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Abstract: The size and nature of sex differences in cognitive ability continues to be a 
source of controversy. Conflicting findings result from the selection of measures, samples, 
and methods used to estimate sex differences. Existing sex differences work on the 
Cognitive Abilities Test (CogAT) has analyzed manifest variables, leaving open questions 
about sex differences in latent narrow cognitive abilities and the underlying broad ability of 
fluid reasoning (Gf). This study attempted to address these questions. A confirmatory 
bifactor model was used to estimate Gf and three residual narrow ability factors (verbal, 
quantitative, and figural). We found that latent mean differences were larger than manifest 
estimates for all three narrow abilities. However, mean differences in Gf were trivial, 
consistent with previous research. In estimating group variances, the Gf factor showed 
substantially greater male variability (around 20% greater). The narrow abilities varied: 
verbal reasoning showed small variability differences while quantitative and figural 
showed substantial differences in variance (up to 60% greater). These results add precision 
and nuance to the study of the variability and masking hypothesis. 
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1. Introduction 

Sex differences in intelligence are a perennial interest in human abilities research. The rise of 
hierarchical theories of intelligence, most notably the Cattell-Horn-Carroll model [1]. have led to 
studies of sex differences at every level specificity. Sex differences research on general intelligence (g), 
“broad” abilities including fluid intelligence (Gf), as well as the more specific “narrow” abilities 
(including such things as verbal comprehension) have led to conflicting results in terms of the size and 
direction of differences [2–5]. The enduring controversy over sex differences has also led to a number 
of theories about why so many conflicting results are found. 

Given that mean differences are for the most part trivial in size [4–6], especially for general and 
many broad abilities, the observation of disproportionately large numbers of males in the right and left 
tail of the ability distribution has led to the variability hypothesis. This hypothesis holds that males 
exhibit greater variation than females in many cognitive ability domains, which may explain their 
overrepresentation in the tails of ability distributions and creates the appearance of mean differences in 
incomplete or selected samples [7,8]. Some researchers have proposed explanatory theories for greater 
variability (such as a bimodal distribution with an excessively large left tail caused by higher rates of 
birth defects in males [8]), but descriptive analysis of variability differences is also critical when it 
comes to estimating the size of the effect to be explained [9]. Importantly, the mere existence of 
variability differences, regardless of their cause, could explain differential representation of males and 
females at the extremes of the distributions of many cognitive traits. 

Another important hypothesis in explaining variations in the results of sex differences studies is the 
masking hypothesis which holds that the method of extracting ability estimates influences the 
magnitude of differences observed [10]. Specifically, the masking effect results from not partialling 
out the effects of general ability when estimating broad or specific ability factors. When the general (or 
higher-order) factor does not show sex differences, it washes out true differences in broad and specific 
abilities and underestimates those differences. Likewise, it can create differences in the higher-order 
factor that are really due to differences in the lower-order abilities that contribute to the estimation of 
the higher-order factor [2,4]. This hypothesis will be explored in more detail in a later section. 

The focus on broad and, especially narrow abilities in addition to general intelligence is important 
because of the implications many feel that these abilities (and the sex differences they show) have for 
participation of men and women in various careers. In particular, there has been a strong interest in the 
specific/narrow abilities of quantitative reasoning, math and science aptitude, and mechanical 
reasoning because of their potential impact on highly valued science, technology, engineering, and 
mathematics (STEM) fields [11–13]. 

Of course, differences in general ability are also of interest for a variety of reasons. While 
researchers have reached a degree of consensus on sex differences in some broad and specific abilities 
(e.g., consistent advantages for females in processing speed [Gs] [14]; large differences favoring males 
in mechanical reasoning [15]), the magnitude of differences in general intelligence (g) still sparks 
significant debate and conflicting results. In estimating sex differences in g, the choice of tests in a 
battery, the age and selection of the sample, and the methods used to analyze the data all appear to 
impact results [3,16]. What researchers can agree on is that conflating g with broad abilities confuses 
the discussion of sex differences in both areas of research [2,3,10]. Therefore, choice of methodology 
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to describe differences in g and broad abilities is important for the estimation of sex differences in both 
means and variances [3–5]. 

1.1. Competing Hypotheses and Impact of Methodology 

In the effort to uncover the nature of sex differences, research has repeatedly shown that methodology 
matters. In their review of the literature and empirical findings, Steinmayr et al. [3] found that restricted 
sampling [16], selection of tests, and, in particular, the statistical methods used to analyze the constructs 
of interest can impact the research results. 

From studies comparing various measurement models (manifest variables, latent bifactor models, 
latent hierarchical models, etc.), researchers have put forward the masking hypothesis [10]. The 
masking hypothesis concerns whether sex differences arise from broad abilities (used to estimate 
general ability) or from general ability itself. In some cases, analyses showed that broad ability 
differences were independent of g. In particular, Johnson and Bouchard [10] found that small or 
nonexistent differences in g washed out substantial sex differences in broad abilities when the two 
constructs were comingled. As a result, they found that many of the specific ability tests showed larger 
mean sex differences with g variance partialled out than in the manifest scores with g variance 
included. Their conclusion was that large mean differences in broad abilities were not related to 
differences in g and that, overall, there was a non-significant difference in g. Brunner, Krauss, and 
Kunter [17] argued for a similar approach to studying sex differences in mathematics achievement, 
where they found substantial sex differences in mathematical ability once the influence of a general 
factor was partialled out. 

Although Johnson and Bouchard’s and Brunner et al.’s findings are compelling, other research has 
not confirmed this finding. Specifically, Lemos et al. [15] found the opposite trend in their study, 
showing that the mean differences they detected in subtest scores on a reasoning battery were entirely 
explained by differences in g (differences around 2–4 points favoring males), with the exception of 
mechanical reasoning which showed large mean differences and numerical reasoning which showed 
small differences, both independent of differences in g. A key limitation of their study was that their 
battery consisted of only five subtests (compared to much larger and varied batteries in Johnson & 
Bouchard), and, furthermore, that one of these subtests was mechanical reasoning, one of the few 
reasoning domains to show very large male advantages, which may have skewed their general factor to 
favor males. 

Importantly, although little research has addressed the masking hypothesis with respect to the 
variability hypothesis, Brunner et al. [9] showed in their study of achievement that masking can occur 
with variability differences and thus warrants study with ability test batteries. In their study, partialling 
out general achievement from specific mathematics and reading achievement showed that although 
general achievement and manifest mathematics achievement demonstrated substantial variability 
differences (Variance Ratio [VR] = 1.23 and 1.18, respectively, where a VR of 1.23 indicates that the 
males are 23% more variable than females), specific mathematics achievement did not show 
differences in variability once general achievement was partialled out (M-g). (Note that a variance 
ratio (calculated as the ratio of male variance to female variance) greater than 1.0 indicates that  
males were more variable than females. Feingold [18] suggested that a variance ratio of 1.10 or greater 
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would be of practical importance on these types of tests.) This finding was replicated for the other 
achievement domains they observed (reading, science, and problem solving)—greater male variability 
was only observed for general achievement and not broad abilities when a nested latent model was 
used. In contrast, manifest variables for these other domains (with g and broad ability confounded) all 
showed substantially greater male variability.  

1.2. Previous Research on Manifest and Latent Differences in Means and Variability 

Given the volume of literature on the magnitude of sex differences in g and broad abilities [11,12], 
a general review is not given here. In this review, we focus on studies using large representative 
samples, broad assessment batteries, and preferably reporting manifest and latent estimates of sex 
differences in both means and variances in g and broad abilities. 

A small number of studies have compared sex differences in latent and manifest models and found 
mixed results as to the impact of model selection (latent vs. manifest) on the size and nature of mean 
differences observed. Very few studies have compared the effects of latent versus manifest models on 
estimates of variance differences. 

Irwing [19] studied an adult population (age 16–89) using the WAIS-III norm sample. Two latent 
models were applied and the results indicated that both the hierarchical and bifactor multi-group 
confirmatory factor analyses (MG-CFA) yielded comparable mean estimates. The manifest and latent 
estimates of mean differences in g were also similar (d = 0.18 and d = 0.22, respectively). See Table 1. 
Irwing only touched on the variability hypothesis in his discussion, but, in fact, his data shows 
interesting differences in the estimates of variance ratios from manifest to latent factors. The manifest 
variables show variability differences in g (VR = 0.86, surprisingly showing greater variability for 
females) while the latent g shows effectively no difference in variability (VR = 1.04). For the broad 
factors measured by WAIS-III, effects varied. Verbal Comprehension and Perceptual Organization 
were not much affected (VR around 1.0 for VC and 1.1 for PO), but Working Memory and Processing 
Speed demonstrated larger difference in the latent model than the manifest variables (VR 1.39 vs. 1.01, 
respectively, for WM; 0.65 vs. 0.88 for PS). In sum, latent models in some cases increased the size of 
VR estimates while other cases decreased the VR estimates. Irwing used his results to argue that the 
common observation of greater male variability is an artifact of manifest variables and that latent 
models will not show variability differences, but the surprising observation of greater female variance 
in his manifest variables calls into question the original data and whether there is something unusual 
about the battery of tests or the sample that reverses the typical observation of greater male variability. 

Table 1. Compilation of Irwing’s findings from WAIS-III. 

Scale Cohen’s d Effect Size VR 

 Manifest Latent (Bifactor) Manifest Latent (Bifactor) 
Full-Scale IQ (g) 0.18 0.22 86% 104% 

Verbal Comprehension 0.23 NR 99% 103% 
Perceptual Organization 0.22 NR 110% 114% 

Working Memory 0.24 NR 101% 139% 
Processing Speed −0.31 −1.30 88% 65% 

Note. NR = Not reported. 
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Despite Irwing’s contention, variability differences have been found to persist in latent models. For 
example, Keith et al. [20] (2008) estimated the variance ratio for g to be 1.18 from the WJ-III norm 
sample (ages 2–90). In a separate study of the DAS norms sample (ages 2–17), Keith et al. [14] 
estimated the variance ratio for latent g to be 1.10, indicating that boys were 10% more variable than 
girls. See Table 2. Their estimate of the variance ratio for the latent Gf (1.55) was substantial. Both 
Keith et al. studies had large samples and lend strong evidence that variability differences are not 
solely an artifact of manifest variable models. 

Table 2. Results from Keith et al. [20] (WJ-III, ages 6–59) and Keith et al. [14] (DAS  
(2nd ed.), ages 5–17). 

 WJ-III DAS (2nd. ed.) 

 d a VR b d a VR c 

 Manifest Latent Manifest Latent Latent Latent 
g NA 0.08 NA 1.18 0.03 d 1.10 

Gf −0.03 −0.35 ** 1.20 NR 0.00 d 1.55 
Gc 0.08 −0.14 ** 1.11 NR −0.12 d 1.05 
RQ 0.14 −0.21 ** 1.17 NR -- -- 
Gv 0.00 −0.24 1.05 NR −0.12 1.20 
Gs −0.29 0.40 ** 1.03 NR 0.11* 1.20 
Glr 0.08 NR 1.05 NR 0.15 1.10 
Ga 0.03 −0.13 1.09 NR -- -- 

Gsm −0.06 −0.09 1.16 NR 0.04 0.85 
Note. Average results across age groups. The estimates for ages 6–17 were similar to the overall results 
except Gf which showed mean differences of −0.25. a Positive differences favor girls; b Variance Ratios 
greater than 1.0 indicate greater variability for boys; c Estimated from graph in original article;  
d Only reported for age 5–8. 

In their study of general achievement, Brunner et al. [9] also showed important (though mixed) 
differences between manifest achievement variables and those from a nested latent model. See Table 3. 
Specifically, mean differences in mathematics achievement grew when a latent model was applied 
(from d = .10 to .21), though reading achievement stayed about the same (d = -.36 to -.39). The general 
achievement factor showed near-zero mean differences, but substantially greater male variability (VR 
= 1.23), consistent with many studies of ability distributions. Brunner et al. did not report variance 
information for most of their latent variables, but their Mathematics Achievement factor did show 
diminished variance effect (VR = 1.19 in manifest and 1.02 in latent models). 

Table 3. Brunner et al.’s PISA achievement results. 

 d a VR b 
 manifest Latent manifest latent 

General achievement NA 0.01 NA 1.23 
Mathematics achievement 0.10 0.21 1.19 1.02 

Reading achievement −0.36 −0.39 1.22 NR 
Science achievement 0.05 NR 1.16 NR 

Problem solving −0.01 NR 1.18 NR 
Note. a Positive differences favor girls; b VR > 1.0 indicates greater variability for boys. 
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Steinmayr et al. [3] analyzed a relatively small (N = 977) sample of students age 16–18 to compare 
the impact of model selection on sex differences. The assessment battery was the I-S-T 2000 R, which 
consists of nine reasoning tasks and a knowledge test. Because of their relatively small and 
nonrepresentative sample (coming from a university-track school), the exact estimates of differences 
themselves are not compelling. However, the differences between the manifest and latent estimates are 
of interest. Specifically, mean differences for the three broad abilities were smaller (reversing sign for 
verbal) in the latent model compared to the manifest estimates. See Table 4. The method of estimating 
the models did not meaningfully affect the VR estimates, which remained considerable (i.e., greater 
than 1.10) for several of the factors. 

Table 4. Compilation of Steinmayr et al.’s findings from I-S-T 2000 R. 

 d VR 

 Manifest Latent Manifest Latent 
V −0.43 0.23 0.96 1.11 
N −0.81 −0.49 1.12 1.06 
F −0.50 −0.19 1.12 1.13 
Gf −0.62 −0.62 0.99 1.09 
Gc −0.78 −0.77 1.22 1.29 

Note. Steinmayr et al.’s sample was quite small compared to other studies on the topic (female N = 551 and 
males N = 426). Positive differences in d favor males; VR > 1.0 indicates greater male variability. 

These findings indicate that there is reason to believe that greater male variability can persist in 
latent models, and is not an artifact of manifest variables. Thus, the latent model evidence does not 
contradict the variability hypothesis for g and other broad abilities, despite Irwing’s [19] contention. 
Clearly, however, the magnitude of those differences can vary, depending on the sample under study 
and the construct considered. 

1.3. The Current Study 

The Cognitive Abilities Test (CogAT) [21,22] is a battery of reasoning tasks measuring verbal, 
quantitative, and figural reasoning abilities for students in grades K-12 in the United States. Previous 
research on the CogAT [23,24] used observed (manifest) scores, which is appropriate when the goal is 
to inform practical uses of assessment results. In this study, our aim is to extend this analysis using 
latent models to probe sex differences at the construct level. 

In this study, we considered Gf, three narrow abilities subsumed under Gf, and residual narrow 
abilities (with the general factor partialled out of the variance). Analyses were conducted on the norms 
samples from Form 6 and 7 of the CogAT. Previous work on the CogAT has not explored the general 
factor from the batteries or latent variables, but has addressed mean and variability differences in 
manifest variables representing the three reasoning batteries—Verbal, Quantitative, and Nonverbal 
(figural) Batteries—as measured in four cohorts between 1984 and 2011. Consistent with work on 
other batteries, the Nonverbal (figural) Battery showed negligible differences across test forms while 
the Quantitative Battery showed slight male advantages (0.05 to 0.15 across forms) and the Verbal 
Battery showed slight female advantages (−0.11 to −0.04). Variance ratios showed consistent advantages 
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for males, with quantitative showing the largest differences (VR = 1.21 to 1.53). The greater differences 
in means and variance for quantitative reasoning is consistent with previous work [17,20], but differences 
for all three batteries were considerable (i.e., greater than 1.10). 

Data from the CogAT is relevant to this discussion because the test represents a balanced measure 
of fluid intelligence under Carroll’s definition [25], which includes inductive, quantitative, and sequential 
reasoning components. The data is also informative because sampling is intentionally representative of 
the school-going population in the U.S., with large samples ranging across the 5–18 age group. 

2. Experimental Section 

This study relied on the national standardization data from the 2000 (Form 6) [22] and 2011  
(Form 7) [21] editions of the CogAT. For simplicity, the forms are referred to as CogAT 6 and CogAT 7. 
For CogAT 6, the data for levels A–G of the test (administered to students in grades 3–11) were 
included. The primary battery (grades K-2) was excluded because it used a different set of tests that 
measure somewhat different abilities. Level H (grade 12) was also excluded because of the 
comparatively small sample size and use of college students to supplement the sample [26]. For 
CogAT 7, the naming convention and grade organization of test levels was altered and negated these 
issues (see Table 4 for grade-age-level correspondence [27]). However, for consistency with the other 
forms, the data for grades K-2 and 12 for CogAT 7 were omitted from this study. 

The student samples used in the standardizations of CogAT 6 and 7 were drawn using a stratified 
random sample of public and private schools (including Catholic schools). The sampling units (school 
buildings) were sampled within strata defined by region of the country (four levels), school-district 
size (five levels), and school socioeconomic status (SES; five levels). Randomly selected schools 
within each stratification level were asked to participate. Around 400 schools were sampled for CogAT 6 
and 250 were sampled for CogAT 7. 

Within participating schools, all students in relevant grades were administered the test, with school 
administrators determining exclusion or accommodations for students with disabilities or limited 
English proficiency. Schools were asked to include all students who could meaningfully engage with 
the tasks [26,27]. English learners comprised 4.0% of the CogAT 6 sample and 2.8% of the CogAT 7 
sample. Of the students classified as English learners, just a fraction (around 18% for CogAT 6 and 7) 
received accommodations. Students with learning disabilities (as defined by the school district) 
comprised 6.0% of the CogAT 6 sample and 7.0% of the CogAT 7 sample. In CogAT 6 and 7 data, 
32% and 48% of these students, respectively, received at least one accommodation while taking  
the test. 

For the analyses that follow, sample weights were used. These weights were based on the stratifying 
variables (region, size, and SES) to achieve a representative sample of U.S. schools. The students in 
the sample were found to be representative of that population according to federal data, though weights 
did not adjust for individual characteristics [26,27]. The sample sizes and ethnicity distributions at 
each test level in the two standardization samples are shown in Tables 5 and 6. 
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Table 5. Sample Sizes by Test Level for Cognitive Abilities Test (CogAT) Forms 6 and 7. 

CogAT 6 
(2000) 

CogAT 7 
(2010) 

Level (Grade) N Level (Grade) N 
A (3) 14,152 9 (3) 6141 
B (4) 14,309 10 (4) 6120 
C (5) 15,146 11 (5) 6555 
D (6) 13,407 12 (6) 5601 
E (7) 12,454 13/14 (7–8) 9669 

F (8–9) 18,237 15/16 (9–10) 7912 
G (10–11) 11,234 17/18 (11) 3295 

Table 6. Percentages by Ethnicity for CogAT 6 and 7. 

 Form (Year) 
Ethnicity CogAT 6 (2000) CogAT 7 (2010) 

White (not Hispanic) 65.0 55.7 
Black 16.3 13.3 

Hispanic 11.5 17.6 
Asian/Pacific Islander 3.6 5.3 

Native American 2.5 4.8 

2.1. Measures 

CogAT was designed to measure the full range of reasoning abilities that define general fluid 
reasoning (Gf). Each form and level of the CogAT consists of a verbal, quantitative, and figural 
battery. The choice of batteries is supported by Carroll’s [25] factor analytic work which showed that 
the Gf factor is defined by three reasoning abilities: (a) sequential or deductive reasoning—verbal, 
logical, or deductive reasoning; (b) quantitative reasoning—inductive or deductive reasoning with 
quantitative concepts; and (c) inductive reasoning—typically measured with figural tasks. These 
correspond roughly with the three CogAT batteries. 

CogAT 6 and 7 used the same three subtests to measure verbal reasoning (Verbal Classification, 
Verbal Analogies, Sentence Completion) and the same three subtests to measure figural reasoning 
(Figure Classification, Figure Analogies, Figure Analysis [paper folding task]). These formats are 
classic psychometric formats. Slightly different collections of subtests were used for quantitative 
reasoning for the two forms. For CogAT 6, quantitative reasoning was measured with Quantitative 
Relations, Number Series, and Equation Building. Number Series is a classic format, with students 
identifying the next number in a patterned sequence (e.g., 2 4 6 …?). The other formats are not as 
common. Quantitative Relations requires students to identify which of two quantities or concepts  
(e.g., a quarter and a dollar) is greater. The final format, Equation Building, required students to 
combine a set of numbers and operations (e.g., 3 5 6 + *) to mathematically yield one of the  
answer choices. 

For CogAT 7, Equation Building and Quantitative Relations were replaced because Quantitative 
Relations showed a degree of verbal and Gc loading and both formats were quite speeded [27]. These 
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formats were replaced with Number Analogies (a format used by the British version of the CogAT 
(called the CAT) [28]) and a new format called Number Puzzles. The Number Analogies test applied 
the traditional analogy format to quantitative relationships (e.g., [2:4] [3:6] [4:?]). The Number Puzzles 
format required examinees to determine the numerical value(s) represented by one or more geometric 
shapes that will make one or more equations true (e.g., Δ + 3 = 10, Δ = ?). The new formats showed 
less verbal loading than the preceding formats [29] and were given in contexts that were less speeded 
than the formats they replaced. Within each battery, the number of items and their difficulty remained 
approximately the same across forms. 

Items on each test form were developed through an extensive tryout process that included screening 
for difficulty, discrimination, and differential item functioning (DIF) using a Mantel-Haenszel 
procedure [26]. For CogAT 6, DIF analyses indicated that, across all levels, 3 verbal items favored 
males and 4 items favored females [27]; one quantitative item favored males (but only at one of four 
grade levels in which it appeared), none favored females; and no figural items showed DIF for males 
and females. Items showing moderate DIF were balanced to favor boys and girls. These items were 
never among the most challenging items for a given subtest and rarely among the easiest, making them 
unlikely to impact analyses of differences in population variance. For CogAT 7, only verbal items 
were found to show DIF with roughly equal numbers favoring males and females (8 and 7, 
respectively, across all levels; less than 1% of items). 

Items within each battery were scaled to create a unidimensional, cross-grade scale for each battery 
independently. Both forms used a 1-PL IRT model (with fit statistics used in selecting items) to 
develop a unidimensional scale for each battery [26,27]. For the verbal, quantitative, and figural 
scores, K–R 20 reliabilities are typically around 0.95. Research has shown that scores on CogAT 6 
correlate with IQ scores from individually administered ability tests about as well as the IQ scores 
from different individually administered tests correlate with each other [30,31]. 

2.2. Analysis 

At each grade level, raw scores on all subtests were converted into normalized Z-scores. Previous 
studies on this topic have used age-based rather than grade-based divisions, so the sample was divided 
into 3 age groups: 8–10, 11–13, and 14–17. These age ranges roughly correspond to grades 3–5, 6–8, 
and 9–11 in the U.S. For each age group and battery, effect sizes (using Cohen’s d) and variance ratios 
were calculated. Within each of these age groups, the correlation matrix for each gender on each form 
was extracted. These correlation matrices, along with means and variances for each gender, were then 
submitted to a multiple-group confirmatory factor analysis (CFA) using Mplus 6.1. 

A bifactor CFA model with a single Gf factor and verbal, quantitative, and figural content factors 
(V, Q, and F respectively) was used as the basis for the latent variable analysis. See Figure 1. The only 
difference between the CogAT 6 and CogAT 7 models, aside from the two new quantitative subtests, 
was a small but significant cross-loading of Quantitative Relations on the Verbal Factor correlations 
were constrained to zero. Standard measurement invariance testing procedures were conducted on each 
group, but model fit was good and no unexpected problems were found. Therefore, reported results are 
based on a scalar invariance model. Subtest loadings, intercepts, and residuals were fixed across gender; 
and factor means and variances for females were set to zero and one. Factor means and variances for 
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males were freely estimated. Preliminary results revealed that factor means were somewhat 
underidentified without additional constraints. Specifically, average mean gender differences across V, 
Q, and F would be pushed onto the Gf factor in some models but not others, for no obvious reason. To 
stabilize this problem, the sum of V, Q, and F factor means for males was constrained to zero. This 
forced net average differences to appear on the Gf factor, which is consistent with theoretical 
interpretations of Gf. No restrictions were placed on variances. 

3. Results and Discussion 

Complete CFA parameters and model fit are reported in Appendix A and B. Consistent with 
previous research on battery-level scores, we found small-to-negligible advantages to girls on the 
verbal subtests and to boys on the quantitative subtests. The figural subtests were the least consistent, 
with paper folding slightly favoring boys and figure classification favoring girls, particularly on 
CogAT 6. See Table 7. No trends across age groups were apparent. 

Figure 1. Path Diagram of Bifactor Model for CogAT 7. Parameters freed in male model, 
parameters in female model fixed to M = 0, SD = 1. 
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Table 7. Cohen’s d effect size between male and female means by subtest, form, and age group. 

 Age Group VA SC VC QR NS EB FM PF FC 
CogAT 6 8–10 −0.13 −0.13 −0.14 0.08 −0.01 −0.03 −0.06 0.09 −0.16 

 11–13 −0.04 −0.09 −0.08 0.07 0.03 −0.07 −0.11 0.07 −0.21 

 14–17 −0.08 −0.10 −0.09 0.08 0.06 −0.10 −0.13 0.09 −0.20 

 Total −0.10 −0.11 −0.08 0.08 0.02 −0.06 −0.09 0.08 −0.19 

  VA SC VC NA NS NP FM PF FC 
CogAT 7 8–10 −0.01 −0.12 −0.05 0.12 0.12 0.03 0.00 0.10 −0.08 

 11–13 0.00 0.02 −0.17 0.14 0.16 0.06 0.03 0.15 −0.15 

 14–17 0.01 0.05 −0.13 0.11 0.11 0.02 −0.10 0.09 −0.07 

 Total 0.00 −0.03 −0.11 0.13 0.13 0.04 −0.02 0.12 −0.10 
Cross-form Total −0.05 −0.07 −0.10 --a 0.08 --a −0.05 0.10 −0.15 

Note. d > 0 indicate higher male means. Effect sizes greater than 0.15 in bold. VA = Verbal Analogies,  
SC = Sentence Completion, VC = Verbal Classification, QR = Quantitative Relations, NS = Number Series, 
EB = Equation Building, FM = Figure Matrices, PF = Paper Folding (Figure Analysis), FC = Figure 
Classification, NA = Number Analogies, NP = Number Puzzles; a Subtests varied by form and cannot  
be averaged. 

The variance ratios in Table 8 are also consistent with previous work. Almost every age group  
and subtest showed greater male variability (using a threshold of 1.1 as a meaningful level of 
difference [18]). A slight trend of increasing VRs with age on quantitative subtests may be present 
across both forms. 

Table 8. Variance ratios (VRs) of males to females by subtest, form, and age group of CogAT. 

 Age Group VA SC VC QR NS EB FM PF FC 
CogAT 6 8–10 1.17 1.15 1.20 1.10 1.16 1.12 1.18 1.08 1.15 

 11–13 1.09 1.23 1.15 1.16 1.19 1.19 1.27 1.11 1.21 

 14–17 1.02 1.19 1.11 1.17 1.27 1.20 1.21 1.14 1.21 

 Total 1.16 1.19 1.10 1.14 1.20 1.17 1.22 1.11 1.19 

  VA SC VC NA NS NP FM PF FC 
CogAT 7 8–10 1.16 1.12 1.10 1.14 1.27 1.13 1.19 1.15 1.03 

 11–13 1.03 1.04 1.14 1.17 1.31 1.08 1.12 1.11 1.17 

 14–17 1.12 1.21 1.25 1.26 1.40 1.12 1.19 1.20 1.27 

 Total 1.10 1.11 1.15 1.18 1.31 1.11 1.17 1.15 1.14 
Cross-form Total 1.13 1.15 1.13 --a 1.25 --a 1.19 1.13 1.16 

Note. VR >1 indicate greater male variability. Values greater than 1.1 in bold. VA=Verbal Analogies, 
SC=Sentence Completion, VC=Verbal Classification, QR=Quantitative Relations, NS=Number Series, 
EB=Equation Building, FM=Figure Matrices, PF=Paper Folding, FC=Figure Classification, NA=Number 
Analogies, NP=Number Puzzles. a Subtests varied by form and cannot be averaged. 

3.1. Latent Analyses—Mean Differences 

Means and variances for latent factors are reported in Table 9. Model fit was excellent with CFIs 
above 0.988 and RMSEA confidence intervals below 0.05 for all age groups and forms. SRMR 
estimates averaged 0.023. 
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Latent models showed negligible mean differences in Gf. Because the domain factor means for 
males were constrained to sum to zero, any systematic difference across batteries is represented by a 
mean difference in Gf. 

In general, the two forms showed consistent patterns of mean differences. The verbal factor favored 
girls somewhat, especially for younger groups (age 8–10 for CogAT 6, Ages 8–13 for CogAT 7). For 
the older age group, mean differences in verbal were negligible, though still favoring girls. On the 
quantitative factor, the two forms performed fairly consistently across age groups with moderate 
advantages favoring boys throughout. The figural factor again favored females, with larger differences 
at older groups that cancelled out the decrease in verbal means. 

Table 9. Male Factor Means and Variances (Female values fixed to M = 0 SD = 1). 

  Means Variances 
Form Age Group Gf V Q F Gf V Q F 

CogAT 6 8–10 −0.06 −0.22 0.27 −0.04 1.21 1.14 0.95 1.28 

 11–13 −0.05 −0.06 0.25 −0.19 1.23 1.06 1.33 1.45 

 14–17 −0.06 −0.10 0.29 −0.19 1.25 0.99 1.06 1.29 

 TOTAL −0.06 −0.13 0.27 −0.14 1.23 1.06 1.11 1.34 
CogAT 7 8–10 0.05 −0.26 0.33 −0.07 1.23 1.06 1.55 a 1.19 

 11–13 0.07 −0.20 0.29 −0.08 1.17 1.05 1.60 a 1.07 

 14–17 0.02 −0.07 0.25 −0.18 1.37 1.11 1.26 a 1.35 

 TOTAL 0.04 −0.18 0.29 −0.11 1.25 1.08 1.47 a 1.20 
Note. Positive means indicate higher factor scores for males. Values greater than 0.15 in bold.  
Variances > 1 indicate greater male variability. Values greater than 1.1 in bold. Standard errors for means are 
0.024 or less. Male factor variances shown are comparable to Male/Female variance ratios. Standard errors 
for factor variances averaged 0.03, 0.04, 0.09, and 0.08 for Gf, V, Q, and F respectively. a Standard errors on 
CogAT 7 Quant were particularly large, averaging 0.15. 

3.2. Differences in Variability 

The Gf factor showed substantially greater male variability on both forms, with VRs ranging from 
1.17 to 1.37. The median VR value of 1.2 implies a latent standard deviation difference of 10%, which 
has substantial implications for the tails of the ability distribution. 

The verbal factor showed few meaningfully different variance ratios (i.e., those over 1.1). These 
VRs are again quite similar to previous research and confirm that the variability hypothesis does not 
appear to apply to verbal reasoning, with or without partialling out the effects of Gf. 

Results for the quantitative factor differed by form. CogAT 6 showed negligible variance differences 
with the exception of the 11–13 age group. Overall, variability for males appeared 11% greater on 
CogAT 6. In contrast, CogAT 7 showed the most substantial variability differences with males appearing 
on average 47% more variable (range 1.26–1.60). However, errors on the CogAT 7 estimates were 
quite large, indicating a weak quantitative domain factor. For example, the quantitative factor 
explained roughly 4.7% of the variance on the quantitative subtests in the 8–10 age group on CogAT 7. 
By contrast, variance explained by the domain factor was 16.4% on the verbal subtests and 12.6% on 
the figural at this age group. Variance explained by the general factor was 49.9%. 
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The figural factor also showed meaningful differences in variability, with CogAT 6 showing slightly 
greater disparities than CogAT 7. Compared to the quantitative factor, the CogAT 6 figural factor 
certainly showed greater variance differences than the quantitative factor, but the differences reversed 
for CogAT 7. Overall the variability differences ranged from 1.07 to 1.45 (median 1.28). 

4. Conclusions 

Mean sex differences in manifest scores from the subtests were consistent, on average, with 
previous work on manifest battery-level scores on the CogAT [23,24]. Interestingly, the latent mean 
differences were all larger (at least double, on average) than the manifest estimates. The biggest 
difference was for the quantitative factor, where manifest differences had a median of 0.06SD while 
the latent differences were around 0.28SD. Mean differences on Gf, which can only be estimated 
latently, were trivial, consistent with previous research showing no difference in g or Gf [5,14,32]. 

The results are also consistent with Johnson and Bouchard’s [10] work, which showed that 
confounding broad and general ability variance leads to the underestimation of sex differences in broad 
and specific abilities (i.e., the masking hypothesis). Importantly, our findings—that differences in 
reasoning reside in the more specific ability factors and not the general factor—contradict the results of 
Lemos et al. [15], who also studied a battery of reasoning abilities, and who found that differences in a 
general factor explained the differences in the specific test scores. The composition of their reasoning 
battery, particularly the inclusion of mechanical reasoning and spatial rotation, both of which strongly 
favor males, may explain the differences in our findings. Although the CogAT is not specifically 
designed to yield no mean differences between the sexes, the choice of reasoning tasks does omit any 
domains where sex differences are substantial. 

The Gf factor showed substantially greater male variability on both forms, with VRs ranging from 
1.17 to 1.37. The median value (1.23) was remarkably similar to the median effect size from CogAT 6 
and 7 manifest scores in Lakin [24] which was 1.24 (across age groups and batteries). Though it was 
smaller than Keith et al.’s [14] estimate of a VR of 1.55 for Gf, our finding indicates that the 
variability hypothesis appears to apply equally to observed and latent score analyses, at least for Gf.  

For the narrow abilities, partialling out Gf had different effects. For verbal, the small VRs in the 
manifest variables became mostly negligible in the latent analyses, indicating that verbal reasoning 
may be an exception to the frequent observation of greater male variability in quantitative and other 
domains (consistent with prior findings [18,33]). The figural factor was least affected, with similar (or 
slightly larger) VRs in the latent analyses. 

Partialling out Gf impacted the quantitative battery the most, leaving a weakly measured residual 
specific ability with exaggerated differences in variability for CogAT 7. However, that latent residual 
factor still behaved consistently with prior research on the manifest Quantitative Battery scores, where 
VRs ranged from 1.21 to 1.53 across forms. VRs were substantially larger for CogAT 7, which may be 
a result of changes made to that battery compared to CogAT 6. These changes notably included 
replacing two speeded tasks (one of which was verbally loaded) with less speeded and more purely 
quantitative tasks. Quantitative reasoning may be the most sensitive to greater male variability, consistent 
with the conclusions of Mackintosh [4]. Interestingly, our findings contradicted Brunner et al. [17], 
who found that variability differences in their mathematics achievement factor disappeared in the 
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latent analysis. Given the substantial differences in the assessment batteries across the two studies, it is 
unclear which results are more generalizable. 

Differences in variance, even in the absence of mean differences, have important implications in 
practice. The Gf factor showed substantially greater male variability on both forms, with a median VR 
of 1.23. Importantly, a VR of 1.20 implies a latent standard deviation difference of 10%, which has 
substantial implications for the tails of the ability distribution. Using a normal distribution, such a 
difference in standard deviation would yield a male-female ratio of around 3:2 in the top 2% and  
a ratio of 5:2 in the top 0.2% (using cutscores based on female SDs). As previous work has  
shown [24,34], such ratios have been observed in studies of the extreme right tails of cognitive ability 
distributions and may have implications for why we observe relatively few women participating in 
elite levels of many math, science and engineering fields. 

4.1. Limitations 

One serious concern in interpreting the results for the three narrow abilities in this study is that once 
Gf is partialled out, we cannot be certain whether the factor variance that remains should be interpreted 
as verbal, quantitative, and figural reasoning; if it reflects a more specific trait; or is simply a method 
factor. The quantitative factor, in particular, seems to be fairly unreliable, with the largest standard 
errors, and thus should be interpreted with the most caution. 

Another limitation of this study, and certainly all studies of this topic, is the choice of measures of 
the intended constructs, which can create or eliminate sex differences depending on the choice of  
tasks [2]. For example, although, in general, researchers agree that females show some advantage in 
verbal domains, other research has found that males are advantaged on some specific formats, such as 
verbal analogies [35,36]. The inclusion of verbal analogies in the CogAT may therefore diminish 
observed differences in verbal reasoning. Likewise, the omission of reasoning domains that strongly 
favor males (mechanical reasoning, spatial rotation [37]) may explain differences in our findings  
from Lemos et al. [15]. However, the selection of tasks on CogAT is consistent with the  
Cattell-Horn-Carroll theory of intelligence and definition of the Gf factor and is therefore defensible if 
not definitive. Future research might explore the use of indicators of the Gf-related narrow abilities 
(inductive, deductive, and quantitative reasoning) that do not confound content with task. The 
alignment of CogAT scales with the Berlin Model of Intelligence Structure [38] (which explicitly 
models verbal, quantitative, and figural facets) should also be explored. 

Another limitation is the assumption of normality, which is inherent in latent analyses. This 
assumption makes detailed analysis of the tails of the distribution impossible in latent distributions. 
Previous work has shown substantial and important differences in the ratio of males to females at the 
extremes of the ability distribution on the CogAT batteries. The differences in variability observed in 
this study likely indicate similar differences in ratios in the latent variables, but cannot be directly 
tested. However, it is also quite possible that the true distribution of latent ability is non-normal in such 
a way as to create different pattern of ratios at the tails of the distributions [8]. 

Finally, the age range of our study did not permit us to directly test Lynn’s hypothesis [39] that sex 
differences do not fully manifest themselves until early adulthood. However, there is no indication in 
our data of a trend of increasing differences, even at the oldest group which is close to the age at which 
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Lynn contends differences will manifest. A competing explanation that deserves future attention is the 
nature of sample recruitment. Dykiert et al. [16]. demonstrated that volunteer effects in norming 
samples for intelligence tests can be problematic for estimating means and variability. They show 
evidence that women are more likely to volunteer than men for testing as adults and that more 
intelligent individuals are more likely to volunteer. In their study, the combination of these two effects 
resulted in a greater range of women volunteering and, as a result, men showing proportionately larger 
advantages in IQ and somewhat greater variability as the volunteer effect was introduced. Dykiert et al. 
argue that these volunteer effects are much smaller for children, because participation in testing 
programs usually occurs in schools where there is little opportunity for students to opt out of testing. 
Therefore, one explanation for the lack of sex differences in Gf in our study is that volunteer effects do 
not impact our data as it does studies of adult samples. 

4.2. Final Comments 

This study weighs in on a number of hypotheses related to the nature of sex differences in broad 
and narrow/specific cognitive abilities. First, Lemos et al. [15] argue that differences in mechanical 
reasoning and similar domains are the key to differences in STEM engagement. While this may be true 
in general, this study shows that we cannot rule out differences in the variability of Gf as an additional 
explanatory factor for why males and females differ in their engagement in elite levels of STEM fields. 
Further, it suggests that variability differences could be explored in studies of sex differences in elite 
performance in other domains. 

This research also shows, quite compellingly, that the variability hypothesis [8,18] is plausible and 
impacts both manifest and latent analyses of general ability. The masking hypothesis [10] was also 
supported for factor means. All three batteries showed greater mean difference in latent vs. manifest 
estimates while there were no substantial differences in the general ability factor. Further research is 
needed to explore whether the masking hypothesis may also apply to variability differences. Both the 
quantitative and figural factors showed some evidence of larger variability differences with Gf 
partialled out, while the verbal factor showed overall less variability with Gf partialled out. Unlike 
mean differences, there are clearly variability differences in Gf between males and females. When 
manifest variables are studied, the greater male variability in Gf is bound to inflate the variability in 
narrow abilities. This should be taken into consideration when selecting statistical models in future 
studies of sex differences in means and variability. 
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Appendix 

Appendix A. Model parameters and fit for CogAT 6. 

  8–10 11–13 14–18 
Parameter Est. a S.E. Est. a S.E. Est. a S.E. 

Gf factor loadings VA 0.74 0.01 0.72 0.01 0.71 0.01 
VC 0.57 0.01 0.62 0.01 0.63 0.01 

 SC 0.68 0.01 0.65 0.01 0.64 0.01 

 QR 0.73 0.01 0.73 0.01 0.74 0.01 

 NS 0.77 0.01 0.77 0.01 0.77 0.01 

 EB 0.74 0.01 0.71 0.01 0.71 0.01 

 FC 0.73 0.01 0.72 0.01 0.74 0.01 

 FM 0.78 0.01 0.79 0.01 0.77 0.01 

 PF 0.66 0.01 0.68 0.01 0.68 0.01 

V factor loadings 

VA 0.38 0.01 0.47 0.01 0.49 0.01 
VC 0.29 0.01 0.42 0.01 0.48 0.01 
SC 0.50 0.01 0.52 0.01 0.53 0.01 
QR 0.15 0.01 0.16 0.01 0.15 0.01 

Q factor loadings 
QR 0.57 0.03 0.50 0.02 0.44 0.02 
NS 0.08 0.01 0.12 0.01 0.17 0.01 
EB 0.11 0.01 0.16 0.01 0.14 0.01 

N factor loadings 
FC 0.21 0.01 0.23 0.01 0.24 0.01 
FM 0.42 0.01 0.36 0.01 0.37 0.01 
PF 0.19 0.01 0.19 0.01 0.25 0.01 

Intercepts VA 0.06 0.01 0.03 0.01 0.05 0.01 

 VC 0.05 0.01 0.03 0.01 0.04 0.01 

 SC 0.08 0.01 0.03 0.01 0.05 0.01 

 QR −0.04 0.01 −0.04 0.01 −0.03 0.01 

 NS 0.01 NS 0.01 0.01 NS 0.01 0.00 0.01 

 EB 0.01 NS 0.01 0.00 NS 0.01 0.00 0.01 

 FC 0.03 0.01 0.04 0.01 0.05 0.01 

 FM 0.03 0.01 0.05 0.01 0.06 0.01 

 PF 0.02 0.01 0.04 0.01 0.05 0.01 

Residual variances 
VA 0.24 0.00 0.19 0.00 0.18 0.00 
VC 0.55 0.01 0.39 0.00 0.32 0.00 
SC 0.22 0.01 0.24 0.00 0.24 0.00 

 QR 0.07 NS 0.04 0.12 0.02 0.16 0.02 

 NS 0.34 0.00 0.33 0.00 0.31 0.00 

 EB 0.39 0.00 0.41 0.00 0.41 0.01 

 FC 0.37 0.00 0.36 0.00 0.32 0.00 

 FM 0.13 0.01 0.14 0.01 0.16 0.01 

 PF 0.48 0.00 0.44 0.00 0.40 0.01 

Model Fit b ChiSq (df) 1580 (64) 2273 (64) 1599 (64) 
sig. <0.001 <0.001 <0.001 

 CFI 0.993 0.991 0.989 

 TLI 0.992 0.99 0.988 

 AIC 687651 734982 413451 

 
RMSEA 

(CI) 
0.037 

(0.035–0.038) 
0.043 

(0.041–0.044) 
0.047 

(0.045–0.049) 

 SRMR 0.017 0.021 0.026 
Note. a if not noted, p < 0.001. NS = non-significant. b model fit for male/female multiple-group model. 
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Appendix B. Model parameters and fit for CogAT 7. 

  8–10 11–13 14–18 
Parameter Est. a S.E. Est. a S.E. Est. a S.E. 

Gf factor loadings 

VA 0.71 0.01 0.70 0.01 0.65 0.01 
VC 0.67 0.01 0.61 0.01 0.61 0.01 
SC 0.63 0.01 0.63 0.01 0.61 0.01 
NA 0.68 0.01 0.72 0.01 0.69 0.01 
NS 0.70 0.01 0.69 0.01 0.68 0.01 
NP 0.69 0.01 0.73 0.01 0.69 0.01 
NS 0.70 0.01 0.69 0.01 0.68 0.01 

 FC 0.66 0.01 0.61 0.01 0.61 0.01 
 FM 0.69 0.01 0.63 0.01 0.62 0.01 

 PF 0.60 0.01 0.63 0.01 0.61 0.01 

V factor loadings 
VA 0.27 0.01 0.38 0.01 0.43 0.01 
VC 0.40 0.01 0.48 0.01 0.48 0.01 
SC 0.48 0.01 0.51 0.01 0.55 0.01 

Q factor loadings 
NA 0.25 0.02 0.31 0.02 0.32 0.01 
NS 0.20 0.02 0.23 0.01 0.30 0.01 
NP 0.08 0.01 0.17 0.01 0.20 0.01 

N factor loadings 
FC 0.12 0.01 0.20 0.01 0.25 0.01 
FM 0.55 0.06 0.36 0.02 0.24 0.01 
PF 0.15 0.02 0.24 0.02 0.26 0.02 

Intercepts VA 0.02<0.05 0.01 0.02 NS 0.01 0.01 NS 0.01 
 VC 0.04 0.01 0.03<0.01 0.01 0.01 NS 0.01 

 SC 0.05 0.01 0.03<0.01 0.01 0.01 NS 0.01 

 NA −0.06 0.01 −0.07 0.01 −0.05 0.01 

 NS −0.05 0.01 −0.06 0.01 −0.04 0.01 

 NP −0.03 0.01 −0.05 0.01 −0.03 0.01 

 FC −0.01 NS 0.01 −0.01 NS 0.01 0.02 NS 0.01 

 FM 0.00 NS 0.01 −0.01 NS 0.01 0.02 NS 0.01 

 PF −0.01 NS 0.01 −0.01 NS 0.01 0.02<0.05 0.01 

Residual variances 

VA 0.37 0.01 0.32 0.01 0.31 0.01 
VC 0.34 0.01 0.35 0.01 0.32 0.01 
SC 0.31 0.01 0.30 0.01 0.24 0.01 
NA 0.40 0.01 0.29 0.01 0.31 0.01 

 NS 0.40 0.01 0.41 0.01 0.35 0.01 

 NP 0.45 0.01 0.39 0.01 0.39 0.01 

 FC 0.51 0.01 0.55 0.01 0.49 0.01 

 FM 0.13<0.05 0.06 0.42 0.02 0.47 0.01 

 PF 0.57 0.01 0.51 0.01 0.48 0.01 

Model Fit b ChiSq (df) 685 (65) 1352 (65) 1088 (65) 
sig. <0.001 <0.001 <0.001 

 CFI 0.992 0.984 0.988 

 TLI 0.991 0.982 0.987 

 AIC 366028 366376 361033 

 
RMSEA 

(CI) 
0.033 

(0.031–0.035) 
0.048 

(0.045–0.050) 
0.042 

(0.040–0.045) 

 SRMR 0.019 0.029 0.025 
Note. a if not noted, p < 0.001. NS = non-significant. b model fit for male/female multiple-group model. 
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