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Abstract: Bi-factor confirmatory factor models have been influential in research on
cognitive abilities because they often better fit the data than correlated factors and
higher-order models. They also instantiate a perspective that differs from that offered by
other models. Motivated by previous work that hypothesized an inherent statistical bias of fit
indices favoring the bi-factor model, we compared the fit of correlated factors, higher-order,
and bi-factor models via Monte Carlo methods. When data were sampled from a true
bi-factor structure, each of the approximate fit indices was more likely than not to identify
the bi-factor solution as the best fitting. When samples were selected from a true multiple
correlated factors structure, approximate fit indices were more likely overall to identify the
correlated factors solution as the best fitting. In contrast, when samples were generated from
a true higher-order structure, approximate fit indices tended to identify the bi-factor solution
as best fitting. There was extensive overlap of fit values across the models regardless of true
structure. Although one model may fit a given dataset best relative to the other models, each
of the models tended to fit the data well in absolute terms. Given this variability, models
must also be judged on substantive and conceptual grounds.
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1. Introduction

The bi-factor method of exploratory factor analysis (EFA) that was introduced by Holzinger and
Swineford [1] allows for identification of a general factor through all measured variables and several
orthogonal group factors through sets of two or more measured variables. As explained by Holzinger
and Swineford [1] (p. 42), the general and group factors are uncorrelated “for economical measurement,
simplicity, and parsimony”. Although offering interpretable solutions, bi-factor methods received less
attention than multiple factor and higher-order factor models over the subsequent decades [2—5] and were
not broadly applied in influential investigations of individual differences [6—12].

Limitations of EFA methods and advances in theory and computer technology led to the ascendency
of confirmatory factor analytic (CFA) methods that allow for testing hypotheses about the number of
factors and the pattern of loadings [13,14]. Many CFA analyses have specified multiple correlated factors
or higher-order models [15-23]. Uniquely, Gustafsson and Balke [24] applied what they termed a nested
factor model, which was identical to the bi-factor model of Holzinger and Swineford [1]. Subsequently,
the bi-factor model has been recommended by Reise [25] for CFA and successfully employed in the
measurement of a variety of constructs, such as cognitive ability [22], health outcomes [26], quality of
life [27], psychiatric distress [28], early academic skills [29], personality [30], psychopathology [31],
and emotional risk [32].

Bi-factor models have been especially influential in research on human cognitive abilities because they
frequently better fit the data than other models [22] and because they instantiate a perspective that differs
from that offered by other models [33]. As illustrated in the top panel of Figure 1, a multiple correlated
factors model does not include a general factor whereas both higher-order and bi-factor models include a
general factor. As portrayed in the middle panel of Figure 1, the general factor in a higher-order model is
fully mediated by the lower-order factors. Thus, the general factor operates through the lower-order
factors and only indirectly influences the measured variables. In contrast, the general factor in the
bi-factor model (bottom panel) directly influences each measured variable independent of the influence
exerted by the lower-order factors. The higher-order model is more constrained than the bi-factor
model and is, therefore, mathematically nested within the bi-factor model [34]. As nested models, fit
comparisons via x? difference tests are possible. Other fit indices, such as Akaike information criterion
(AIC) and Bayesian information criterion (BIC) can also be used to compare the relative fit of the models,
regardless of whether the models are nested or not.

An additional discussion of the relationship between these models is warranted. As stated previously,
the bi-factor model and the second-order model are mathematically related. When proportionality
constraints are imposed on the higher-order structure using the Schid-Leiman transformation, the
bi-factor and higher-order structures are mathematically nested [27]. Yung et al. [34] demonstrated
using a generalized Schmid-Leiman transformation that the unrestricted higher-order (i.e., items load
directly onto first- and second-order factors) and bi-factor models are mathematically equivalent. The



J. Intell. 2015, 3 4

correlated factors model does not impose a measurement model on the first-order factors [25] in that it
does not specify a higher-order structure that explains the relationships between the first-order factors.
Thus, the correlated factors model can be derived from a bi-factor model by constraining the general

factor loadings to zero and relaxing the orthogonality constraint on the first-order factors [25].
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Figure 1. Multiple correlated factor (top panel), higher-order (middle panel), and bi-factor
(bottom panel) models.

The bi-factor model has shown superior fit to models with first-order factors only [35]; however,
this was shown using item-level data rather than subscale-level data, which may be more relevant for

intelligence test scores. Furthermore, the bi-factor model may be preferred when researchers hypothesize
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that specific factors account for unique influence of the specific domains over and above the general
factor [27].

Murray and Johnson [36] recently questioned the propriety of statistical comparisons between
bi-factor and higher-order models, suggesting that correlated residuals and cross-loadings (i.e.,
misspecifications) may inherently bias such comparisons of fit indices in favor of the bi-factor model.
They hypothesized that the bi-factor model parameters better absorb misspecification than higher-order
parameters. To test their hypothesis, Murray and Johnson [36] simulated three data sets of 500 subjects
each with an underlying three-factor first-order structure based on parameters similar to those from
a set of 21 cognitive tests. The first data set was without misspecification, the second included 6
correlated residuals at 0.1 and 3 cross-loadings at 0.2, and the third included 4 correlated residuals at
0.2, 6 correlated residuals at 0.1, and 6 cross-loadings at 0.2. Results showed that the bi-factor model
exhibited superior fit to the data of the two simulation samples that contained misspecifications even
though the true underlying structure was higher-order. In contrast, the comparative fit index (CFI), root
mean square error of approximation (RMSEA), and standardized root mean square residual (SRMS)
indices for bi-factor and higher-order models were identical for the sample without misspecifications.
From these results, (Murray and Johnson [36] p. 420) concluded that “the bi-factor model fits better, but
not necessarily because it is a better description of ability structure”.

However, Murray and Johnson [36] included a small number of parameters in their simulations
and they did not generate “true” bi-factor or multiple correlated factors structure. Additionally, they
only generated one data set for each set of parameters. As a consequence, there is no way to
evaluate the influence of sampling error on their results. When using Monte Carlo methods, multiple
iterations allow researchers to generate an empirical sampling distribution, which allows them to assess
the average of random fluctuation (i.e., error). Motivated by the Murray and Johnson [36] study,
we compared various fit indices for the bi-factor, higher-order, and correlated factors models when the
underlying “true” structure was known to be one of the three models. Unlike Murray and Johnson [36],
misspecification (i.e., correlated residuals and cross-loadings) beyond what the factor structure was able
to account for was not included in our study because the additional model complexity would detract
from our focus on fit index comparisons for true bi-factor, correlated factor, and higher-order factor
models. Multiple correlated residuals and cross-loadings would indicate that the tested structure was
insufficient for reproducing the observed covariance matrix. In that situation it would be reasonable to
expect that a more general model would produce better statistical fit because the original model was
already questionable [37]. We varied parameters for each factor structure using subscale scores, and
we generated 1000 replications of each set of parameters in a comparison of multiple correlated factors,
higher-order, and bi-factor models.

2. Method

2.1. Data Generation

To determine whether the bi-factor model tends to result in the best model fit when compared with
higher-order and correlated factors models, we generated and fitted a series of bi-factor, higher-order,
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and multiple factor models using Mplus (version 7.1, [38]) . In Monte Carlo simulation studies such
as this one, it is important for the simulated data to be representative of data that applied researchers
are likely to encounter [39] because the findings are generalizable to the extent that the simulated
parameters are representative of real-world conditions. Researchers using Monte Carlo methods cannot
reasonably include all empirical conditions so the choice of population parameters must be carefully
made. Therefore, to provide representation of a subset of applied conditions involving cognitive abilities,
we based the generating population parameters on the standardized solutions from published, applied
studies [16,40—42]. That is, we took the the reported parameters directly from these studies. In
generating each model, we first specified the true parameters in the population models. Second, we
selected 1000 random samples from each population, which allows for sampling error to be taken into
account. Each random sample is subject to random error so generating too few replications may not

provide the desired level of sampling error.
2.1.1. Study Conditions

The primary conditions of interest in this study were the true population CFA model and the fitted
CFA model. That is, we generated and fitted every combination of the three CFA models (i.e., bi-factor,
higher-order, multiple correlated factors). We included these models due to their prevalence in the extant
literature and nested relationship between the models. For example, for each data set we generated from,
say, a population with a true underlying bi-factor model, we fitted a bi-factor, higher-order, and correlated
factors CFA model to determine which one(s) fit best. We repeated this for every data set with a true
underlying higher-order CFA model and true underlying multiple correlated factors model. All models
were estimated using maximum likelihood with a maximum of 10,000 iterations, which is 10 times more
than the default in Mplus.

For each of the true and fitted CFA model combinations, all models contained four first-order factors,
but we varied the sample size and number of indicators per factor. Two sample sizes (N =200, 800) were
used that mirror applied CFA conditions. The number of indicators per factor for two conditions was also
varied to mirror common applied conditions in which cognitive measures, such as the Wechsler scales,
are used. The first set of models contained two factors with three indicators each (i.e., just-identified) and
two factors with two indicators (i.e., under-identified) each, and the second set of models contained four
factors with three indicators on each factor. To estimate the models that contained two under-identified
factors, the loadings on these factors were constrained to be equal. Figure 2 shows the parameters
used for data generation for the first and second set of models. In total, our study employed a fully
crossed design with 36 cells (3 true models x 3 fitted models x 2 sample sizes x 2 factor identification
conditions = 36 cells). All data were sampled from the standard normal distribution. Although this
may be considered a limitation, we chose to use the normal distribution because this was an initial

investigation of model fit comparisons. As stated previously, 1000 replications were run for each cell.
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Figure 2. Population models from which random samples were drawn. Solid lines indicate
paths that were estimated for all models. Dashed lines indicate paths that were estimated only
in the conditions with all four factors being locally just-identified. (a) Correlated Factors
Model; (b) Higher-Order Model; (¢) Bi-factor Model.
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2.2. Evaluation of Results

Given the high power and large number of comparisons, statistical tests of chi-square differences were
eschewed [43,44]. To determine which of three measurement models fit each data set best, we recorded
four approximate model fit indices and three information criteria that make different assumptions and
measure fit in different ways [45,46]. First, the comparative fit index (CFI) and the Tucker-Lewis index
(TLI) because they reflect the improvement in fit relative to a baseline model. Second, the standardized
root mean square residual (SRMR) and root mean square error of approximation (RMSEA) because they
measure absolute fit of the data to the model. Finally, the Akaike information criterion (AIC), Bayesian
information criterion (BIC), and sample size-adjusted BIC (aBIC) because they quantify information
loss and allow comparison of nonnested models.

The CFI, TLI, RMSEA, AIC, BIC, and aBIC each include a penalty for model complexity, which
will result in penalizing the multiple correlated factors model more than the higher-order model because
the correlated factors model is less parsimonious (i.e., requires more parameters to be estimated) than
the higher-order model. Similarly, these indices penalize the bi-factor model more than the multiple
correlated factors model because the bi-factor model is less parsimonious than the correlated factors
model. The SRMR does not penalize the models for complexity so it compares models in absolute
terms. We expect that as model complexity increases (i.e., more indicators per factor), the performance
of fit indices that include a penalty for model complexity will deteriorate.

Models that did not converge were excluded from the analysis given that they do not provide useful
information [47]. The outcome variable in our study was whether or not the fitted model that matched
the population model was among the best fitting solutions. For example, for a data set that was generated
from a true multiple correlated factors model, we examined the fit of bi-factor, higher-order, and multiple
correlated factors models to see if the correlated factors model fit the data best. This process allowed us

to assess whether or not the bi-factor model fit best regardless of the true underlying structure.
Model Selection Criteria

The model with the highest CFI and TLI estimates and lowest RMSEA, SRMR, AIC, BIC, and aBIC
values was flagged as the best fitting model. For models that fit equally well in a given data set, we
flagged all models that produced the best fit. In other words, when fit statistics were equally high (i.e.,
CFI, TLI) or low (i.e., RMSEA, SRMR, information criteria) between competing models, all models
were selected. We should also note that selecting all models or selecting one model among a set of
good-fitting models is not generally advised in practice. When all competing models fit well, model
selection should be made on substantive grounds. Given that Monte Carlo methods are being used in
this investigation, we instead focus only on model fit.
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3. Results

3.1. Convergence

Across all cells of the design, convergence was not problematic in that 98.9% of the solutions
converged; however, all solutions that failed to converge were bi-factor solutions. Of the 405 solutions
that did not converge, 374 were from data sets with 200 cases, and 31 were from data sets with 800 cases.
Thus, sample size might be related to non-convergence of bi-factor models.

3.2. Models with Two Locally Just- and Two Locally Under-Identified Factors

We first compared the fit of competing models when two of the four factors each had only two
indicators and the other two factors each had three indicators. The mean value of each approximate
fit index across all conditions is presented in Table 1. When the true underlying model was a bi-factor
model, these indices tended to show that the bi-factor model fit better than the higher-order or correlated
factors models. The percentage of solutions selected by each index for each cell of the study design is
presented in Table 2. Each index identified the bi-factor among the best fitting models more than 89% of
the time with sample sizes of 200 and 100% of the time with sample sizes of 800. When only one of the
three solutions was identified as the best fitting, each index tended to select the bi-factor solution over
the higher-order or correlated factors models in at least 85% of the 200-case samples and 100% of the
800-case samples. The percentage of solutions selected by each index when only one model fit best for
each cell of the study design is presented in Table 3. Table 4 shows the percentage of solutions identified
by each of the information criteria. In samples of 200, both AIC and aBIC identified the bi-factor model
as best fitting slightly more than half the time, and in samples of 800, AIC and aBIC identified the
bi-factor model as best fitting in 90% of the samples or higher. BIC imposes a harsher penalty for model
complexity than AIC or aBIC so it identified the higher-order solution as best fitting more frequently
than the true bi-factor although to a lesser extent with sample of 800 than 200.

When the true underlying model was the multiple correlated factors model, the fit indices tended to
show that the correlated factors model fit better than the higher-order or bi-factor models. The CFI, TLI,
and RMSEA identified the correlated factors model among the best fitting at least 86% of the time with
sample sizes of 200 and 99% of the time with sample sizes of 800. Overall, the SRMR identified the
correlated factors model among the best fitting 73% of the time, but it was impacted by sample size. In
sample sizes of 200, SRMR identified the bi-factor and/or correlated factors solutions among the best
fitting 56% and 51% of the time, respectively. However, in sample sizes of 800, SRMR identified the
bi-factor and/or correlated factors solutions among the best fitting 12% and 92% of the time, respectively.
When only one of the three solutions was identified as the best fitting, CFI, TLI, and RMSEA tended to
select the correlated factors solution at least 92% of the time over the higher-order or bi-factor models.
Among the information criteria, all three identified the correlated factor model as best fitting in at least
81% of the samples of size 200 and 99% of the samples of size 800.
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Table 1. Mean values for each approximate fit index for each cell of the study design.

Indicators Sample T Fitted Model
F:gtl;)r Sizl; MEI&ZI Bi-Factor Correlated Factors Higher-Order

CFI TLI RMSEA SRMR CFI TLI RMSEA SRMR CFI TLI RMSEA SRMR

Bi 0.997 1.000 0.015 0.021 0.990 0986  0.040 0.038 0982 0975  0.055 0.127

200 CF 0991 0988  0.027 0.033 0.995 0.999 0.016 0.016 0974 0964  0.049 0.089

3:1; H-O 0.997 0.991 0.016 0.029 0.994 0994  0.023 0.035 0991 0988  0.031 0.063
2:1 Bi 0.999 1.000 0.008 0.010 0991 0986  0.042 0.031 0983 0976  0.057 0.123
800 CF 0994 0990  0.026 0.021 0.999 1.000 0.007 0.016 0975 0965  0.052 0.064

H-O 0.999 1.000  0.007 0.014 0.997 0996  0.018 0.022 0.993 0990 0.032 0.055

Bi 0.997 0999 0.014 0.022 0.994 0993  0.025 0.028 0.985 0980  0.045 0.011
200 CF 0.990 0988  0.025 0.036 0.995 0999 0.014 0.034 0975 0968  0.042 0.090
H-O 0997 0999  0.014 0.031 0996 0999 0.014 0.033 0.992 0991  0.024 0.063
Bi 0.999 1.000 0.007 0.011 0.996 0994  0.026 0.018 0.986 0.981 0.047 0.108
800 CF 0.993 0989  0.025 0.024 0.999 1.000 0.007 0.017 0976 0970  0.047 0.083
H-O 0.999 1.000  0.007 0.015 0.999 1.000  0.006 0.016 0.994 0992  0.026 0.052

3:1

Note: Bi = Bi-factor model; CF = multiple correlated factors model; H-O = Higher-order model; CFI = comparative fit index;
TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; SRMR = standardized root mean residual; Bold

font is used to indicate the fit values when the fitted model matched the true model.
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Table 2. Percentage of solutions selected by each approximate fit index for each cell of the study design (rounded to nearest

whole number).

Indicators Fitted Model

Per Sasr.nple hr/l;l(;l(llzl Bi-Factor Correlated Factors Higher-Order
Factor e CFI TLI RMSEA SRMR CFI TLI RMSEA SRMR CFI TLI RMSEA SRMR
Bi 94 91 89 99 14 14 13 1 36 37 35 2
200 CF 42 38 37 56 86 87 86 51 43 42 41 7
3:1; H-O 72 67 67 70 70 71 79 37 65 66 65 6
2:1 Bi 100 100 100 100 0 0 0 0 4 4 2 0
800 CF 9 7 6 12 99 99 99 92 8 8 7 3
H-0 80 71 65 76 79 79 71 36 79 77 67 9
Bi 91 86 85 97 33 33 30 6 30 33 31 0
200 CF 38 35 34 38 89 90 90 71 33 35 33 0
- H-O 72 66 64 71 66 65 62 36 68 71 68 0
Bi 100 100 100 100 3 2 1 0 3 2 0
800 CF 4 4 3 2 99 100 99 99 5 4 3 0
H-O 83 73 66 77 83 79 66 36 80 82 72 0

Note: It was possible for more than one model to fit equally well. Bi = Bi-factor model; CF = Multiple correlated factors
model; H-O = Higher-order model; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of
approximation; SRMR = standardized root mean residual; Bold font is used to indicate the fit values when the fitted model matched

the true model.
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Table 3. Percentage of solutions selected by each approximate fit index when only one model fit best for each cell of the study design

(rounded to nearest whole number).

Indicators Fitted Model
Per Sal.np le True Bi-Factor Correlated Factors Higher-Order
Factor Size Model
CFI TLI RMSEA SRMR CFI TLI RMSEA SRMR CFI TLI RMSEA SRMR
Bi 91 87 85 929 2 3 4 1 6 10 11 0
(654)  (665) (702) (947)
200 CF 13 11 11 50 79 80 79 50 8 9 9 0
(501)  (512) (533) (737)
H-O 46 37 37 67 37 40 39 32 18 23 24 1
3:1; 401) (415 (443) (885)
2:1 Bi 100 100 100 100 0 0 0 0 0 0 0 0
(958)  (964) (981) (1000)
800 CF 1 1 1 7 99 99 929 94 0 0 0 0
(895)  (907) (920) (925)
H-O 45 35 34 70 36 42 39 30 19 23 27 0
(229) (273) (429) (814)
Bi 90 85 83 97 7 8 9 3 3 7 8 0
(678)  (686) (717) (957)
200 CF 14 10 11 32 84 85 85 68 2 4 4 0
(531)  (538) (552) (751)
H-O 54 43 40 69 24 24 25 31 22 32 35 0
31 (389) (412) 475) (930)
Bi 100) 100 100 100 0 0 0 0 0 0 0 0
968) (973) (988) (1000)
200 CF 1 0 1 1 99 100 929 99 0 0 0 0
(928)  (931) (942) (976)
H-O 62 48 40 73 26 26 25 27 12 26 34 0
(195) (227) (409) (874)

Note: Bi = Bi-factor model; CF = Multiple correlated factors model; H-O = Higher-order model; CFI = comparative
fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; SRMR = standardized root
mean residual; Bold font is used to indicate the fit values when the fitted model matched the true model. Numbers in

parentheses indicate the number of iterations (out of 1000) for which only one model fit best within each cell.
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Table 4. Percentage of solutions selected by each information criterion (rounded to nearest

whole number).

Indicators Sample  True Fitted Model

FiIl):tl;)l‘ Size  Model Bi-Factor Correlated Factors Higher-Order
AIC BIC aBIC AIC BIC aBIC AIC BIC aBIC
Bi 55 4 51 7 12 7 38 84 41
200 CF 2 0 2 81 83 81 16 17 16
3:1; H-O 9 0 8 48 50 48 43 50 44
21 Bi 99 45 90 0 0 0 155 10
800 CF 0 0 0 29 99 929 1 1 1
H-O 7 0 50 52 52 44 48 48
Bi 39 0 34 9 1 8 51 99 58
200 CF 0 1 74 24 72 25 76 27
31 H-O 5 0 4 14 0 12 81 100 84
Bi 98 9 77 1 0 1 1 91 22
800 CF 0 0 0 100 90 99 0 10 1
H-O 4 0 0 14 0 4 82 100 97

Note. Bi = Bi-factor model; CF = Multiple correlated factors model; H-O = Higher-order model;
AIC = Akaike information criterion; BIC = Bayesian information criterion; aBIC = sample
size-adjusted BIC; Bold font is used to indicate the fit values when the fitted model matched the

true model.

When the true underlying model was the higher-order model, the fit indices did not show the same
tendencies of preferring the true underlying model. The CFI identified the bi-factor solution most
often (76%), TLI identified the correlated factors solution most often (75%), RMSEA identified the
higher-order solution most often (66%), and SRMR identified the bi-factor solution most often (73%)
among the best fitting models. The performance of the fit indices is more easily interpreted when
considering the datasets for which only one solution was identified as best because the percentages
must sum to 100% within rounding error (see Table 3). Across all cells of the design with two
under-/two just-identified factors, CFI identified the bi-factor solution most frequently (45%) followed
by the correlated factors solution (37%) and higher-order solution (18%). For TLI, the correlated factors
solution was identified most frequently (41%) followed by the bi-factor solution (36%) and higher-order
solution (23%). For RMSEA, the correlated factors solution was identified most frequently (39%)
followed by the bi-factor solution (35%) and higher-order solution (25%). For SRMR, the bi-factor
solution was identified most frequently (68%) followed by the correlated factors solution (31%) and
higher-order solution (0%). The fit index performance under the true higher-order conditions were not
as heavily impacted by sample size as for the other true models. The identification of best fitting models
by the information criteria was fairly evenly split between the higher-order and correlated factor models
(see Table 4).
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3.3. Models with Four Locally Just-Identified Factors

Next, we compared the fit of competing models when all four factors were measured by three
indicators each. The mean value of each fit index across all conditions is presented in Table 1. When the
true underlying model was a bi-factor model, the fit indices tended to favor the bi-factor solution over
the higher-order or correlated factors solutions. The percentage of solutions selected by each index for
each cell of the study design is presented in Table 2. Each index identified the bi-factor among the best
fitting models more than 85% of the time with sample sizes of 200 and 100% of the time with sample
sizes of 800. When only one of the three solutions was identified as the best fitting, each index tended
to select the bi-factor solution over the higher-order or correlated factors models in at least 83% of the
200-case samples and 100% of the 800-case samples. The percentage of solutions selected by each index
when only one model fit best for each cell of the study design is presented in Table 3. Of the information
criteria, BIC almost exclusively identified the higher-order model as the best fitting model across sample
sizes. AIC and aBIC identified the higher-order model as the best fitting in just over half of the true
bi-factor samples of size 200 and in over 80% of the samples of size 800.

When the true underlying model was a multiple correlated factors model, the approximate fit indices
tended to favor the bi-factor solution. Each index identified the bi-factor among the best fitting models
more than 70% of the time with sample sizes of 200 and 99% of the time with sample sizes of 800. When
only one of the three solutions was identified as the best fitting, each index tended to select the bi-factor
solution over the higher-order or correlated factors models in at least 68% of the 200-case samples and
99% of the 800-case samples. Among the information criteria, AIC and aBIC identified the correlated
factors model as the best fitting in about 75% of the cases and for nearly all of the samples of size 200
and 800, respectively. In the larger sample size condition, BIC identified the correlated factors model as
the best fitting in 90% of the samples but in only 24% of the samples of size 200. Instead, BIC tended to
identify the higher-order as the best fitting model in about 75% of the samples.

When the true underlying model was a higher-order model, the approximate fit indices were mixed
when considering all of the conditions together. In about half of the datasets, CFI, TLI, and RMSEA
showed that all three solutions fit the data equally well. This finding was expected given that the
higher-order model is a constrained version of the correlated factors and bi-factor models. Based on
SRMR, the higher-order solution did not fit as well or better than the bi-factor or correlated factors
solutions in any of these datasets. In cases where one solution fit better than the other two, all four fit
indices tended to prefer the bi-factor solution but to different degrees. For CFI, the bi-factor solution
was identified most frequently (57%) followed by the correlated factors solution (25%) and higher-order
solution (18%). For TLI, the bi-factor solution was identified most frequently (45%) followed by the
higher-order solution (30%) and correlated factors solution (25%). For RMSEA, the bi-factor solution
was identified most frequently (40%) followed by the higher-order solution (35%) and correlated factors
solution (25%). For SRMR, the bi-factor solution was identified most frequently (61%) followed by
the correlated factors solution (29%). The fit index performance under the true higher-order conditions
were not as heavily impacted by sample size as for the other true models. In contrast, the information
criteria tended to identify the higher-order model in at least 81% of the samples and BIC identified the

higher-order model in all of the samples generated in this study.
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3.4. Summary

These findings suggest that when data were sampled from a population with a true bi-factor structure,
each of the approximate fit indices examined here was more likely than not to identify the bi-factor
solution as the best fitting out of the three competing solutions. However, only AIC and aBIC tended
to identify the bi-factor solution when sample sizes were larger. BIC tended to identify the higher-order
solution regardless of sample size. When samples were selected from a population with a true multiple
correlated factors structure, CFI, TLI, and RMSEA were more likely to identify the correlated factors
solution as the best fitting out of the three competing solutions. With a large enough sample size, SRMR
was also likely to identify the correlated factors model. AIC and aBIC tended to identify the correlated
factors solution regardless of sample size, and BIC only performed well in larger sample sizes. When
samples were generated from a population with a true higher-order structure, each of the fit indices
tended to identify the bi-factor solution as best fitting instead of the true higher-order model. The SRMR
had the strongest tendency to prefer the bi-factor model, which was expected because less parsimonious
models allow more parameters to be freely estimated, which typically produce better statistical fit than
more parsimonious models. Unlike the CFI, TLI, and RMSEA, the SRMR does not penalize the bi-factor
model for being less parsimonious than the higher-order model. Each of the information criteria tended
to correctly identify the higher-order model when there were at least three indicators per factor. This
again should be expected because the differences in parsimony between these models increases as more
indicators are added. In summary, our study shows that approximate fit indices and information criteria
should be very cautiously considered when used to aid in model selection. Substantive and conceptual
grounds should be more heavily weighted in the model selection decision.

4. Discussion

Previous research has suggested that the fit indices may statistically favor the bi-factor model [36]
as compared with the higher-order model in CFA studies of cognitive abilities when model violations
(e.g., correlated residuals, cross-loadings) are present. In the current study, the bi-factor model did not
generally produce a better fit when the true underlying structure was not a bi-factor one. However,
there was considerable overlap of fit values across the models. For example, with a sample size of 200
and under-identified factors the average CFI values of bi-factor and higher-order models were 0.997
and 0.991, respectively, when the true structure was higher-order. In that same condition, the average
RMSEA values of bi-factor and higher-order models were 0.016 and 0.031, respectively. There was
almost total overlap of fit with a sample size of 800 and a factor to variable ratio of 1:3: the average
CFI value of a true higher-order structure was 0.999 for a bi-factor model, 0.999 for a correlated factors
model, and 0.994 for a higher-order model. In contrast, the RMSEA values for these three models were
0.007, 0.006, and 0.026, respectively.

Given previous research on the relationships between these models [25,34], the bi-factor model would
be expected to result in the best fit because it is the most general (i.e., least restrictive) model examined.
The present study demonstrated that CFA fit indices are sensitive to differences in the true underlying
models at least under the conditions that were simulated. That is, the fit indices tended to identify the
multiple correlated factors model in most of the datasets that were selected from populations in which the
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correlated factors structure was true. As shown in Figure 2, the correlations specified between the factors
in correlated factors models were somewhat discrepant. In other words, all factors were not correlated
equally strongly with each other pairwise. Under the bi-factor model, a general factor accounted for
whatever correlations were observed between factors. When the factor correlations were not equal, then
the general factor was not able to equally account for the correlation between the specific factors. In
such a case, the general factor was not really functioning as a general factor; rather, it was functioning
as a general factor for a subset of specific factors. Interested readers should see Carroll [48] for a more
detailed discussion of correlated factors and the discovery of general factors. Unlike the bi-factor model,
the correlated factors model was readily able to allow the strength of correlations between factors to vary.
As a result, the bi-factor model was unlikely to fit best when the factor correlations were unequal. Given
that the population parameters used in this study were taken from applied studies of cognitive abilities,
equal factor correlations may be unrealistic in applied research settings.

Model selection using the fit indices was strongly related to differences in the number of estimated
parameters (i.e., model complexity) between the models. Generally speaking, more complex models
tend to fit data better than less complex models, but the improvement in fit must be substantial enough to
justify the estimation of more parameters. In the samples with 10 indicators, the bifactor model had 38
estimated parameter compared with 34 for the correlated factors and higher-order models. CFI, TLI, and
the information criteria incorporate and adjust for model complexity. For the true bi-factor samples with
10 indicators, the improvement in fit of the bi-factor model was generally enough to justify estimating
only four more parameters. For the true correlated factors samples with 10 indicators, the improvement
in fit of the bi-factor model was generally not enough to justify estimating four more parameters. Yet, the
correlated factors model and higher-order model required the same number of parameters to be estimated
so one might reasonably expect the it would not be identified as the best fitting as frequently because it is
more restrictive than the correlated factors or bi-factor model. A numerical example may help illustrate

the relationship between model complexity and fit. Consider the equation for CFI in Equation (1).

max(x7 — dfr,0)
max (x2 — dfr, x% — dfn,0)

where 2 is the x? value for the tested model, df7 is the degrees of freedom of the tested model, x%; is

CFl=1-— (1

the x? value for the null model (i.e., no covariances are specified), and dfy is the degrees of freedom for
the null model. For a randomly selected replication from the true higher-order model, the values needed
for computing CFI are: X%—IO = 63.9, dfyo = 50, X?v = 4717.3, and dfy = 66. The estimated CFI
is 0.997. Suppose the bi-factor model was also estimated, and it fit equally well in absolute terms (i.e.,
X% = X350 = 63.9). The null model remains the same (i.e., Y3 = 4717.3, dfy = 66) for the bi-factor
model, but the degrees of freedom are different for the bi-factor model (dfp; = 42) because it requires
more parameters to be estimated over the higher-order model. Using these values, the estimated CFI
for the bi-factor model is 0.995. Even though the models fit exactly the same in absolute terms, CFI
penalizes the bi-factor model more heavily because it is less parsimonious. In this case, the additional
parameter estimates are not worth the added model complexity because the fit did not improve enough
to result in better model-data fit. This trade-off between parsimony and model fit becomes more and
more apparent in the models with more indicators. In the numerical example above, 12 indicators were

used, which resulted in a difference of eight estimated parameters (dfyo — dfp; = 50 — 42 = 8). As
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more indicators are used, the difference in estimated parameters becomes more discrepant. For example,
the numbers of parameters required for the models with, say, 20 indicators would be 80 for the bi-factor
model, 64 for the correlated factors model, and 62 for the higher-order factor model.

Additional attention should also be given to another aspect of model complexity, which was
central to the simulation design in Murray and Johnson [36]. They added varying degrees of model
complexity in the form of correlated residuals and cross-loading items to examine the sensitivity of
the competing models to model misspecification. We elected not to build unmodeled complexity
and/or misspecification into our study’s design because ours was an initial investigation into fit index
comparisons under conditions found in the extant literature. Of course, cross-loadings and residual
covariances may be encountered in applied settings, but they were not reported in the studies we
reviewed. Furthermore, small and/or nonsubstantive model complexity may occasionally occur due
to random sampling error, but this is quite different from generating data on the basis of correlated errors
and cross-loadings. For example, in a randomly selected replication from one of our true higher-order
model conditions, we observed residuals between various indicators that were correlated at around 0.1
and cross-loadings at around 0.15, which is consistent with Murray and Johnson’s [36] discussion.
Again, we should note that the mechanism responsible for the small model complexities in this study
and [36] are different. Because we replicated each condition many times, we were able to rule out the
effect that such residual correlations and cross-loadings had on fit index performance in the long run
because there was no unmodeled complexity, on average, across thousands of replications. Finally, the
conditions generated by Murray and Johnson [36] may also be representative of those conditions that
applied researchers are likely to encounter. An extension of their work with an increased number of
replications would be helpful for further examining the potential bias in fit and/or parameter estimates
that favor the bi-factor model because it would help control for random sampling error.

However, simulations as scientific proof have limitations [49] and the exclusive use of approximate fit
statistics is perilous [46]. As concluded by (McDonald [50] p. 684), “if the analysis stops at the globally
fitted model, with global approximation indices, it is incomplete and uninformative”. Each of the tested
models offers a different perspective on the structure of cognitive abilities [33,51] that should guide
the researcher. As noted by Murray and Johnson [36], to avoid misinterpretation of resulting ability
estimates, the purpose of the measurement model must be taken into account. For example, a correlated
factors model does not contain a general factor and attributes all explanatory variance to first-order
factors, a higher-order model posits that the general factor operates only through the first-order factors
and thereby conflates the explanatory variance of general and first-order factors, and a bi-factor model
disentangles the explanatory variance of general and first-order factors but does not allow the general
factor to directly influence the first-order factors. Thus, approximate fit statistics are useful but not
dispositive [46].
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