GO (denoted GO(16), GO(33) or
GO(50)) (B–D,F). Scale bars indicate 1 µm.

Table 1. The PLGA and GO-PLGA particle size and charge determined by TEM, DLS and zeta potential.

PLGA PLGA Lactide:
Glycolide Ratio GO wt % TEM Diameter

(nm)
DLS Diameter/PDI

(nm)
Zeta Potential

(mV)

A 75:25

0 170 ± 50 236/0.12 −32.4
16 1100 ± 280 734/0.64 −42.2
33 1220 ± 340 506/0.50 −48.2
50 1860 ± 350 270/0.27 −46.6

B 65:35
0 125 ± 20 219/0.06 −25.3
50 2350 ± 620 456/0.52 −40.3

Figure 4. Volume distribution of (A) PLGA-A and GO-PLGA-A with different wt% GO; and (B) the
GO, PLGA-B and GO(50)-PLGA-B particles analyzed by DLS.
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2.2. Cellular Interactions with GO-PLGA Microparticles

As PLGA has been widely investigated for bone tissue engineering applications, it was of interest
to determine the effect of the GO-PLGA microparticles on human osteoblast cells. The GO(50)-PLGA-A
particles were investigated as they were not appreciably different in size, morphology or surface charge
to the other GO-PLGA-A particles and were compared to the GO(50)-PLGA-B particles. Human
osteoblast-like cells (Saos-2 cell line) were exposed to particles at concentrations between 0 and
200 µg/mL over a period of 72 h. The control PLGA particles did not reduce the cell number compared
to the cells grown in the basal medium at any of the tested concentrations (Figure 5A). In contrast, both
the GO(50)-PLGA-A and GO(50)-PLGA-B particles significantly (p < 0.05) reduced the cell number at
concentrations of 100 µg/mL and greater (Figure 5A), while the 50 µg/mL GO(50)-PLGA-B particles also
significantly (p < 0.05) reduced the cell number. However, the level of reduction in the cell number was
only cytotoxic at GO(50)-PLGA-B particle concentrations of 100 µg/mL and above as there was more
than 70% cell growth inhibition. The GO(50)-PLGA-B particles were not analyzed further as they had a
lower workable concentration range than the GO(50)-PLGA-A particles without inducing cytotoxicity.

Figure 5. The cytotoxicity of microparticles at concentrations of 0–200 µg/mL exposed to (A) human
osteoblast-like (Saos-2 cell line) or (B) human fetal cartilage rudiment cells after 72 h. Data was
normalized to cells grown in the basal medium measured by the MTS assay. Data was presented at
mean ± standard deviation (n = 3). * Indicated significant a difference compared to the cells exposed to
the basal medium at each time point as determined by a one-way ANOVA, p < 0.05; (C) The morphology
of the human fetal cartilage rudiment cells after 72 h of exposure to GO(50)-PLGA-A at concentrations
of 10, 20 and 50 µg/mL compared to the cells grown in the standard medium. The cells were fixed and
stained with rhodamine-phalloidin to indicate the actin cytoskeleton. Scale bar represented 20 µm.

Human fetal cartilage rudiment cells have the potential to express either an osteogenic or
chondrogenic phenotype [33] and were used in further studies to determine whether the particles
promoted cell differentiation. Human fetal cartilage rudiment cells were exposed to either PLGA-A
or GO(50)-PLGA-A particles at concentrations between 0 and 50 µg/mL over a period of 72 h.
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GO(50)-PLGA-A particles at concentrations between 0 and 20 µg/mL did not change the cell number
compared to cells exposed to the basal medium (Figure 5B). In contrast, 50 µg/mL GO(50)-PLGA-A
particles significantly (p < 0.05) reduced the cell number over the 72 h analysis period compared with
cells exposed to the basal medium. However, this reduction in the cell number was not at a level that
would be considered cytotoxic as there was not more than 70% cell growth inhibition.

The analysis of the morphology of the human fetal cartilage rudiment cells by staining their actin
cytoskeleton indicated that the exposure of the cells to 10 µg/mL GO(50)-PLGA-A had no effect on their
morphology compared to cells grown in the basal medium, with cells in both conditions exhibiting a
spread and elongated morphology (Figure 5C). In contrast, higher doses of GO(50)-PLGA-A caused
the cells to exhibit a rounded morphology (Figure 5C). Thus, further analyses were performed with
10 µg/mL GO(50)-PLGA-A as this was the highest concentration analyzed that did not affect either
the number or morphology of the fetal cartilage rudiment cells compared to the cells grown in the
basal medium.

The expression of osteogenic and chondrogenic genes by the human fetal cartilage rudiment
cells exposed to PLGA-A or GO(50)-PLGA-A for 5 days was analyzed by a quantitative real time
polymerase chain reaction (qPCR) (Figure 6). The genes involved in the osteogenic phenotype,
including alkaline phosphatase and osteocalcin, were significantly (p < 0.05) upregulated in the cells
exposed to GO(50)-PLGA-A compared to the cells grown in the basal medium, while only osteocalcin
expression was upregulated in the cells exposed to PLGA-A (Figure 6). While collagen type I was
upregulated in the cells exposed to either PLGA-A or GO(50)-PLGA-A, it was not upregulated to a
level that was considered statistically significant. These data suggest that the GO(50)-PLGA-A particles
promoted the osteogenic differentiation of the human fetal cartilage rudiment cells, while PLGA-A had
only a weak influence over the short culture time.

Figure 6. The qPCR analysis of the osteogenic (including collagen type 1 (COL1), alkaline phosphatase
(ALP), osteocalcin (OCN) and osteopontin (OPN), bone morphogenic protein (BMP) 2) and chondrogenic
(including collagen type II (COL2) and aggrecan (ACAN)) gene expressions by the human fetal cartilage
rudiment cells exposed to GO(50)-PLGA-A and PLGA-A at 10 µg/mL compared to the cells grown in
the basal medium for 5 days. Data was presented as fold change compared to the cells exposed to the
medium only and was corrected for GAPDH expression for each treatment. * Indicated a significant
difference compared to the cells exposed to the basal medium as determined by a one-way ANOVA,
p < 0.05.
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Osteopontin is also recognized for its role in bone remodeling, and its expression was significantly
(p < 0.05) down-regulated in the human fetal cartilage rudiment cells exposed to GO(50)-PLGA-A
compared to cells grown in the basal medium; however, there was no significant difference in the
osteopontin expression in the cells exposed to PLGA-A compared to the basal medium (Figure 6).
An increased expression of osteopontin reduces the osteogenic phenotype expression, reduces
the bone morphogenic protein (BMP2) mediated alkaline phosphatase activity and also inhibits
cell proliferation [34], and it supported the findings of the present study where GO(50)-PLGA-A
promoted the expression of osteocalcin and alkaline phosphatase genes and did not affect cell
proliferation. Additionally, gene expression can indicate the stage of osteoblastic differentiation,
as alkaline phosphatase and collagen type I are expressed in the initial stages of differentiation whereas
osteocalcin is expressed later in the process [35]. Thus, the human fetal cartilage rudiment cells
exposed to GO(50)-PLGA-A were committed to the osteogenic phenotype, while cells exposed to
PLGA-A were not. These findings are supported by reports of osteogenic gene expression by human
mesenchymal stem cells and murine pre-osteoblasts exposed to GO-PLGA alone [10] or incorporated
in silk membranes [8–10] in the presence of exogenous BMP2. These reports are in line with the known
role of BMP2 in promoting osteogenic differentiation [36]. Interestingly, in the present study, BMP2
gene expression by cells exposed to either GO(50)-PLGA-A or PLGA-A was not significantly different
to cells exposed to the basal medium (Figure 6), even though other markers of osteogenic phenotype
expression were upregulated. This indicates that the level of BMP2 in serum containing a culture
medium, together with other factors present in the cultures, was sufficient to promote an osteogenic
linage commitment and may be due to the ability of GO to bind biomolecules and concentrate them
for presentation to cells [5,6]. While the addition of BMP2 to in vitro cell cultures provides promising
results for enhanced bone formation, the clinical application of BMP2 is associated with adverse effects,
including ectopic bone formation, bone resorption and unwanted adipogenesis [37]. Thus, materials
that can promote the osteogenic phenotype in the absence of exogenous BMP2 are desirable, such as
the GO(50)-PLGA-A particles presented here.

Genes involved in chondrogenic phenotype expression, including collagen type II and aggrecan,
were downregulated in the human fetal cartilage rudiment cells exposed to GO(50)-PLGA-A compared
to the cells exposed to the basal medium, with only aggrecan being downregulated to a level that was
considered significant (p < 0.05) (Figure 6), suggesting that the GO(50)-PLGA-A did not promote a
chondrogenic phenotype. In addition, the human fetal cartilage rudiment cells exposed to PLGA-A
did not exhibit a statistically significant change in chondrogenic gene expression. Together, these data
suggest that the GO(50)-PLGA-A particles were effective in establishing a human fetal cartilage rudiment
cell commitment to the osteogenic lineage in the absence of exogenous osteogenic growth factors.

3. Materials and Methods

3.1. Materials

Reagents were purchased from Sigma-Aldrich (Castle Hill, Australia) unless stated otherwise.
PLGA with lactide:glycolide ratios of 75:25 (denoted PLGA-A, molecular weight range 66–107 kDa) or
65:35 (PLGA-B, molecular weight range 40–70 kDa), as well as PVA with a molecular weight range
13–23 kDa, were used as received. Graphite nanofibers (Catalytic Materials LLC Ltd, >98%, Pittsboro,
NC, USA) were used as received. HCl (Ajax, 32%, Sydney, Australia), H2SO4 (Ajax, 98%), H3PO4 (Chem
Supply, 85%, Gillman, Australia), KMnO4 (Ajax) and H2O2 (Ajax, 30%) were used as received. Acetone
and diethyl ether (reagent grade) were provided by ChemSupply. All water was Milli-Q grade. Human
fetal cartilage rudiment cells (composed of chondroblasts/chondroprogenitor cells, as well as committed
chondrocytes) were isolated from fetal foot and knee joint cartilage (12–14 week old) in accordance
with approval from the Human Research Ethics Committees of UNSW Sydney [38]. The human
osteosarcoma cell line, Saos-2, which displays osteoblastic features [39], was purchased from American
Type Culture Collection (Manassas, VA, USA). Ultrafrost microscope slides were purchased from
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Lomb Scientific (Taren Point, Australia). Rhodamine-phalloidin and 4′,6–diamidino–2–phenylindole,
dilactate (DAPI) were purchased from Life Technologies, Carlsbad, CA, USA. The RQ1 RNase-Free
DNase kit and the MTS reagent were purchased from Promega (Madison, WI, USA). The oligo d(T)23
primer mix (ProtoScript® M-MuLV First Strand cDNA synthesis kit) was purchased from GeneSearch
Pty Ltd (Arundel, Australia). The Power SYBR Green PCR Master Mix was purchased from Applied
Biosystems (Mulgrave, Australia).

3.2. Preparation of Graphite Oxide

Graphite oxide was prepared via the oxidation of graphite nanofibers in a method analogous
to that described previously [40]. Briefly, graphite (2 g) was oxidized for 24 h in the presence of
KMnO4 (graphite:oxidant mass ratio = 1:6) in a 9:1 v/v mixture of H2SO4 and H3PO4 (250 mL). At the
conclusion of the reaction, the mixture was poured onto ice (~400 g), followed by the dropwise addition
of H2O2 (~10 mL). The graphite oxide product was purified by multiple centrifugation and washing
steps, including 3% w/w HCl (3 times), acetone (3 times) and finally with diethyl ether. The product
was dried in a vacuum for 24 h at 60 ◦C and stored in a desiccator until use. The C:O atomic ratio
was determined to be 1.37 by an XPS survey scan (ESCALAB™ XI+, ThermoFisher Scientific, Sydney,
Australia) (data not shown).

3.3. Preparation of GO-PLGA Hybrid Particles

GO was prepared by the exfoliation and dispersion of graphite oxide. Graphite oxide (50 mg) was
dispersed in water (9 mL) via ultrasonication (Model 450 Digital Sonifier with microtip, 3 × 20 min cycles,
50% amplitude, 200 W; Branson, Danbury, CT, USA), yielding a stable GO dispersion. The number-average
mean diameter of the GO sheets determined by DLS was 140 nm (PDI = 0.15). In a separate vial,
PLGA was dissolved at a concentration of 50 mg/mL in either chloroform, acetone:dichloromethane
(1:2 ratio by mass) or anisole. Upon dissolution, 1 mL of the PLGA solution was added to the GO
dispersion, followed by gentle hand mixing of the two phases and ultrasonication for 10 min on ice
(50% amplitude). The resultant mini-emulsion was observed with respect to colloidal stability for ~24 h,
followed by dialysis (using regenerated cellulose dialysis membranes, MWCO = 3500 Da) against
water for four days to remove the organic solvent. Chloroform and acetone:dichloromethane did not
result in the formation of a stable emulsion, while anisole did and was thus used as the solvent to
prepare the particles (Figure 7).

Figure 7. Photograph of the PLGA-A/GO dispersions following ultrasonication for 10 min utilizing
different solvents including (A) chloroform; (B) 1:2 acetone:dichloromethane and (C) anisole.

In certain experiments, the PLGA:GO mass ratio was varied to examine the influence of GO
loading. Freeze drying was used to isolate and analyze the PLGA-GO composite material. In order to
prepare the PLGA nanoparticles in the absence of GO, an analogous procedure was used; however,
PVA (50 mg) was dissolved in water (9 mL) in lieu of the GO dispersion. PLGA (50 mg) was dissolved



J. Funct. Biomater. 2019, 10, 33 9 of 12

in 1 mL of a 1:2 w/w acetone:dichloromethane mixture. The two solutions were mixed and then
ultrasonicated using identical conditions to those above, followed by dialysis against water.

3.4. Characterization of Particles

Hydrodynamic diameter and zeta potential measurements were performed by DLS (ZetaSizer
Nanoseries with DTS software, Malvern, UK), utilizing a 4 mW He-Ne laser at 633 nm at a backscattering
angle of 173◦. The values are reported as an average of three independent measurements, performed
on a diluted sample (1 drop of the nanoparticle dispersion in 20 mL water). The ATR-FTIR spectra were
recorded on a IFS66-S instrument (Bruker, Billerica, MA, USA) with a diamond plate, tungsten halogen
lamp and calcium fluoride beam splitter. 64 scans were recorded per sample over the wavenumber
range of 500–4000 cm−1 (4 cm−1 resolution). X-ray photoelectron spectroscopy (XPS) was performed
on an Escalab 250Xi spectrometer (Thermo Scientific, Loughborough, UK). The incident radiation was
Al X-rays (1486.6 eV) at 150 W (12 kV, 12 mA). A 165 mm hemispherical electron energy analyzer was
used, with survey scans taken at an analyzer pass energy of 100 eV over a 1360–0 eV binding energy
range (1.0 eV steps, dwell time 100 ms). Higher resolution scans were taken at a 20 eV analyzer pass
energy (0.1 eV steps, dwell time 250 ms). The base pressure in the analysis chamber was below 0.2 µPa,
and below 1.3 µPa during the analysis. The particle analysis was performed on a JEM-1400 TEM
(JEOL, Peabody, MA, USA) at an accelerating voltage of 100 kV. The specimen preparation consisted
of the casting of a drop of diluted aqueous dispersion onto a copper-Formvar grid, then allowed to
dry at room temperature. TGA was performed on a Q5000 instrument (TA Instruments, New Castle,
DE, USA) by heating the sample to 800 ◦C at a heating rate of 10 ◦C/min. The atmosphere was either
nitrogen or air at a flow rate of 2 mL/min.

3.5. Culture of Cells

The human osteoblast-like cell line (Saos-2) and the human fetal cartilage rudiment cells were
cultured in Dulbecco’s modified eagle culture medium supplemented with 2 mM L–glutamine, 50µg/mL
L–ascorbic acid to promote extracellular matrix synthesis [41], 1% (v/v) penicillin/streptomycin and
10% (v/v) fetal calf serum and used for experiments at passage 2.

3.6. Cell Viability

Cells, either the human osteoblast-like cell line (Saos-2) or the human fetal cartilage rudiment
cells, were seeded in 96-well tissue culture polystyrene plates at a density of 104 cells/well in a 200 µL
medium. The cells were incubated for 4 h prior to the addition of the particles at concentrations
0–200 µg/mL. The cell viability was analyzed at 72 h after the addition of particles using the MTS assay.
The MTS reagent was added to the cell cultures 6 h prior to the measurement of the absorbance at
490 nm, and material only controls were used to determine that the particles did not interfere with the
MTS reagent.

3.7. qPCR

The total RNA was isolated from the human fetal cartilage rudiment cells using TRI Reagent
(1 mL per 107 cells) and then treated with DNase using the RQ1 RNase-Free DNase kit to remove
contaminating DNA. Subsequently, 1 µg RNA was transcribed into cDNA using an oligo d(T)23
primer mix (ProtoScript® M-MuLV First Strand cDNA synthesis kit). For quantitative real-time PCR
(qPCR), 1 µL cDNA was mixed with 0.5 µL forward and reverse primers (10 µM each) and 10 µL
Power SYBR Green PCR Master Mix, followed by adding RNAase free water to make up to 20 µL per
sample. The primers include collagen type II (F: 5′–ACACTGCCAACGTCCAGATGAC–3′ and R:
5′–CAGTGTACGTGAACCTGCTATTGC–3′), aggrecan (F: 5′–TGTCCAAGGAGAAGGAGGTAGTG–3′

and R: 5′–GATGCCTTTCACCACGACTTC–3′), collagen type I (F: 5′–TAAAGGGTCACCGTGGCT
TCTC–3′ and R: 5′–GCAGGAAGCTGAAGTCGAAACC–3′), alkaline phosphatase (F: 5′–AGGG
CTGTAAGGACATCGCCTA–3′ and R: 5′–GCGGTTCCAGATGAAGTGGGA–3′), osteocalcin (F:
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5′–CGAGGTAGTGAAGAGACCCA–3′ and R: 5′–GTGGTCAGCCAACTCGTCAC–3′), osteopontin
(F: 5′–CATGTGGACAGCCAGGACTC–3′ and R: 5′–TGTGAGGTGATGTCCTCGTC–3′), bone
morphogenic protein 2 (BMP2) (F: 5′–GGTTCAACCCCAGCACATGAAGT–3′ and R: 5′–GCTGCG
TGTTGGGCAAAAAGT–3′) and GAPDH (F: 5′–AGAAGGCTGGGGCTCATTTG–3′ and R: 5′–AGGG
GCCATCCACAGTCTTC–3′). GAPDH was used as an endogenous control and to normalize the
results for each of the primer sets. The samples were subjected to 40 reactions using the ABI StepOne™
Real-time PCR system.

3.8. Statistical Analyses

A one-way analysis of variance (ANOVA) was conducted with a Tukey’s post-hoc test to compare
multiple conditions after establishing that the data were normally distributed. Results of p < 0.05 were
considered significant. Cell experiments were performed in triplicate.

4. Conclusions

This study demonstrated that GO-PLGA microparticles can be synthesized via a Pickering
emulsion using GO as the sole surfactant. The size of the particles produced was stable in the range of
1.1 to 2.4 µm when GO was used in the range of 16–50 wt%. This study demonstrated that neither
PLGA nor GO-PLGA microparticles were cytotoxic to either human osteoblast-like or human fetal
cartilage rudiment cells when used at doses of up to 50 µg/mL. The GO(50)-PLGA-A microparticles
supported an osteogenic linage commitment in human fetal cartilage rudiment cells in the absence of
exogenous growth factors. In contrast, while human fetal cartilage rudiment cells exposed to PLGA
expressed osteogenic genes, they were not committed to this linage over the analysis period. Together,
these data suggest that the incorporation of GO into PLGA particles is a promising approach for an
‘off-the-shelf’ biomaterial capable of promoting rapid bone regeneration in the absence of expensive
and rapidly degraded growth factors.
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