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Abstract: Phosphorylated chitooligosaccharides (P-COS) were prepared using a H3PO4, 

P2O5, Et3PO4 and hexanol solvent system. The P-COS were characterized by Fourier 

Transform Infrared Spectroscopy (FT-IR), Thermo gravimetric-Differential Thermal 

Analyzer (TG-DTA), 13C NMR, 31P NMR, X-ray diffraction analysis, solubility studies, 

biocompatibility and Alkaline Phosphatase Activity (ALP). The results reveal that 

phosphorylation occurred at the C3 and C6 position of OH groups and the C2 position of 

NH2 group. FT-IR confirmed no decomposition in pyranose ring in P-COS even with 

heating and treatment in acidic conditions. The amorphous nature of P-COS was confirmed 

by X-ray diffraction analysis. Further, the biocompatibility and alkaline phosphatase 

activity of P-COS were checked against the osteosarcoma MG63 cell line at different 

concentrations and no cytotoxicity was observed. After 12 h and 24 h of incubation, the 

ALP activity of P-COS was higher compared with the control group. These results suggest 

that P-COS is a biocompatible material and in future P-COS could open up a number of 

promising pharmaceutical and clinical applications to mankind.  
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1. Introduction  

Natural polysaccharides are recommended as bioactive materials, because they possess excellent 

properties such as biocompatibility, biodegradability, low-toxicity, adsorption properties, etc. [1]. 

Chitosan is a linear polysaccharide consisting of β-(1→4)-2-acetamido-D-glucose and  

β-(1→4)-2-amino-D-glucose units derived from partial deacetylation of chitin [2-4]. There has been a 

growing interest in chitosan polymer as a promising biomaterial in the pharmaceutical industry in the 

last three decades. However, the poor solubility of chitosan in water makes it too difficult to be used in 

food and biomedical applications [5]. Since the discovery of chitosan, several chemical modifications 

have been tried to improve its solubility and to thus increase its application [6]. Considering this 

limitation, researchers are now concentrating on conversion of chitosan into oligosaccharides [7].  

Chitooligosaccharides (COS) have positive charges with D-glucosamine residues; this property 

enables them to interact with negatively charged polymers, macromolecules and polyanions in an 

aqueous environment [8-9]. COS are readily soluble in water due to their shorter chain lengths and free 

amino groups in D-glucosamine units [1]. COS have been shown to possess many biological activities 

such as antibacterial [7,10-13], immunoenhancing effect [14], as an antioxidant [15-16], matrix 

metalloproteinase (MMP) inhibitors [17-19], anti-diabetic [20], anti-HIV [21], anti-inflammatory [22], 

drug delivery [23], etc. It is believed that the capability of COS is not only restricted to these activities 

and that chemical modifications will enhance and open ways for utilization of COS in various further 

fields [3]. The chemical modifications of COS that have been tried include carboxylation [24], 

phosphorylation [25] and modification with various lipids such as acryloyl, propionyl, butylyl, 

isobutylyl, valeryl, isovaleryl, pivaloyl, hexanoyl, octanoyl, decanoyl, lauroyl, myristoyl, palmitoyl, 

stearoyl, oleoyl, eicosanoyl, docosanoyl, and tetracosanoyl [26]. Compared to natural COS, modified 

COS are found to be more effective in inhibiting angiotensin converting enzymes [24] and potential 

inhibitors of calcium phosphate precipitation [25]. The rationale for this is that chemical modification 

would keep the original physiochemical and biochemical properties of COS and at the same time allow 

out new additional properties [27]. Among the variety of chemical modifications, phosphorylation is 

highly used. Several methods have been used for phosphorylation of chitosan that occurs on the 

surface level, whereas, -H3PO4/P2O5/Et3PO4/hexanol solvent system phosphorylation occurs at the 

molecular level of chitosan with high yield, high degree of substitution and also a simpler purification 

process [27-28]. We propose that use of the same solvent system H3PO4/P2O5/Et3PO4/hexanol for the 

molecular level phosphorylation of COS will increase its potential behavior in  

pharmaceutical applications. 

In this present study, we prepared five different molecular weight P-COS by using the 

H3PO4/P2O5/Et3PO4/hexanol solvent method and named them as S1, S2, S3, S4 and S5. Compared to 

the previously reported strategies for COS modification, this method has several advantages, including 

the mild experimental conditions with no need for purification. Moreover, the cytotoxicity and alkaline 
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phosphatase activity of these five P-COS were examined in human osteoblast-like MG63 cells. These 

results suggest that in the future, P-COS could open up a number of promising pharmaceutical and 

clinical applications to mankind.  

2. Experimental Section  

2.1. Materials 

Five different molecular weight of COS (<1 kDa, 1–3 kDa, 3–5 kDa, 5–10 kDa and >10 kDa) 

prepared from crab shells were purchased from Kitto Life Co. (Seoul, Korea). Hexanol, phosphorus 

pentoxide, phosphoric acid, tri ethyl phosphate, potassium bromide and MTT reagent were obtained 

from Sigma Chemical Co. (St. Louis, MO, USA). Dulbecco’s Modified Eagle’s Medium (DMEM), 

Trypsin-EDTA, penicillin/streptomycin, fetal bovine serum (FBS) and other materials required for 

culturing cells were purchased from Gibco BRL, Life Technologies (USA).  

2.2. Synthesis of P-COS 

Five kinds of P-COS were prepared, according to a previously reported method with slight 

modification [27]. 1.0 g of COS powders were mixed with 10 ml hexanol and a mixture of P2O5 (10 g), 

H3PO4 (5 mL), Et3PO4 (5 mL) was added to the COS solution. Then, the reaction mixture was stirred 

continuously for 72 h at 35 °C. After 72 h, an excess amount of methanol was poured into the reaction 

mixture. The brown color solid product was filtered and then washed with an excess amount of 

methanol. The products were dissolved with double distilled water and then freezed at −80 °C for 5 h 

and lyophilized. The dried products were kept in the desiccator for further analysis.  

2.3. Characterization 

For Thermo gravimetric-differential thermal analysis, COS and P-COS powders were uploaded into 

a Perkin-Elmer (USA) Pyris 1 TGA analyzer. Samples were scanned in a temperature range from 50 to 

700 °C at a constant rate of 10 °C min−1 with continuous nitrogen flow and DTA curves were obtained. 

The dried samples were mechanically blended with 100 mg of KBr. The mixture was compacted using 

an infrared spectroscopy hydraulic press at a pressure of 8 tons for 60 s. The spectra of samples in the 

form of KBr disks were obtained using a FT-IR spectrometer (Perkin Elmer spectrum GX, 

Beaconsfield Bucks, England) with frequency range 400 cm−1 to 4,000 cm−1. For X-ray diffraction 

analysis, the P-COS powders was analyzed through PHILIPS (Netherland), X’Pert-MPD 

diffractometer, at 30 kV and 25 mA, and Cu-Kα radiation (1.5405A°) range 5 to 80° angle at a rate of 

2 °C for 0.1°. The 13C and 31P NMR spectra of the P-COS were recorded in D2O on a JNM-ECP-400 

with a JEOL-Japan, 400 MHz spectrometer. Human osteoblast-like MG63 cells were obtained from 

the American Type Culture Collection (Manassas, VA). MG63 cells were grown as previously 

described [29]. In brief, cells were grown in 75 cm2 plastic tissue culture flasks (Falcon) in DMEM 

medium (Gibco) supplemented with 10% fetal bovine serum, 100 units/mL penicillin and 100 μg/mL 

streptomycin. Cells were maintained at 37 °C in a 95% air, 5% CO2 atmosphere. The culture media 

was changed three times a week. The cell viability of MG63 cells were assessed via  

3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The cells were plated at a 
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density of 1 × 104 cells/well in 96 well plates. On the following day, the cells were treated with 

different concentrations of P-COS and incubated for 24 h. The MTT assay relies primarily on 

mitochondrial metabolic capacity of viable cells and reflects the intracellular redox state. After 

incubation, cells were treated with the MTT (Sigma, USA) solution (final concentration, 1 mg/ml) for 

4 h. The medium was removed and 100 µL of DMSO was added to each well. The formazan dye 

crystals were solubilized for 15 min and relative cell viability were determined by measuring the 

absorbance at 570 nm using a GENios microplate reader (Tecan Austria GmbH, Austria). For 

estimation of ALPase activity, osteoblast-like cell were grown to confluence in 24 well plates with 

DMEM containing 5% FBS. The medium was replaced with osteogenic DMEM supplemented with 

phosphorylated chitooligosaccharides and cells were incubated for 12 h and 24 h. After the incubation, 

the cells were rinsed with PBS buffer, homogenized in 25 mM carbonate buffer (pH 10.3) containing 

0.1% Triton X-100. Next, the cellular activity was measured by incubating for 30 minutes at 37 C in 

250 mM carbonate buffer containing 1.5 mM MgCl2 and 15 mM para-Nitro Phenyl Phosphate  

(p-NPP). In the presence of ALP, p-NPP is transformed to p-nitro phenol and inorganic phosphate. The 

ALP activity of the P-COS was determined by measuring the absorbance at 405 nm in  

a spectrophotometer. 

3. Results and Discussion  

3.1. General description 

The color of the P-COS (<1 kDa—S1) sample was found to be pale yellow as compared to other 

molecular weight P-COS (1–3 kDa—S2, 3–5 kDa—S3, 5–10 kDa—S4, and >10 kDa—S5). As the 

molecular weight increases, the color of the product deepens as brownish yellow color. X-ray 

diffraction result reveals that P-COS and COS appeared as amorphous in nature.  

3.2. Solubility of P-COS 

Solubility is the most important factor in pharmaceutical drug development. Solubilities of P-COS 

are shown in Table 1. In this case, we have used 11 type of solvents, P-COS is easily soluble in water, 

hydrochloric acid, dilute acetic acid and sodium hydroxide. However, in the case of organic solvent the 

solubility of P-COS is limited. Based on its solubility in common solvents, we can confirm that P-COS 

is a promising candidate for pharmaceutical drug development. 

Table 1. Solubility of phosphorylated chitooligosaccharides (P-COS). 

Solvent Chitooligosaccharides P-Chitooligosaccharides 
H2O Soluble Soluble 
Acetic acid (1%) Soluble Soluble 
NaOH (1%) Soluble Soluble 
HCl (1%) Soluble Soluble 
Dimethyl sulfoxide Soluble Soluble 
Dimethyl acetamide Insoluble Insoluble 
Pyridine Swelling Swelling 
Dimethyl formamide Insoluble Insoluble 
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Table 1. Cont. 

Ethanol Insoluble Insoluble 
Acetone Insoluble Insoluble 
Chloroform Insoluble Insoluble 

 

3.3. Stretching frequency P-COS 

The spectra of unmodified COS and P-COS are shown in Figure 1. The spectrum of unmodified 

COS showed characteristic peaks of amide I at 1,620 cm−1 and amide II at 1,514 cm−1. The broad peak 

observed at 3200–3500 cm−1 is due to the overlapping of different vibrations corresponding to the OH 

and amine groups. The other peaks at 2,890 cm−1 and 1,380 cm−1 were assigned to CH stretching and 

CH3 symmetric deformations. The shoulder peaks was observed for P-COS at 1,218 cm−1, which can 

be attributed to the P=O asymmetric stretching from phosphates. This clearly confirmed that 

phosphorylation occured in the COS moiety. The hydroxyl group absorption in COS was not observed 

at 1,320 cm−1. This confirmed that phosphorylation occured at all the OH groups of COS [28,30]. 

Figure 1. FT-IR spectra of (a) Chitooligosaccharide (COS; red line) and  

(b) Phosphorylated chitooligosaccharide (P-COS; black line). 

 
 

There was no change in the absorption at 1,147 cm−1 which indicated that there is no decomposition 

in the pyranose ring of P-COS due to heating and acidic conditions.  

3.4. Thermal stability of P-COS 

The TG-DTA curves of COS and P-COS are shown in Figure 2. Here, no significant differences 

were found between COS and P-COS. The TGA curve of COS showed two different types of peaks at 

100 °C and 200 °C. The first weight loss attributed to loss of water molecule. The second stage weight 

loss observed at 200 °C might correspond to degradation of pyranose ring of COS. In the case of  
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P-COS, no weight loss was observed at 100 °C, but weight loss was observed at 200 °C, like for COS. 

P-COS loses weight around 80% then compared to unmodified COS (60%). This might corresponds to 

the removal of phosphorylated groups in P-COS. 

Figure 2. TG-DTA curve of (a) TG-chitooligosaccharide (b) TG-P-chitooligosaccharide 

(c) DTA-Chitooligosaccharide (d) TG-P chitooligosaccharide. 

 
 

3.5. 13C NMR spectra of P-chitooligosaccharide 

Figure 3(a and b) depicts the 13C NMR spectra of COS (3–5 kDa) and P-COS (3–5 kDa—S3), 

respectively. All the peaks are well separated and correspond to each carbon atom. No other additional 

peaks were observed corresponding to aldehydic and ketonic groups. This revealed that no 

decomposition occurred in pyranose ring. 98.4, 56.0, 70.8, 76.4, 74.8 and 60.2 ppm refers to the C1, 

C2, C3, C4, C5 and C6 positions of COS (3–5 kDa), respectively. Whereas, for P-COS the peaks were 

different from raw 3–5 kDa chitooligosaccharide. The chemical shift of the C6 position moves from 

60.2 to 60.4 ppm and for C-3 from 70.8 to 70.0, indicating the substitution of phosphate group. These 

results indicated that the phosphorylation reaction occurred in chitooligosaccharides. 
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Figure 3. 13C NMR spectra of (a) chitooligosaccharide (COS), and (b) phosphorylated 

chitooligosaccharide (P-COS). 

 
 

3.6. 31P NMR spectra of P-chitooligosaccharide 

31P NMR technique is a very good tool to confirm phosphorylated compounds. The 31P spectra of  

P-COS is shown in Figure 4. The different degrees of substitution and position of phosphorylation in 

COS could be easily identified from the chemical shift of 31P NMR spectra. Based on 31P NMR results, 

formation of the phosphate group on COS is considerable and the primary hydroxyl group is more 

reactive than the secondary hydroxyl groups. In addition, the appearance of a small peak around −0.5 

indicated that another kind of group in COS was also phosphorylated. According to Wang et al., if the 

degree of substitution is low we get a single peak, whereas, if the degree of substitution is more we get 

three peaks. This suggested that, the C6 position of hydroxyl group of COS is phosphorylated. Another 

two peaks at −10.8 and −2.7 might be due to phosphorylation at other positions like C2 and C3. The 

low intensity peak observed at −2.7 indicated that one kind of amino group is phosphorylated. 

Figure 4.. 31P NMR spectra of S3—POS. 
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3.7. Biocompatibility of P-COS in an osteosarcoma–cell line 

The biocompatibility of P-COS was tested against MG63 cells by MTT assay. The results are 

shown in Figure 5 and suggest that chemically modified COS has a potential role in growth of the 

MG63 cell line. No cytotoxicity was observed with different molecular weights of P-COS at the 

concentration of 100 µg/mL and 10 µg/mL. Moreover, with lower molecular weight P-COS, the cells 

proliferated more than with higher molecular weight P-COS; thus the phosphorylated group may 

induce cell proliferation.  

Figure 5. Cytotoxicity effects of the phosphorylated chitooligosaccharides in the MG63 

cell line. The error bar indicates the standard variation of three parallel experiments. 

 
 

3.8. ALP activity of phosphorylated chitooligosaccharides 

ALP activity measurement was carried out to analyze the effect of phosphorylated 

chitooligosaccharides on the osteoblast-like MG63 cell line. The measured ALP activity is shown in 

Figure 6 (low conc. 10 µg/mL, high conc. 100 µg/mL). ALP level was significantly increased in the 

presence of phosphorylated chitooligosaccharides compared to control. However, no significant 

difference was found between the presence of the different molecular weights phosphorylated 

chitooligosaccharides. At 12 h ALP activity of phosphorylated chitooligosaccharides, the absorbance 

at 405 nm was found to be around 0.28, whereas at 24 h, it was found to increase to twice its value at 

12 h (>0.45). 
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Figure 6. Alkaline phosphatase activities at 12 and 24 h after treatment of osteoblast-like 

MG63cells with different molecular weight phosphorylated chitooligosaccharides (low 

conc. 10 μg/mL, high conc. 100 μg/mL). The error bars indicate the standard variation of 

three parallel experiments. 

 
 

4. Conclusions 

In the present study, five different molecular weight P-COS were prepared by 

H3PO4/P2O5/Et3PO4/hexanol solvent system. 31P NMR results suggested that phosphorylation occurs at 

all the reactive positions of COS (at the C2 amino and OH groups at C3 and C6 positions). There is no 

decomposition in P-COS due to the heating and acidic condition, the pyranose ring is very stable and is 

confirmed by infrared spectroscopy. The results suggest that the P-COS lead to no cytotoxicity and an 

increase in the ALP activity on MG63 cell line. It is proposed that low molecular weight P-COS could 

be useful for various biomedical applications. 

Acknowledgements 

This research was supported by a grant from the Marine Bioprocess Research Center of the Marine 

Bio 21 Project funded by the Ministry of Land, Transport, and Maritime, Republic of Korea. 

References  

1. Jeon, Y.; Shahidi, F.; Kim, S. Preparation of chitin and chitosan oligomers and their applications 

in physiological functional foods. Food Rev. Int. 2000, 16, 159-176. 

2. Je, J.-Y.; Kim, S.K. Water-soluble chitosan derivatives as a BACE1 inhibitor. Bioorgan. Med. 

Chem. 2005, 13, 6551-6555. 

3. Kim, S.K.; Rajapakse, N. Enzymatic production and biological activities of chitosan 

oligosaccharides (COS): A review. Carbohyd. Polym. 2005, 62, 357-368. 

4. Venkatesan, J.; Kim, S.-K. Chitosan composites for bone tissue engineering—An overview.  

Mar. Drugs 2010, 8, 2252-2266. 



J. Funct. Biomater. 2010, 1              

      

 

12

5. Ravi Kumar, M.N.V. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 

1-27. 

6. Alves, N.M.; Mano, J.F. Chitosan derivatives obtained by chemical modifications for biomedical 

and environmental applications. Int. J. Biol. Macromol. 2008, 43, 401-414. 

7. Jeon, Y.-J.; Park, P.-J.; Kim, S.-K. Antimicrobial effect of chitooligosaccharides produced by 

bioreactor. Carbohyd. Polym. 2001, 44, 71-76. 

8. Turan, K.; Nagata, K. Chitosan-DNA nanoparticles: the effect of cell type and hydrolysis of 

chitosan on in vitro DNA transfection. Pharm. Dev. Technol. 2006, 11, 503-512. 

9. Prabaharan, M. Review paper: chitosan derivatives as promising materials for controlled drug 

delivery. J. Biomater. Appl. 2008, 23, 5-36. 

10. Jeon, Y.-J.; Kim, S.-K. Production of chitooligosaccharides using an ultrafiltration membrane 

reactor and their antibacterial activity. Carbohyd. Polym. 2000, 41, 133-141. 

11. Fernandes, J.C.; Tavaria, F.K.; Soares, J.C.; Ramos, Ó.S.; João Monteiro, M.; Pintado, M.E.; 

Xavier Malcata, F. Antimicrobial effects of chitosans and chitooligosaccharides, upon 

Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol. 2008, 25, 

922-928. 

12. Eaton, P.; Fernandes, J.C.; Pereira, E.; Pintado, M.E.; Xavier Malcata, F. Atomic force 

microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus 

aureus. Ultramicroscopy 2008, 108, 1128-1134. 

13. Fernandes, J.C.; Eaton, P.; Gomes, A.M.; Pintado, M.E.; Xavier Malcata, F. Study of the 

antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy 

imaging and nanoindentation. Ultramicroscopy 2009, 109, 854-860. 

14. Suzuki, K.; Mikami, T.; Okawa, Y.; Tokoro, A.; Suzuki, S.; Suzuki, M. Antitumor effect of hexa-

N-acetylchitohexaose and chitohexaose. Carbohyd. Res. 1986, 151, 403-408. 

15. Je, J.-Y.; Park, P.-J.; Kim, S.-K. Free radical scavenging properties of hetero-chitooligosaccharides 

using an ESR spectroscopy. Food Chem. Toxicol. 2004, 42, 381-387. 

16. Fernandes, J.C.; Eaton, P.; Nascimento, H.; Gião, M.S.; Ramos, Ó.S.; Belo, L.; Santos-Silva, A.; 

Pintado, M.E.; Malcata, F.X. Antioxidant activity of chitooligosaccharides upon two biological 

systems: Erythrocytes and bacteriophages. Carbohyd. Polym. 2010, 79, 1101-1106. 

17. Rajapakse, N.; Kim, M.-M.; Mendis, E.; Huang, R.; Kim, S.-K. Carboxylated 

chitooligosaccharides (CCOS) inhibit MMP-9 expression in human fibrosarcoma cells via  

down-regulation of AP-1. BBA—Gen. Subjects 2006, 1760, 1780-1788. 

18. Kim, M.-M.; Kim, S.-K. Chitooligosaccharides inhibit activation and expression of matrix 

metalloproteinase-2 in human dermal fibroblasts. FEBS Lett. 2006, 580, 2661-2666. 

19. Van Ta, Q.; Kim, M.-M.; Kim, S.-K. Inhibitory Effect of Chitooligosaccharides on Matrix 

Metalloproteinase-9 in Human Fibrosarcoma Cells (HT1080). Mar. Biotech. 2006, 8, 593-599. 

20. Liu, B.; Liu, W.; Han, B.; Sun, Y. Antidiabetic effects of chitooligosaccharides on pancreatic islet 

cells in streptozotocin-induced diabetic rats. World J. Gastroenterol. 2007, 13, 725. 

21. Artan, M.; Karadeniz, F.; Karagozlu, M.Z.; Kim, M.-M.; Kim, S.-K. Anti-HIV-1 activity of low 

molecular weight sulfated chitooligosaccharides. Carbohyd. Res. 2010, 345, 656-662. 

22. Yang, E.-J.; Kim, J.-G.; Kim, J.-Y.; Kim, S.; Lee, N.; Hyun, C.-G. Anti-inflammatory effect of 

chitosan oligosaccharides in RAW 264.7 cells. Cent. Eur. J. Biol. 2010, 5, 95-102. 



J. Funct. Biomater. 2010, 1              

      

 

13

23. Liu, D.; Hsieh, J.; Fan, X.; Yang, J.; Chung, T. Synthesis, characterization and drug delivery 

behaviors of new PCP polymeric micelles. Carbohyd. Polym. 2007, 68, 544-554. 

24. Huang, R.; Mendis, E.; Kim, S.-K. Improvement of ACE inhibitory activity of chitooligosaccharides 

(COS) by carboxyl modification. Bioorgan. Med. Chem. 2005, 13, 3649-3655. 

25. Kim, S.K.; Park, P.-J.; Jung, W.-K.; Byun, H.G.; Mendis, E.; Cho, Y.-I. Inhibitory activity of 

phosphorylated chitooligosaccharides on the formation of calcium phosphate. Carbohyd. Polym. 

2005, 60, 483-487. 

26. Muraki, E. Chitooligosaccharide derivative. U.S. Patent 6,197,942, 2001. 

27. Jayakumar, R.; Nagahama, H.; Furuike, T.; Tamura, H. Synthesis of phosphorylated chitosan by 

novel method and its characterization. Int. J. Biol. Macromol. 2008, 42, 335-339. 

28. Amaral, I.F.; Granja, P.L.; Barbosa, M.A. Chemical modification of chitosan by phosphorylation: 

an XPS, FT-IR and SEM study. J. Biomater. Sci.–Polym. Ed. 2005, 16, 1575-1593. 

29. Venkatesan, J.; Qian, Z.-J.; Ryu, B.; Ashok Kumar, N.; Kim, S.-K. Preparation and 

characterization of carbon nanotube-grafted-chitosan - Natural hydroxyapatite composite for bone 

tissue engineering. Carbohyd. Polym. 2010, doi:10.1016/j.carbpol.2010.08.019. 

30. Wang, X.; Ma, J.; Wang, Y.; He, B. Structural characterization of phosphorylated chitosan and 

their applications as effective additives of calcium phosphate cements. Biomaterials 2001, 22, 

2247-2255. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


