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Supplementary Figure 1. Cross-sectional scatterplots for cognitive raw scores (top), 

bilateral cortical volume (middle), and bilateral fractional anisotropy (bottom). Solid 

lines represent linear and polynomial fit while shades indicate 95% confidence intervals. 

Abbreviations: matrix reasoning (MR), peabody picture vocabulary test (Pea), Spelling 

(Spell), single word reading (Read), numerical operations (NO), digit recall (DR), 

backward digit recall (BDR), Mr. X (MrX), dot matrix (Dot), following instructions (Ins), 

caudal anterior cingulate (CAC), caudal middle frontal gyrus (CMF), medial orbital 

frontal cortex (MOF), rostral anterior cingulate gyrus (RAC), rostral middle frontal 

gyrus (RMF), superior frontal gyrus (SFG), superior temporal gyrus (STG), 

supramarginal gyrus (SMG), frontal pole (FP), transverse temporal gyrus (TTG), 

anterior thalamic radiations (ATR), corticospinal tract (CST), cingulate gyrus (CING), 

cingulum [hippocampus] (CINGh), inferior fronto-occipital fasciculus (IFOF), inferior 

longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), uncinate fasciculus 

(UNC), forceps major (FMaj), and forceps minor (FMin). 



Edge-weight Stability Analyses 

 To further quantify the reliability of our partial correlation network edge-weights, we 

performed bootstraps (N = 2,000) and compared the bootstrapped mean values to the original sample 

estimates (Supplementary Figures 2-4). We do not show the bootstraps for the multilayer networks due 

to the size of the plots but they (and all code for this project) can be found online (https://osf.io/36d2n/). 

Bootstrapped edge-weight means were consistently near the original sample value with the most 

variable being the white matter network (Supplementary Figure 4) and the multilayer networks (not 

shown). The low edge-weight stability in these networks could possibly due to lower sample sizes of 

neural data (especially in the white matter network, N = 165, although centrality strength was 

moderately stable, CS-coefficient = 0.44), including when structural brain and cognitive data were 

combined. This, in turn, could have influenced the low stability estimates of the bridge centrality values 

in the multilayer networks.    

 

https://osf.io/36d2n/


 

 

 

  

 

 

 

Supplementary Figure 2. Comparisons between bootstrapped means and original sample edge-

weight estimates for the CALM cognitive partial correlation network.   



 

 

 

 

 

 

 

Supplementary Figure 3. Comparisons between bootstrapped means and original sample edge-

weight estimates for the CALM grey matter partial correlation network.   



 

 

 

 

 

 

 

 

Supplementary Figure 4. Comparisons between bootstrapped means and original sample edge-

weight estimates for the CALM white matter partial correlation network.   



The Possible Effect of Outliers on Major Findings 

In a previous version of this manuscript, we observed that two FA values (1 for the uncinate 

fasciculus, 1 for the forceps major), which represent potential outliers with undue influence on the 

partitioning of the Walktrap algorithm in the single-layer white matter network. Removing this data 

yielded a distinct, and more parsimonious clustering solution (2 communities vs. 5). Moreover, 

removing this outlier did not affect any summary statistics for the white matter partial correlation 

(single-layer) network except for range. Nevertheless, below we present the Pearson correlations 

between the weights obtained from the original data presented in the main manuscript and those from 

the data after all outliers (defined as ± 4 standard deviations) are removed (Supplementary Table 1). 

Due to the vast similarity in descriptive statistics and high correlations between partial correlation 

weights, we conclude that outliers did not confound the results of this study. However, it must be noted 

that outliers might slightly affect community detection, but we chose to keep the original data due to 

the nature of our sample (struggling learners, therefore behavioral and neural data might be atypical 

to begin with) and given the fact that the neural data was already quality controlled. Furthermore, the 

two outlier white matter ROIs occurred in two separate participants (1 outlier each) while the rest of 

their ROIs were consistent with the rest of the sample. In close, we argue that outliers (both cognitive 

and neural) are likely not due to measurement error but instead represent realistic values of an 

atypically developing sample.    

 

 

 

 

 

 

 

https://www.biorxiv.org/content/10.1101/2020.11.15.383869v1


Network Type Original Data Outliers Removed Pearson Correlation 

Cognitive 

0.08 (0.11) 

[0, 0.63] 

0.08 (0.11) 

[0, 0.61] 

0.99 

Grey Matter 

0.09 (0.14) 

[-0.15, 0.52] 

0.09 (0.14) 

[-0.15, 0.52] 

1 

White Matter 

0.08 (0.11) 

[0, 0.44] 

0.08 (0.13) 

[-0.14, 0.47] 

0.93 

Cognitive-grey matter 

0.04 (0.1) 

[-0.12, 0.64] 

0.03 (0.09) 

[-0.11, 0.62] 

0.97 

Cognitive-white matter 

0.04 (0.1) 

[-0.2, 0.65] 

0.04 (0.1) 

[-0.22, 0.65] 

0.97 

Tri-layer 

0.02 (0.08) 

[-0.2, 0.66] 

0.02 (0.08) 

[-0.19, 0.65] 

0.98 

  

 

 

 

 

 

 

 

 

 

Supplementary Table 1. Comparisons between partial correlation (PC) networks (original data 

vs. outliers removed). These include summary statistics such as mean, (standard deviation), 

[range], and Pearson correlations between PC graph weights using pairwise complete 

observations to account for missingness.   

 



How to deal with age? 

As in previous literature, in the CALM sample age shows a clear positive association with 

intelligence measures and brain structure (Supplementary Figure 1). This fact, however, may further 

complicate any interpretations of (possible) causal interactions between cognitive and/or neural nodes. 

This is due to the multitude of reasons age might correlate with cognition and brain structure. For 

instance, this pattern could be due to the fact that older participants normally score higher on cognitive 

tasks and have greater brain maturation. In this case age functions as an underlying driver of (even 

greater) covariance between the two domains. There are at least two options (included in the original 

preprint) of how to deal with the relationship of age to cognitive ability, and grey and white matter 

structural covariance: 1) We could estimate the partial correlation network and include age as a node, 

therefore, choosing to estimate it simultaneously with the cognitive and neural variables (this is the 

option we chose for the non-Supplemental part of the analyses), or 2) We could regress out the 

association of age for each variable (age would show no correlation with cognitive and/or neural 

measures) before network estimation. Both approaches are related and have corresponding pros and 

cons. For example, these two options might enable the detection of correlations beyond age, possibility 

revealing core relations among variables independent of stereotypical neurocognitive development (e.g., 

older participants normally score higher on cognitive tasks and have larger brains as they mature). 

However, this might also remove developmental associations of interest (e.g., age may function as a 

moderator of cognitive and neural growth as in the above example).  

Notably, a third possible option, which addresses this limitation, is to estimate the network 

ignoring age (i.e., removing it from dataset before estimation). Specifically, choosing not to include age as 

a node has the benefit of revealing the ‘actual correlations’ (i.e., those dependent on neurocognitive 

development in childhood and adolescence) among cognitive abilities and brain structure in the 

population, as the ‘effects’ of age are not controlled for before (regressed out) or during (age node 

associations with other nodes removed during calculation of partial correlations) network estimation. 

However, a drawback to this approach is that doing so could also amplify these associations, 

confounding the findings. 

Here we compare the partial correlations matrices for the three analysis paths (i.e., age node 

used in network estimation vs. age node regressed out before estimation; and age node used in network 

estimation vs. age node removed from dataset prior to network estimation) for both single and 

multilayer networks (Supplementary Tables 2 and 3). This analysis demonstrates that, regardless of 

how age is accounted for in estimation, the partial correlation networks are very similar to each other. 

 



Network Type 
Age Included in 

Estimation 

Age Regressed Out before 

Estimation 
Pearson Correlation 

Cognitive  0.08 (0.11) 

[0, 0.63] 

0.08 (0.12) 

[0, 0.65] 

0.98 

Grey Matter 0.09 (0.14) 

[-0.15, 0.52] 

0.09 (0.14) 

[-0.15, 0.52] 

1(rounded from 0.999) 

White Matter 0.08 (0.11) 

[0, 0.44] 

0.08 (0.13) 

[-0.2, 0.49] 

0.93 

Cognitive-grey matter 0.04 (0.10) 

[-0.12, 0.64] 

0.03 (0.10) 

[-0.14, 0.65] 

0.94 

Cognitive-white matter 0.04 (0.10) 

[-0.20, 0.65] 

0.03 (0.10) 

[-0.24, 0.66] 

0.94 

Tri-layer 0.02 (0.08) 

[-0.20, 0.66] 

0.02 (0.07) 

[0, 0.64] 

0.88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 2. Comparisons between partial correlation networks (age included in 

estimation vs. age regressed out before estimation). These include summary statistics such as 

mean, (standard deviation), [range], and Pearson correlations between PC graph weights using 

pairwise complete observations to account for missingness.   

 



 

Network Type 
Age Included in 

Estimation 

Age Removed from Dataset 

before Estimation 
Pearson Correlation 

Cognitive  0.08 (0.11) 

[0, 0.63] 

0.09 (0.12) 

[0, 0.68] 

0.99 

Grey Matter 0.09 (0.14) 

[-0.15, 0.52] 

0.09 (0.14) 

[-0.16, 0.52] 

0.99 

White Matter 0.08 (0.11) 

[0, 0.44] 

0.09 (0.13) 

[-0.19, 0.46] 

0.90 

Cognitive-grey matter 0.04 (0.10) 

[-0.12, 0.64] 

0.04 (0.10) 

[-0.11, 0.66] 

0.97 

Cognitive-white matter 0.04 (0.10) 

[-0.20, 0.65] 

0.04 (0.10) 

[-0.21, 0.69] 

0.97 

Tri-layer 0.02 (0.08) 

[-0.20, 0.66] 

0.02 (0.08) 

[-0.16, 0.67] 

0.94 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 3. Comparisons between partial correlation networks (age included in 

estimation vs. age node removed from dataset prior to network estimation). These include 

summary statistics such as mean, (standard deviation), [range], and Pearson correlations 

between PC graph weights using pairwise complete observations to account for missingness.   

 



Teasing Apart the Relations of Cortical Volume to General Intelligence: Multilayer Analysis Using 

Cortical Surface Area and Thickness 

 Lastly, we partitioned cortical volume into its constituent parts, cortical surface area and 

thickness, to compare their partial correlations and community structures when combined with white 

matter and general intelligence (Supplementary Figures 5 and 6). This produced bilayer networks that 

were much less connected between domains (brain vs. behavior) than the cognition-volume bilayer 

network in Figure 4 (top left). Finally, bridge strength showed the same pattern as in the main 

manuscript, except for the surface area tri-layer network, where neural regions (both grey and white) 

appear to dominate the bridge strength centrality (Supplementary Figure 6), rather than cognition 

(Figure 5, bottom). 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 5. Top: Network visualizations (spring layout) of partial correlation CALM bi-

layer grey matter (surface area (left) and cortical thickness (right)) networks. Nodes are grouped 

according to Walktrap algorithm results. Bottom: Bridge centrality estimates (z-scores) for CALM bi-

layer grey matter (surface area (left) and cortical thickness (right)) networks. Dashed lines indicate 

mean strength and one standard deviation above the mean. 

 



 

Supplementary Figure 6. Top: Network visualizations (spring layout) of partial correlation CALM tri-

layer grey matter (surface area (left) and cortical thickness (right)) networks. Nodes are grouped 

according to Walktrap algorithm results. Bottom: Bridge centrality estimates (z-scores) for CALM tri-

layer grey matter (surface area (left) and cortical thickness (right)) networks. Dashed lines indicate 

mean strength and one standard deviation above the mean. 

 


