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Abstract: Raven’s Standard Progressive Matrices (Raven 1941) is a widely used 60-item long measure
of general mental ability. It was recently suggested that, for situations where taking this test is too time
consuming, a shorter version, comprised of only the last series of the Standard Progressive Matrices
(Myszkowski and Storme 2018) could be used, while preserving satisfactory psychometric properties
(Garcia-Garzon et al. 2019; Myszkowski and Storme 2018). In this study, I argue, however, that some
psychometric properties have been left aside by previous investigations. As part of this special issue
on the reinvestigation of Myszkowski and Storme’s dataset, I propose to use the non-parametric Item
Response Theory framework of Mokken Scale Analysis (Mokken 1971, 1997) and its current developments
(Sijtsma and van der Ark 2017) to shed new light on the SPM-LS. Extending previous findings, this
investigation indicated that the SPM-LS had satisfactory scalability (H = 0.469), local independence
and reliability (MS = 0.841, LCRC = 0.874). Further, all item response functions were monotonically
increasing, and there was overall evidence for invariant item ordering (Hr = 0.475), supporting the
Double Monotonicity Model (Mokken 1997). Item 1, however, appeared problematic in most analyses.
I discuss the implications of these results, notably regarding whether to discard item 1, whether the
SPM-LS sum scores can confidently be used to order persons, and whether the invariant item ordering of
the SPM-LS allows to use a stopping rule to further shorten test administration.

Keywords: Mokken scale analysis; non-parametric item response theory; psychometrics; invariant item
ordering

1. Introduction

The general factor of intelligence (g) is central in the prediction of several outcomes, such as job
performance (Ree and Earles 1992; Salgado et al. 2003) and academic achievement (Rohde and Thompson 2007).
Its accurate measurement is therefore crucial in multiple contexts, including personnel selection, vocational
guidance or academic research in individual differences. However, because of practical constraints, it is desirable
in many contexts to reduce test length as much as possible, while maintaining acceptable accuracy.

Raven’s Standard Progressive Matrices (SPM) (Raven 1941) and Advanced Progressive Matrices
(APM) (Raven et al. 1962) are widely used—though also criticized (Gignac 2015)—instruments
to measure g. However, both these tests remain rather long in untimed conditions, with some
participants sometimes taking more than 40 min to respond them (Hamel and Schmittmann 2006).
Several solutions have been proposed to further reduce test administration time, such as constraining
time (Hamel and Schmittmann 2006) and using short versions (Bors and Stokes 1998).

While these solutions have focused on the APM (Hamel and Schmittmann 2006; Bors and Stokes 1998;
Myszkowski and Storme 2018) have recently suggested that the last series of the SPM—the SPM-LS—could
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be a more efficient solution, with only 12 items, while maintaining the progressive aspect characteristic
of Raven’s matrices, along with satisfactory psychometric properties. However, the original study
(Myszkowski and Storme 2018)—which I propose to extend—has studied the SPM-LS with parametric Item
Response Theory (IRT) models, and is largely focused on recovering information from distractor responses
using nested logit models (Suh and Bolt 2010; Storme et al. 2019), therefore putting aside important
aspects of the test—such as the monotonicity of item responses and invariant item ordering, which I
later further discuss. I propose here to bridge these gaps using the framework of Mokken Scale Analysis
(MSA) (Mokken 1971, 1982, 1997), a well developed non-parametric item-response theory framework that
is particularly appropriate to address them (Sijtsma and van der Ark 2017).

1.1. The SPM-LS

While the SPM is heavily studied, the SPM-LS is very recent, and thus has not been the
object of many investigations. Currently, it has only been studied in its original investigation
(Myszkowski and Storme 2018)—which used binary and nominal IRT models—and as part of
this special issue through a further investigation of its dimensionality (Garcia-Garzon et al. 2019).
Investigations of the SPM-LS indicated that IRT models could satisfactorily fit test responses
(Buirkner 2020; Myszkowski and Storme 2018), and that the test seemed to present adequate
reliability /information for abilities ranging from about 2 standard deviations below the mean—or
3 if recovering information from distractors—to 1.5 to 2 standard deviations above the mean
(Myszkowski and Storme 2018), in a sample of undergraduate students, suggesting that it could be more
appropriate in terms of difficulty for the general population than for post-secondary students. In addition,
Garcia-Garzon et al. (2019) notably studied in this special issue the dimensionality of the SPM-LS using a
variety of methods—Exploratory Graph Analysis (EGA), bifactor Exploratory Factor Analysis (EFA) and
Confirmatory Factor Analysis (CFA). Overall, the psychometric qualities of the SPM-LS so far appeared
satisfactory for use by researchers and practitioners, but some characteristics have not been studied,
for which Mokken Scale Analysis is a particularly appropriate framework.

1.2. Mokken Scale Analysis

Since its inception (Mokken 1971), Mokken Scale Analysis has been the object of several
methodological developments, notably discussing how to evaluate the properties of instruments evaluated
with MSA (Van der Ark 2012), best practices in MSA (Sijtsma and van der Ark 2017) and the active
development of a package (Van der Ark 2007) for the statistical programming language R. While it is largely
and more thoroughly described elsewhere (Mokken and Lewis 1982; Mokken 1997; Van der Ark 2007;
Sijtsma and van der Ark 2017; Sijtsma 1998), I could briefly describe Mokken Scale Analysis (MSA)
(Mokken and Lewis 1982; Mokken 1997) as a non-parametric IRT framework, which, for dichotomous
responses, represents the probability of succeeding an item j as a function of an person i’s latent ability—¥;.
Unlike the Rasch model (Rasch 1993) and, more broadly, unlike binary logistic and normal ogive
models—which are said to be parametric IRT models (Mokken and Lewis 1982)—MSA does not represent
the relation between latent ability and item responses using item parameters, but using an item-response
function only defined as monotonically increasing (Mokken and Lewis 1982).

1.3. The Benefits of Mokken Scale Analysis

Because they do not require response functions to have a specific shape, Mokken’s models are less
constrained than (notably) Rasch models (Meijer et al. 1990), which implies that some items that are
not well fitted by Rasch models may still be scalable with MSA, because their response function may
be monotonic without necessarily having a logistic/normal ogive shape. While MSA does not allow
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certain applications otherwise permitted by Rasch modeling, like test equating or computer adaptive
testing, (Meijer et al. 1990, p. 297) note that, “for many testing applications, it often suffices to know the
order of persons on an attribute”. Therefore, Mokken scaling is attractive for the reason that it focuses
mainly on a test’s capacity to order persons, while allowing for more items to fulfill its requirements
than Rasch models do allow. In the context of the SPM-LS, this is particularly interesting, especially
as Myszkowski and Storme (2018) had to use highly parametrized models to achieve an acceptable fit,
with 3- and 4-parameter models fitting much better than notably the Rasch 1-parameter model—in
this special issue, Biirkner (2020) makes a similar conclusion using Bayesian IRT. Instead of increasing
the number of parameters to better fit item responses—and risking overfitting and thus compromising
reproducibility—Mokken scaling proposes to retain fewer (but fundamental) uses of a test: Ordering
persons (for both MSA models) and items (for the Double Monotonicity model only).

1.3.1. The Monotone Homogeneity and Double Monotonicity Models

For dichotomous items, Mokken (1997) defined two item-response models: The Monotone
Homogeneity Model (MHM) and the Double Monotonicity Model (DMM). Both the Monotone
Homogeneity Model and the Double Monotonicity Model assume the monotonicity of item response
functions. However, the two models differ in that only the Double Monotonicity Model assumes that item
response functions do not intersect—an assumption usually referred to as invariant item ordering.

Before focusing on these two assumptions central to MSA, as well as their consequences in the context
of the SPM-LS, it is important to note that both models also assume unidimensionality, meaning that
they both assume that the same latent attribute 6; explains the items scores—therefore also assuming
local independence (Sijtsma et al. 2011). While MSA offers procedures (also used in this study) to
investigate this assumption, they would probably not justify a new study, because the dimensionality
of the SPM-LS has been, on this very dataset, investigated with a plethora of psychometric methods
(Myszkowski and Storme 2018; Garcia-Garzon et al. 2019). I will therefore mainly focus here on the
incremental value of using Mokken Scale Analysis in addition to these previously used approaches.

1.3.2. Monotonicity of Item Response Functions

An important feature of MSA is that it allows to study monotonicity, where parametric Item-Response
Theory and traditional (linear) factor analysis models generally leave this assumption untested. Indeed,
although parametric item response models for binary responses are (in general) monotonous, a misfitting
item does not necessarily indicate that the item response is non-monotonic (Meijer et al. 1990). Therefore,
because it has only been studied with parametric response models, the monotonicity of the SPM-LS has
remained untested so far. This characteristic is manifested, in pass-fail (binary) tests like the SPM-LS,
by item response functions that are monotonically increasing. This means that the probability to succeed on
an item monotonically increases with the examinee’s ability. In contrast with parametric IRT, the framework
of Mokken Scale Analysis offers methods to investigate this property and specifically identify its violations
(Van der Ark 2007). I therefore propose, in the present study, to use this framework to bridge that gap in
the study of the test.

As a consequence, this study is therefore the first to study the monotonicity of the SPM-LS, which,
as previously noted (Van der Ark 2007), is not only relevant to Mokken scaling, but also relevant to any
model that formulates this assumption, such as parametric Item-Response Theory models and traditional
factor analysis. It is an essential psychometric property of a test, because it is the property that implies that
higher scores imply higher abilities (for all items, at any ability level), and thus that scores can be used to
infer person ordering (Van der Ark 2007).
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1.3.3. Invariant Item Ordering

While both the Monotone Homogeneity Model and the Double Monotonicity Model assume
unidimensionality and monotonicity of the response functions, only the Double Monotonicity Model
assumes that the ordering of the items (based on their difficulty) is the same for all examinees
(Mokken 1997; Sijtsma and van der Ark 2017; Sijtsma et al. 2011). In other words, this property, referred
to as Invariant Item Ordering (IIO), assumes that, for any given item pair, the easier item has a higher
probability of being succeeded than the more difficult one at any ability level. This manifests itself
graphically by the item response functions of the two items not intersecting.

As was previously noted (Sijtsma et al. 2011; Sijtsma and van der Ark 2017), this property is an important
feature of a test, as it “greatly facilitates the interpretation of test scores” (Sijtsma and van der Ark 2017, p. 143),
and is “both omnipresent and implicit in the application of many tests, questionnaires, and inventories”
(Ligtvoet et al. 2010, p. 593). Indeed, a stronger IIO implies that two persons with the same total score are
more likely to have succeeded the same items, and that an examinee with a higher total score than another
examinee is more likely to have answered correctly the same items, and one or several more difficult items.
Therefore, invariant item ordering lends more meaning to person comparisons based on total scores.

In addition, IO is especially relevant for the SPM-LS, because its items substantially vary in difficulty
and are presented by increasing difficulty. A stronger IIO implies that, if an examinee fails an item, there is
an increased probability that the examinee will fail the next (more difficult) one. Therefore, a stronger IIO
would suggest that we can envision stopping the test administration after one or several items have been
failed (Sijtsma and Meijer 1992). This would presents practical advantages, notably for shortening test
administration.

2. Materials and Methods

2.1. Participants

Per the topic of this special issue, I re-analyzed the publicly available dataset from Myszkowski
and Storme (2018) study. The original study presented various parametric IRT analyses performed on
a dataset comprised of 499 students (214 males and 285 females) aged between 19 and 24. Because I
directly reanalysed this dataset, I point to the original article for more details on data collection and
sample characteristics.

One thing to note that is specific to this paper is that the sample size is both similar to the one used
in Sijtsma and van des Ark’s tutorial on Mokken scale analysis (Sijtsma and van der Ark 2017) and,
more importantly, in accordance with the sample size recommendations provided by Straat et al. (2014).
They show (p. 817) that a sample size of around 500 is largely sufficient for an accurate analysis with
scalability coefficients H; of 0.42 (or higher)—in the results, I present scalability coefficients, and show that
the scalability of the scale meets that requirement.

2.2. Instrument

The Last Series of the Standard Progressive Matrices, or SPM-LS (Myszkowski and Storme 2018),
was built from the original Standard Progressive Matrices (Raven 1941), a very popular and extensively
researched test of non-verbal logical reasoning, which is also frequently used as a brief measure of
g, the general factor of intelligence. As its name indicates, it consists of the last—and thus most
difficult—series of the original SPM, but used as a standalone test (without examinees taking previously
the other series). It is composed of 12 items of theoretically increasing difficulty. Each item consists of an
incomplete 3-by-3 matrix, with the last element of the matrix being missing. The examinee is to identify,
among eight options—seven distractors and one correct response—the missing matrix element.
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Research shows that g is far from being extensively, nor purely captured by the SPM (Gignac 2015;
Carpenter et al. 1990), and this is certainly even more true of SPM-LS, since it is a shortened version.
Nevertheless, the SPM, and a fortiori the SPM-LS, present the advantage of being short measures,
with overall satisfactory reliability. In particular, the SPM-LS, in its original investigation on this dataset
(Myszkowski and Storme 2018), presented encouraging evidence of reliability, with observed reliabilities
based on IRT modeling that ranged from 0.78 to 0.84 depending on the IRT model used, and a Cronbach’s
« of 0.92.

As unidimensionality is an assumption of Mokken Scale Analysis (Van der Ark 2007), it is also
important to note that the SPM-LS investigations indicated that the test is essentially unidimensional, with a
McDonald’s coefficient wy, of 0.86 (Myszkowski and Storme 2018) and satisfactory fit of unidimensional
models (Myszkowski and Storme 2018). Garcia-Garzon et al. (2019) explorations also supported
unidimensionality, in spite of a nuisance factor specific to the last six items.

2.3. Analysis

Because Sijtsma and van der Ark’s tutorial on Mokken scale analysis (Sijtsma and van der Ark 2017)
presents the advantages of presenting the current state of the art of Mokken scale analysis and of laying
out clearly the different steps to take in order to perform a Mokken scale analysis, I followed the different
steps provided in the tutorial. All analyses were computed using the same team’s regularly updated and
comprehensive R package mokken (Van der Ark 2007, 2012; Sijtsma et al. 2011) (version 2.8.11).

A reason for the popularity of Mokken scaling is the availability of an automatic procedure to select a
set (or several sets) of scalable items, a procedure generally referred to as the Automated Item Selection
Procedure (AISP), which aims at maximizing scalability. In addition, Straat et al. (2016) also recently
suggested a item selection procedure which aims to maximize local independence. Likewise, a stepwise
selection procedure aiming at maximizing invariant item ordering has been proposed (Ligtvoet et al. 2010).
Still, it was decided here that the primary objective of the present study would be to investigate the
SPM-LS as an a priori scale, meaning that the main objective was to investigate its qualities using Mokken
Scale Analysis, not to carve a revised instrument out of it. This decision was motivated by the fact that the
SPM-LS is already a very short measure (12 items), and also because, in the SPM-LS, the very process of
solving items is—at least theoretically—used to help the examinee learn the rule(s) used in subsequent
items (Myszkowski and Storme 2018). Therefore, even if an item were to present poor qualities (e.g., weak
scalability), it might still be useful as a training for the other items, and thus it may still be preferable or
conservative to keep it.

2.3.1. Data Preparation

The dataset analyzed did not present any missing data nor impossible responses.
Sijtsma and van der Ark (2017) recommend, as a preliminary step to Mokken Scale Analysis, to filter
out cases whose responses are dubious, and they suggest doing so using the count of Guttman errors.
I proceeded to count the number of Guttman errors G4 per case, computed with the package function
check.errors () of the mokken package. There were a total of 2021 Guttman errors, indicating that the
items did not constitute a Guttman scale.

As Sijtsma and van der Ark (2017) suggested, I identified as dubious cases—and consequently
removed—the cases for which G indices were beyond the upper Tukey fence of the distribution of G
indices. This corresponded to cases with more than 15 Guttman errors, and resulted in the elimination
of 14 cases (1.17% cases) with suspicious item-score patterns. The frequency histogram of G indices,
with the Tukey fence, is presented in Figure 1.
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Figure 1. Histogram of the count of Guttman errors (G ), with Tukey fence (3rd quartile 4+-1.5 x IQR) used
as a threshold for outlier detection.

2.3.2. Scalability

As recommended by Sijtsma and van der Ark (2017), I investigated the scalability of the complete
SPM-LS by computing Hjx (scalability coefficients for item pairs), H; (scalability coefficients for items) and
H (total scalability coefficient of the scale). I used the rules of thumb originally proposed by Mokken (1997)
and currently suggested by Sijtsma and van der Ark (2017), which are H < 0.3 for insufficient scalability,
0.3 < H < 0.4 for weak scalability, 0.4 < H < 0.5 for medium scalability and H > 5 for strong scalability.
Since the Monotone Homogeneity Model implies that Hj, and H; are all positive (and ideally as close
to 1 as possible), I searched for negative values (or values close to 0) as violations of the monotonicity
(Sijtsma and van der Ark 2017).

2.3.3. Local Independence

Local independence is an assumption of both the monotone homogeneity model and the double
monotonicity item. Local independence implies that item scores are independent for a given ability
level 6. As suggested in Sijtsma and van der Ark (2017)’s tutorial, I used the procedure proposed by
Straat et al. (2016) to study local dependencies in the SPM-LS. They suggest the computation of three
series of indices: Wj, W, and W3. While the computation of these indices is further explained in the
original article, we can note that high W, W, and Wj3 values indicate local dependencies. High W; values
indicate that an item pair is likely positively locally dependent. An item with a high Wj is likely to be
positively locally dependent with another item. High W3 indicate that an item pair is likely negatively
locally dependent. Again here, and as Straat et al. (2016) suggested, a Tukey fence was used to detect
problematic items.
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2.3.4. Monotonicity

As recommended by Sijtsma and van der Ark (2017), I studied monotonicity by plotting item
response functions, using a non-parametric regression of each item scores on “rest scores” (the total scores
on the other items) (Junker and Sijtsma 2000). Following the defaults of the check.monotonicity()
function of the mokken package (Van der Ark 2007), the rest scores were grouped using a minimum
size of N/5 (meaning groups of 100 cases at least). The identified violations were then significance
tested (Van der Ark 2007; Molenaar and Sijtsma 2000).

As an alternative to testing monotonicity violations, it has been been recently proposed that
positive evidence for monotonicity can be gathered through Bayes factors (Tijmstra et al. 2015;
Tijmstra and Bolsinova 2019). Based on a suggestion by a reviewer that I use this procedure, I contacted
the first author of these papers, who provided code to implement it. The procedure is discussed in
more details in the original paper (Tijmstra et al. 2015), but, in short, it consists in evaluating the relative
amount of support from the data for (strict) manifest monotonicity—denoted hypothesis Hyy—against
the competing hypothesis that there is at least one manifest non-monotonicity—denoted hypothesis
Hyp—and against the competing hypothesis of essential monotonicity—denoted HEy;, defined as a form
of monotonicity that allows for non-monotonicities between adjacent manifest scores. Bayes Factors
BFpm Ny and BFyy em were estimated through Gibbs sampling, and used to indicate support for Hyp
in contrast with Hyp and Hgy respectively. Values above 1 indicate more support for Hyp than for the
competing hypothesis. 20,000 iterations were used as burn-in and discarded, and 100,000 iterations were
subsequently used to estimate the Bayes Factors—which is more conservative than initially suggested
(Tijmstra et al. 2015).

2.3.5. Invariant Item Ordering

Even though Invariant Item Ordering (IIO) is only an assumption of the Double Monotonicity Model
for binary items (Mokken 1997)—not of the the Monotone Homogeneity Model—I studied IIO because
of its benefits for score interpretability and the possibility to stop the examination after failed items.
As Sijtsma and van der Ark (2017) suggested, overall IIO was assessed with the coefficient Hr. Like for
the H scalability coefficients, and as suggested by Ligtvoet et al. (2010), I used thresholds of Hr < 0.3 for
insufficient IO (Sijtsma and Meijer 1992), 0.3 < Hr < 0.4 for weak 11O, 0.4 < Ht < 0.5 for medium 11O
and Ht > 5 for strong I1O. I also graphically compared the item response functions of pairs of items that
significantly intersect.

2.3.6. Reliability

Cronbach’s « and empirical reliability from parametric IRT models have been previously reported and
discussed as satisfactory in the same dataset (Myszkowski and Storme 2018). Here, to investigate reliability,
as recommended in the context of MSA (Sijtsma and van der Ark 2017), I used the Molenaar-Sijtsma
(MS) reliability estimate (Sijtsma and Molenaar 1987), which assumes the Double Monotonicity Model.
In addition, I reported the Latent Class Reliability Coefficient (LCRC) (van der Ark et al. 2011), which is
more robust to violations of the Double Monotonicity Model.

3. Results

3.1. Scalability

The SPM-LS had medium scalability, with an H coefficient of 0.469 (SE = 0.021). The scalability of
the item pairs Hj is reported in Table 1, along with the scalability of the items H;. All item pairs and
item scalability coefficients were positive, giving support to the monotone homogeneity model. However,
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it can be noted that the first item had a substantially lower scalability (H ; = 0.265) than the other items (H;
ranging from 0.401 to 0.602), and that the total scalability would be strong (H = 0.516) without this item.

Table 1. Scalability coefficients of the item pairs (H;k) and items (H;).

Index Item 1 2 3 4 5 6 7 8 9 10 11 12
Hy 1

2 0616

3 0331 0535

4 0248 0613 0286

5 0294 0493 0421 0772

6 0272 0511 0509 0520 0675

7 0122 0544 0295 0471 0575 0.362

8 0263 0647 0442 0636 0701 0547 0429

9 0095 0393 0460 0441 0481 0416 0427 0378

10 0327 0709 0799 0938 0921 0743 0526 0449 0.403

11 0399 0664 0569 0822 0774 0677 0595 0506 0522 0467

12 0267 0717 0253 0839 0847 0576 0613 0602 0462 0400 0.449

H:

i 0265 0568 0426 0545 0.602 0499 0422 0476 0401 0529 0.536 0.500

3.2. Local Independence

The W;, W, and W3 indices for local dependencies detection are presented in Table 2. While W,
indices did not suggest that any item were likely in a positive locally dependent pair, W; indices identified
3 positive local dependencies, between Item 4 and 11, 5 and 11, and 5 and 12. W3 indices suggested a
negative local dependency between item 1 and 9.

3.3. Monotonicity

The item response functions of all items are presented in Figure 2. Only one violation of monotonicity
was observed, for item 3—the response function of this item can be seen as slightly decreasing between
rest scores 8-9 and 10-11. This violation was, however, non significant.

The Bayes Factors used to compare the relative support for monotonicity against non-monotonicity
and essential monotonicity are reported in Table 3. Overall, monotonicity was supported for all items
against its complement—although the support was much weaker for the last two items—with Bayes
Factors ranging from 1.64 to 818,417.9. The data tended to support (strict) monotonicity against essential
monotonicity, with, however, limited support, and with the exception of 12, which had a Bayes Factor
slightly smaller than 1.
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Figure 2. Item response functions of the last series of the Standard Progressive Matrices (SPM-LS) items
(with 95% confidence intervals).
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Table 2. W, W, and W3 indices of the SPM-LS (flagged values in bold face).

Index Item 1 2 3 4 5 6 7 8 9 10 11 12
W 1 3044 3621 3842 3852 4714 2897 3963 1857 295 1955  1.556
2 0.508 1865 3742 3196 1908 1497 2806 0661 1932 0349 0309
3 1.073  2.381 2512 3065 2503 1324 2432 1449 3655 0909  0.634
4 0036 2128 0503 3039 1018 0468 1772 0095 2959 0019  0.162
5 0072 1844 0430 3299 1.043 0591 2739 0181 2915  0.021  0.037
6 0352 1996 0389 1668  2.098 0392 1237 0159 2578  0.101  0.704
7 0766 2287 1529 2730 3621  1.666 1523 0779 2265 0282 0310
8 0136 1450 0445 2325 2537 0721 0775 0502 0605 0045  1.769
9 0483 3996 2731 3375 3486 2376 2507 3225 2176 1241 0873
10 0077 3838 1735 3742 3316 1245 0893 0317 0326 0448  0.107
11 0425 5611 1779 8765 8429 2972 1813 0854 1451  0.994 0.274
12 1137 5129 1017 5455  7.380 3288 2525 2370 2441 2234  2.089
W, 49281 38952 42.890 30910 27.740 39.323 44227 33246 44265 28471 35393  33.611
Ws 1
2 3.116
3 3487  2.708
4 4338 3408 5276
5 3826 3321 3457 0297
6 4534 5199 1561 2944  2.022
7 6683 3861 5579 2820 1616  5.398
8 3869 3653 4941 2959 2919 3122 2187
9 7181 5033 3288 4118 4116 5143 4575 1376
10 4405 3469 2120 0990  1.626 2111  3.628 3555  2.584
11 3540 2756 4269 2037 2424 3074 508 3468  3.870  1.604
12 4303 2428 6204 1723 2116 4215 2797 1198 2982 2378 3267

Table 3. Bayes Factor for the relative support of monotonicity against its complement (BFysp,npm) and
against essential monotonicity (BFyp1,Em)-

Item BFMM,NM BFMM,EM

1 825.15 1.44
2 34,666.90 3.49
3 57,682.66 3.89
4 871,824.00 8.26
5 89,668.37 4.20
6 95.22 1.15
7 9594.47 4.13
8 818,417.90 6.40
9 12.08 2.58
10 50,455.13 3.80
11 1.98 4.31
12 1.64 0.81

3.4. Invariant Item Ordering

The observed invariant item ordering was medium but close to strong, with a Hr coefficient of 0.475,
overall supporting 11O, and therefore, in combination with the previous analyses, supporting the Double
Monotonicity Model. Only 3 significant violations of IIO were observed, involving item 1 with items 4,
6 and 7. The item response functions for item pairs with significant intersections are presented in Figure 3.
Because all three violations involved item 1, I computed Ht again without it, and found that the IIO would
in this case be strong (Hr = 0.520).

For Figure 3, the plotting function of the mokken package was modified in order for all rest score groups on the x-axis to be
consistent. In addition, it can be noted that the three plots involve item 1, but that its item response function appears slightly
different in the three plots. The reason for this is that the rest score is computed in each plot using all items but the two items
involved in the comparison. Since the item pair is different in each plot, the rest score group is therefore different, leading to
slightly different response functions for the same item.
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Figure 3. Item response functions (with 95% confidence intervals) of significantly intersecting item pairs.
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3.5. Reliability

The MS reliability estimate was 0.836, and the LCRC reliability estimate was 0.876, both indicating, like
previously found using other estimates (Myszkowski and Storme 2018), that the SPM-LS had satisfactory
reliability. The item-rest correlations ranged between 0.285 and 0.563, item 1 having a notably lower

item-rest correlation that the other items. However, the reliability indices were similar without this item
(MS = 0.841, LCRC = 0.874).

4. Discussion

While the SPM-LS has already been investigated using a variety of methods in this very
dataset—including parametric IRT, Bayesian IRT, factor analysis, and exploratory graph analysis
(Myszkowski and Storme 2018; Garcia-Garzon et al. 2019; Biirkner 2020)—the current study proposes the
first investigation of this instrument using non-parametric IRT, and more specifically Mokken Scale
Analysis (Mokken 1971; Mokken and Lewis 1982). This framework allowed to study several psychometric
properties, permitting to both confirm the previous encouraging results on the SPM-LS—on dimensionality,
local independence and reliability—and to investigate new properties—monotonicity and invariant
item ordering.

4.1. Conclusions on the SPM-LS

Overall, the SPM-LS showed robust psychometric qualities in this study. More specifically,
it was found to have satisfactory monotonicity, scalability, local independence (with only a few local
dependencies), invariant item ordering (with only a few significant violations) and reliability. This is an
overall satisfactory set of results, which would lead us to encourage the use of this instrument.

The main new elements regarding the investigation of this scale were the support for
monotonicity—the item response functions were overall monotonically increasing—and invariant item
ordering—the item response functions overall did not intersect, giving, along with unidimensionality
and local independence, support for the Double Monotonicity Model. The fact that this model was
overall supported is interesting, as it presents several advantages for the use of the SPM-LS in practice
(Ligtvoet et al. 2010).  First, the monotonicity of item responses suggests that, even though Rasch
l-parameter (and to a lesser extent, 2-parameter) models did not fit well this dataset (Myszkowski
and Storme 2018; Biirkner 2020), there is support for the SPM-LS sum scores being able to order persons
based on their ability. In addition, it is very clear that each series of Raven’s matrices were originally
conceptualized as having a cumulative structure, with examinees responding items gradually increasing
in difficulty by the stacking of logical rules to decipher and apply: Empirical support for invariant item
ordering supports such a hypothetical functioning of the test. Test editors and practitioners generally
assume, that, because an item A has a higher success rate than another item B, then item A is necessarily
easier than B for all examinees, and they often use a test as though this assumption were true, without
empirically testing it (Ligtvoet et al. 2010): The current study provides evidence that it is empirically
justified to make such interpretations from the SPM-LS.

It was notable, through this investigation, that the issues encountered tended to involve item 1. More
specifically, item 1 was the item with the smallest scalability (based on H; coefficients), the only one with
an outlying negative local dependency (based on W3 coefficients), was involved in all three significant
violations of invariant item ordering, and had the lowest item-rest correlation. While it appears tempting
to remove this item, I would recommend to at least maintain it as a training item (meaning, having
participants take it but not necessarily including it in the scoring). This is because (1) the presence of this
item is still probably important for the examinees to learn the base rule used throughout the series, and
(2) the plots suggest that this items’ response function is still monotonous, and its intersections with the
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item response functions of items 4, 6 and 7 appear somewhat minimal, as the confidence intervals overlap
for most ability levels. The current study suggests that practitioners and/or future researchers using the
SPM-LS use the full instrument, even though they may question and study their own dataset to decide on
whether to use item 1 in the scoring or not.

4.2. Limitations

While this investigation presents satisfactory findings regarding the psychometric qualities of the
SPM-LS, the different indices observed were not perfect, and notably, the scalability of the scale was only
medium (Mokken 1997; Sijtsma and van der Ark 2017), suggesting that the instrument can further be
improved. I noted earlier that it would be categorized as strong if item 1 were excluded from the scoring
but, albeit strong, it would be still just above the strong threshold. In addition, excluding item 1 from
scoring remains a post-hoc suggestion, made after seeing each items’ scalability. It would therefore call for
further investigations using a new sample.

Mokken Scale Analysis investigates aspects of psychometric instruments that are different from more
usual sets of analyses (notably of the factor analytic or Rasch tradition)—especially the investigation
of monotonicity and invariant item ordering—but this study also suffers from some limitations of this
specific framework. For example, it does not provide a way to study or recover information from
distractor responses like other approaches—such as nested logit models (Suh and Bolt 2010), the nominal
response model (Bock 1997) or the multiple-choice model (Thissen and Steinberg 1984)—which are an
important aspect of this specific test (Myszkowski and Storme 2018). Related to this, MSA certainly allows
to graphically study item responses, but, because it is non-parametric, it does not produce item parameters
that can be interpreted. This is a limiting factor in this context, because previous results (Myszkowski
and Storme 2018; Biirkner 2020) suggest that phenomena like guessing—which is unaccounted for in
MSA, apart from potentially appearing in item response functions—are relevant for this test. Another
limitation of MSA is that it does not provide a way to investigate conditional reliability, and therefore
does not allow to, for example, diagnose if an instrument provides reliable ability estimates across a wide
range of ability levels. This is particularly a problem in the case of the SPM-LS, because the fact that it
only includes one series of the original SPM implies that the range of abilities that are reliably measured
may be limited (Myszkowski and Storme 2018). Finally, other advanced uses of Rasch modeling, such as
computer-adaptive testing and test equating, are also impossible with Mokken scaling (Meijer et al. 1990).

4.3. Future Directions

Support for the Double Monotonicity Model, because of invariant item ordering, indicates that, for an
item A of lower difficulty than an item B, an examinee who fails item A is predicted to also fail item B
(and all items that are more difficult). Thus, if one orders items from the easiest to the most difficult, as is
done with the SPM-LS, then it is conceivable to have examinees stop the test after a number of failures.
This is because they are likely to then fail all future items. As a supplementary analysis, in this dataset,
I computed the correlations between the full scores of examinees (using all item scores) and the scores they
would have received, had they been stopped after a number of consecutive failures. I found that stopping
the test after only one failure provided scores that were strongly (but far from perfectly) correlated with
full scores— r(483) = 0.735, p < 0.001—while stopping the test after two consecutive items failed would
preserve scores nearly perfectly—r(483) = 0.999, p < 0.001. Based on this, I would suggest that stopping
the administration after 2 consecutively failed items could lead to gains of administration time without
any substantial loss of information about an examinee’s ability. I recommend that future studies further
examine this possibility, though the present study already gives quite a strong support for such a use.



J. Intell. 2020, 8, 22 14 of 15

Finally, while the psychometric investigation of an instrument can take many shapes, the current
study demonstrates how Mokken Scale Analysis can provide insightful information about an instrument,
even when that instrument has already been studied in the same dataset with multiple popular and
less popular methods (Myszkowski and Storme 2018; Biirkner 2020; Garcia-Garzon et al. 2019.) Besides
replicating the present study in other samples and in other conditions—which is certainly called for—I
suggest that future studies investigate the SPM-LS using other non-parametric IRT models—for example,
spline IRT models (Winsberg et al. 1984)—to better understand its functioning.
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